Communication Dans Un Congrès Année : 2024

Improving Pain Classification using Spatio-Temporal Deep Learning Approaches with Facial Expressions

Résumé

Pain management and severity detection are crucial for effective treatment, yet traditional self-reporting methods are subjective and may be unsuitable for non-verbal individuals. To address this limitation, we explore automated pain detection using facial expressions. Our study leverages deep learning techniques to improve pain assessment by analyzing facial images from the Pain Emotion Faces Database (PEMF).We propose two novel approaches*: (1) a hybrid ConvNeXt model combined with Long Short-Term Memory (LSTM) blocks to analyze video frames and predict pain presence, and (2) a Spatio-Temporal Graph Convolution Network (STGCN) integrated with LSTM to process landmarks from facial images for pain detection. Our work represents the first use of the PEMF dataset for binary pain classification and demonstrates the effectiveness of these models through extensive experimentation. The results highlight the potential of combining spatial and temporal features for enhanced pain detection, offering a promising advancement in objective pain assessment methodologies.
Fichier principal
Vignette du fichier
130721C.pdf (711.16 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04863116 , version 1 (03-01-2025)
hal-04863116 , version 2 (14-01-2025)

Identifiants

  • HAL Id : hal-04863116 , version 1

Citer

Aafaf Ridouan, Amine Bohi, Youssef Mourchid. Improving Pain Classification using Spatio-Temporal Deep Learning Approaches with Facial Expressions. 18th International Conference on Machine Vision (ICMV 2025), Nov 2024, Edimbourg (Ecosse), United Kingdom. ⟨hal-04863116v1⟩

Collections

HESAM
0 Consultations
0 Téléchargements

Partager

More