Definitional Functoriality for Dependent (Sub)Types - Ecole Centrale de Nantes Access content directly
Preprints, Working Papers, ... Year : 2023

Definitional Functoriality for Dependent (Sub)Types

Abstract

Dependently-typed proof assistant rely crucially on a definitional equality, identifying the types and terms that are automatically undistinguishable for the underlying type theory. This paper extends type theory with definitional functor laws, two equations satisfied propositionally by a large class of container-like type con- structors F: Type → Type, equipped with a mapF : (A → B) → F A → F B, such as lists or trees. Promot- ing these equations to definitional ones strengthen the theory, enabling slicker proofs and more automation for functorial type constructors. This extension is then used to justify modularly a structural form of coercive subtyping, propagating subtyping through type formers. We show that the resulting notion of coercive sub- typing, thanks to the extra definitional equations, is equivalent to a natural and implicit form of subsumptive subtyping. The key result of decidability of type-checking in a dependent type system with functor laws for lists has been entirely mechanized in Coq
Fichier principal
Vignette du fichier
main.pdf (367.98 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04160858 , version 1 (20-07-2023)
hal-04160858 , version 2 (23-10-2023)
hal-04160858 , version 3 (08-04-2024)

Licence

Identifiers

  • HAL Id : hal-04160858 , version 1

Cite

Théo Laurent, Meven Lennon-Bertrand, Kenji Maillard. Definitional Functoriality for Dependent (Sub)Types. 2023. ⟨hal-04160858v1⟩
303 View
256 Download

Share

Gmail Mastodon Facebook X LinkedIn More