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Abstract

This document briefly describes our freely distributed Maple library spectra, for
Semidefinite Programming solved Exactly with Computational Tools of Real Algebra.
It solves linear matrix inequalities in exact arithmetic and it is targeted to small-size,
possibly degenerate problems for which symbolic infeasibility or feasibility certificates
are required.
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1 Introduction

Given symmetric matrices A0, A1, . . . , An of size m with rational coefficients, let

S := {x ∈ R
n : A(x) := A0 + A1x1 + · · ·+ Anxn � 0}

denote the corresponding convex spectrahedron, defined by the linear matrix inequality
(LMI) enforcing that A is positive semidefinite.

spectra aims at either proving that S is empty, or finding at least one point in S , using
exact arithmetic.

spectra should be used when the number n of variables or the size m of the LMI are small.
It should not be considered as a competitor to numerical algorithms such as interior-point
methods for semidefinite programming (SDP).

Contrary to numerical algorithms which are based on approximate computations and floating
point arithmetic, spectra is exclusively based on computations with exact arithmetic, and
hence it should be primarily used either in potentially degenerate situations, for example
when it is expected that S has empty interior, or when a rigorous certificate of infeasibility or
feasibility is required. A prominent application that motivated the development of spectra
is the computation of certificates of positivity of real multivariate polynomials in the form
of exact sum-of-squares (SOS) representations.

spectra is guaranteed to compute a point x minimizing the rank of A in S . It solves
exactly the (non-convex) optimization problem

min rank A(x)
s.t. x ∈ S .

This is in sharp contrast with interior-point methods which are designed to compute a point
of maximal rank.

spectra is based on the theory described in [3, 4], to which the reader interested in the
mathematical foundations is referred. The present document is only a brief description of
the software and its main features, illustrated with small examples.

2 Getting started

spectra is freely available as a library for Maple version 16 and above. It can be downloaded
in the form of a single binary file SPECTRA.mla from the following page

homepages.laas.fr/henrion/software/spectra

spectra relies on FGb, a library for fast computation of Gröbner bases, whose Maple
interface must be installed, see [2]. spectra does not work without FGb.

In a Maple worksheet, from the directory containing the file SPECTRA.mla, please type the
command
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> with(SPECTRA);

[SolveLMI]

to activate the main function SolveLMI.

3 Examples

In this section we illustrate the features of spectra with simple examples. Please refer to
the end of this document for a more detailed description of the input and output arguments.

3.1 Half disk

Let

A(x) =





1 + x1 x2 0
x2 1− x1 0
0 0 x1





with n = 2 and m = 3. The corresponding spectrahedron

S = {x ∈ R
2 : A(x) � 0} = {x ∈ R

2 : 1− x2

1
− x2

2
≥ 0, x1 ≥ 0}

is a half disk. To find a point in S , we use spectra as follows:

> A := Matrix([[1+x1, x2, 0], [x2, 1-x1, 0], [0, 0, x1]]):

> SolveLMI(A);

[[x1 = [0, 0], x2 = [1, 1]]]

This returns the point
x = [0, 1] ∈ S

in interval arithmetic notation, i.e.

x1 ∈ [0, 0], x2 ∈ [1, 1]

and for each component in x we obtain rational (exact) lower and upper bounds. Here the
bounds coincide as the point has rational coordinates.

At this point, matrix A(x) is guaranteed to have minimal rank over all points in S . This
rank can be obtained as follows:

> SolveLMI(A,{rnk});

[[x1 = [0, 0], x2 = [1, 1], rnk = 1]]
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3.2 Degenerate spectrahedra

Let us modify the bottom right entry in the matrix of the previous section, so that now

A(x) =





1 + x1 x2 0
x2 1− x1 0
0 0 x1 − 1





and the corresponding spectrahedron S = {x ∈ R2 : A(x) � 0} = {[1, 0]} reduces to a point
in the plane. spectra can easily deal with such a degenerate case:

> A := Matrix([[1+x1, x2, 0], [x2, 1-x1, 0], [0, 0, x1-1]]):

> SolveLMI(A);

[[x1 = [1, 1], x2 = [0, 0]]]

Now let us modify further the bottom right entry, letting

A(x) =





1 + x1 x2 0
x2 1− x1 0
0 0 x1 − 2





so that the corresponding spectrahedron is empty. spectra returns the empty list, and this
is a certificate of emptiness:

