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Building Confidence on Formal Verification Models

Pierre-Alain Bourdil and Eric Jenn
IRT Saint-Exupéry, Toulouse, France

I. INTRODUCTION

A problem hindering the adoption of formal methods in
the industry is how to integrate the models and results used
during formal verification with existing processes. Indeed,
formal verification is a complex process involving multiple
methods, models, level of formality, ... If we want to use
formal verification results in an assurance case, it is therefore
necessary to build confidence on this process.

The integration of formal methods raises particular prob-
lems like, for instance, with the construction of the verification
models: a model may not preserve all properties of the system
to be verified; it may only cover a subset of these properties;
or it may be intractable. In practice, this means that the
verification process involves a collection of models whose
soundness (with the original system design, but also between
each others) shall be justified. Furthermore, formal techniques
are usually restricted in terms of the set of properties that can
be checked. It is therefore necessary to justify (and trace back)
that these restrictions are consistent with the hypotheses made
about the system, its application and its environment.

This short abstract gives an overview of a methodology for
building verification arguments, that is convincing arguments
that a system design complies with a set of properties. More
details can be found in [2], where we apply our method to a
critical function of a small autonomous robot.

II. VERIFICATION ARGUMENTS AND CLAIMS

Our objective is to prove that a property, P, is met by a
given system (model), M. In order to be as technology agnos-
tic as possible, we use very broad definitions for these terms.
A model is an abstraction of reality that gives a complete
description of it under some hypotheses and for a certain
purpose. In our approach, we apply successive abstractions
from an initial design model—considered as the less abstract
model—until formal verification can be applied. A property
is a statement about a design intent expressed with respect to
a model. The strong relationship between hypotheses, model,
and properties is captured as a triplet (H; M; P) that must be
read as: “the model M satisfies P under the set of hypothesis
H”. We call this triplet a claim, inspired by [5].

In short, a verification argument is a hierarchical collection
of claims where “rules” are used to draw logical connections
between claims. We start with an initial claim that makes as
few abstractions and hypotheses as possible on the system
design. Unfortunately, the initial formal model is usually not
suitable for (automatic) formal verification. To tackle this
issue, abstractions are mandatory, and each abstraction shall be
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captured in a new claim. Our methodology provides guidance
to manage the resulting collection of claims, to justify the
soundness of each abstraction step, and to collect the ver-
ification artifacts: source code, verification results, counter-
examples, etc. Thus our approach favors multiple models with
incremental abstractions rather than fewer models encompass-
ing lots of abstractions. Indeed it is often easier to define (and
justify) an abstraction once the system is well understood [1].

Ultimately—at the leaves of the argument—the validity of
a claim should be checked using a verification tool, such as
a model-checker. In this case, P may be a temporal-logic
formula that needs to be checked on the composition of the
hypotheses with the model. For instance, with a semantics
based on “execution traces”—that associates a set of traces
[M] to any model M—the claim (H; M; P) is valid when
[H] N [M] C [P]. It is also possible to admit a claim as a
fact with sufficient justification from a system expert.

In all other cases, when it is not possible to prove a
“leaf claim”, we propose to apply deduction rules in order
to decompose the problem into more manageable sub-claims.
This approach to structure an argument using an (inference)
tree or a set of deduction rules is quite common, see e.g. [5],
[7], [8]. We define a rule as a schema linking a conclusion,
with a set of premises and a list of conditions required to
apply the rule. Premises and conclusion are claims. We also
attach a justification to each application of a rule to show
that its use is sound. While the leaf claims can serve as
evidences within an assurance case, the inference tree can be
used to build a separate confidence argument [4]. We give
an example of verification argument (next page) that is a
schematic version of the argument at http://projects.laas.fr/
fiacre/examples/2016-twirtee/. This page links to the models
and the justification reports for our use case.

We say that the application of a rule, a rule instance, is
sound when its conclusion is valid whenever its premises are.
We propose some predefined rules to support this process. A
first example, (split), can be used to decompose a proof goal
into two sub-claims with stronger hypotheses. This rule has
a condition of application, which states that the constraints
in H are covered by either H; or H, (the exact meaning of
H C Hy U H, depends on the choice of semantics for H).

(HC HiUHy) (H;;M;P) (Hp; M;P)
(H; M; P)
This rule is useful to decompose a set of initial conditions

in two smaller subsets. The justification for rule (split) shall
explain how to interpret the hypotheses in H as sets. It should
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also constraints P. Indeed, while (split) is sound for safety
properties, it is not necessarily so for liveness properties. The
condition can itself be checked using other abstractions or a
verification tool, for instance a SMT solver.

Another example, (abstraction), illustrates the use of ab-
stractions during the verification process. In this rule, we
consider two different models of the system—an abstract
(M,) and a concrete (M.) one—both equipped with a trace
semantics. This rule states that we can check properties on the
abstract model if any execution trace of M. is also a trace of
M,. In our use case, we use (abstraction) to check properties
on a timed system by proving it on a simplified model, where
timing constraints are omitted. In this particular case, we need
to justify that properties in P depends only on the order of
the events and not on their date. We can use many kinds
of abstractions, some are purely automatic, like: predicate
abstraction; Counter-Example Guided Abstraction Refinement;
symmetry; ... while others are hand-crafted, such as cut-point,
counter-abstraction, or data independence.

By construction, the verification objective (the root claim)
is valid when all the rules instances in the argument are
sound. We can back the soundness of rules like (split) and
(abstraction) by reasoning on the semantics of the models.
This is not always the case and this is one of the motivation
for adding a justification to every rule instance. Next, we
give two examples of ‘“evidence-based rules”, (scope) and
(formalization), which are rules whose soundness is supported
only by subject matter expertise.

(Hy; My; P)

(H; M; P)

In general, only a subset of the design models and require-
ments need to be considered for a given verification objective.
This is achieved by rule (scope), where Mg, H, are obtained
by simplifying M, H with respect to the property P. The
soundness of this rule relies only on its justification, e.g. to
explain why some parts of the design documents have no
influence on the verification of P.

Another instance where formal reasoning is not enough to
simplify a claim is related to the steps where we move from
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an informal to a formal model. Rule (formalization) states that
H, M, P are formal interpretation of the corresponding design
models; Hyp, Sys, Prop. This rule uses informal refinement
steps, where High Level Requirements (HLR) are those given
in the design models and Low Level Requirements (LLR) are
formal model elements. The formal model is then produced
from LLR. This is a classical way to support confidence in
software correctness [10]. Evidence that LLR meet their HLR
is given as the justification.

To conclude, we propose a methodology to build a struc-
tured verification argument in which claims are proved valid
using “derivation rules”, together with a rationale stating why
a given rule can be rightfully applied. We have applied this
methodology to prove a critical function of an autonomous
rover that has been used as a test-bench for various engineering
activities [2], [3]. For future work, we plan to provide patterns
and tools to automate, or at least simplify, the management
of claims and the selection of the appropriate verification
tools. We are currently using Certware [9] to integrate the
verification argument with the safety case of our case study.
We also use the Evidential Tool Bus [6] to implement the rules
and to check claims validity.
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