> A := Matrix([[1+x1, x2, 0], [x2, 1-x1, 0], [0, 0, x1-2]]):

> SolveLMI(A);

[]

Since spectra is based on exact arithmetic, it is not sensitive to numerical roundoff errors
or small parameter changes:

> A := Matrix([[1+x1, x2, 0], [x2, 1-x1, 0], [0, 0, x1-1-10^(-20)]]):

> SolveLMI(A);

[]

> A:=Matrix([[1+x1, x2, 0], [x2, 1-x1, 0], [0, 0, x1-1+10^(-20)]]):

> SolveLMI(A);

[[x1 = [36893488147418995335 / 36893488147419103232,

4611686018427401391 / 4611686018427387904],

x2 = [-350142318592414077 / 2475880078570760549798248448,

-2801138548739304423 / 19807040628566084398385987584]]

Displayed with 10 significant digits, the latter point reads:

x1 ∈ [ 3689348814741899533

36893488147419103232
, 4611686018427401391

4611686018427387904
] ≈ 1.000000000,

x2 ∈ [ −350142318592414077

2475880078570760549798248448
, −2801138548739304423

19807040628566084398385987584
] ≈ −0.1414213562 · 10−9.

The above point is an irrational solution, and the rational intervals are provided so that
their floating point approximations are correct up to the number of digits specified in the
Maple environment variable Digits, which is by default equal to 10. Use the command
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> Digits:=100:

prior to calling SolveLMI if you want an approximation correct to 100 digits. At the price
of increased computational burden, spectra then provides larger integer numerators and
denominators in the coordinate intervals.

3.3 Irrational spectrahedron

In general, each coordinate of a point computed by spectra is an algebraic number, i.e.
the root of a univariate polynomial with integer coefficients.

For the classical univariate matrix

A(x1) =









1 x1 0 0
x1 2 0 0
0 0 2x1 2
0 0 2 x1









the spectrahedron reduces to the irrational point x1 =
√
2. The simple call

> A:=Matrix([[1, x1, 0, 0], [x1, 2, 0, 0], [0, 0, 2*x1, 2], [0, 0, 2, x1]]):

> SolveLMI(A);

[[x1 = [26087635650665550353 / 18446744073709551616,

13043817825332807945 / 9223372036854775808]]]

returns an interval enclosure valid to 10 digits. We can however obtain an exact representa-
tion of this point via a rational parametrization:

> SolveLMI(A, {par});

[[x1 = [..], par = [_Z^2-2,_Z,[2]]]]

The output parameter par contains three univariate polynomials q, q0, q1 such that the com-
puted point is contained in the finite set

{q1(z)/q0(z) : q(z) = 0} = {2/z : z2 − 2 = 0} = {±
√
2}.

Here obviously the rational interval isolates the irrational point x1 =
√
2.

3.4 Algebraic degree

The algebraic degree of semidefinite programming was studied in [5]. Let us consider the
spectrahedron of Example 4 in this reference, for which

A(x) =









1 + x3 x1 + x2 x2 x2 + x3

x1 + x2 1− x1 x2 − x3 x2

x2 x2 − x3 1 + x2 x1 + x3

x2 + x3 x2 x1 + x3 1− x3









.

The following point can be easily found with spectra, and it has rank 2, which is guaranteed
to be the minimal rank achieved in the spectrahedron:
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> A:=Matrix([[1+x3, x1+x2, x2, x2+x3], [x1+x2, 1-x1, x2-x3, x2],

[x2, x2-x3, 1+x2, x1+x3], [x2+x3, x2, x1+x3, 1-x3]]):

> SolveLMI(A, {rnk});

[[x1 = [29909558235590963953/36893488147419103232,

29909558235593946897/36893488147419103232],

x2 = [-18555206088021567643/36893488147419103232,

-9277603044010395249/18446744073709551616],

x3 = [-12556837519724045701/36893488147419103232,

-12556837519723709525/36893488147419103232],

rnk = 2]]

With the following instruction we can indeed certify that there is no point of rank 1 or less:

> SolveLMI(A, {}, [1]);

[]

The command

> SolveLMI(A, {par});

returns the following rational univariate parametrization of the above rank 2 point:

q(z) = 16144z10 + 35160z9 + 14536z8 − 17690z7 − 16278z6 − 2001z5 + 1556z4 + 454z3 + 23z2 − 4z − 1
q0(z) = 161440z9 + 316440z8 + 116288z7 − 123830z6 − 97668z5 − 10005z4 + 6224z3 + 1362z2 + 46z − 4
q1(z) = 97248z9 + 146144z8 − 18192z7 − 134826z6 − 63302z5 + 4048z4 + 6758z3 + 846z2 − 49z − 14
q2(z) = 34456z9 + 37516z8 − 8734z7 − 22150z6 − 8223z5 − 3978z4 − 1324z3 + 104z2 + 103z + 13
q3(z) = −35160z9 − 29072z8 + 53070z7 + 65112z6 + 10005z5 − 9336z4 − 3178z3 − 184z2 + 36z + 10

so that the point belongs to the finite set

{(

q1(z)

q0(z)
,
q2(z)

q0(z)
,
q3(z)

q0(z)
,
q4(z)

q0(z)

)

: q(z) = 0

}

.

The degree of the polynomial q in this parametrization can be obtained with the command

> SolveLMI(A, {deg});

We can obtain more points in the spectrahedron as follows:

> SolveLMI(A, {all, rnk, deg}, [2]);

This returns 4 feasible solutions of rank r = 2, all parametrized by the above degree 10
polynomial. Notice that this matches with the algebraic degree of a generic semidefinite
programming problem with parameters (m,n, r) = (4, 3, 2), which is 10 according to [5,
Table 2].
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3.5 Reproducibility

Consider the matrix

A(x) =

[

1 + x1 x2

x2 1− x1

]

modeling the unit disk. Two consecutive calls to SolveLMI return two distinct points:

> A:=Matrix([[1+x1,x2],[x2,1-x1]]):

> SolveLMI(A);

[[x1 = [-21201056044062027875/36893488147419103232, -662533001376936933/1152921504606846976],

x2 = [-7548363607018988253/9223372036854775808, -1887090901754742967/2305843009213693952]]]

> SolveLMI(A);

[[x1 = [-10862500438565607907/590295810358705651712, -21725000877131177215/1180591620717411303424],

x2 = [-576363141759828805/576460752303423488, -9221810268157244495/9223372036854775808]]]

After another call, or on your own computer, these intervals should still differ as spectra
makes random changes of coordinates to ensure that the geometric objects computed are in
general position. This kind of behavior is expected when there are infinitely many points of
minimal rank in the spectrahedron.

To generate reproducible outputs, the instruction randomize can be used to seed the random
number generator used by Maple:

> randomize(31415926):

> SolveLMI(A);

[[x1 = [-35204733513421104993/36893488147419103232, -35204733513421000447/36893488147419103232],

x2 = [-2758579864857623899/9223372036854775808, -5517159729715231413/18446744073709551616]]]

> randomize(31415926):

> SolveLMI(A);

[[x1 = [-35204733513421104993/36893488147419103232, -35204733513421000447/36893488147419103232],

x2 = [-2758579864857623899/9223372036854775808, -5517159729715231413/18446744073709551616]]]

3.6 Polynomial sums of squares

Deciding whether a multivariate real polynomial is non-negative is difficult in general. A
sufficient condition, or certificate for non-negativity, is that the polynomial can be expressed
as a sum of squares (SOS) of other polynomials. Finding a polynomial SOS decomposition
amounts to finding a point in a specific spectrahedron called Gram spectrahedron, see e.g.
[1] and references therein.

As an example, consider the homogeneous ternary quartic

f(u) = u4

1
+ u1u

3

2
+ u4

2
− 3u2

1
u2u3 − 4u1u

2

2
u3 + 2u2

1
u2

3
+ u1u

3

3
+ u2u

3

3
+ u4

3
.

The polynomial f belongs to a series of examples produced by C. Scheiderer in [6] to answer
(in the negative) the following question by B. Sturmfels: let f be a polynomial with rational
coefficients which is an SOS of polynomials with real coefficients; is it an SOS of polynomials
with rational coefficients? Scheiderer’s counterexamples prove that, generally speaking, there
is no hope in obtaining nonnegativity certificates over the rationals. However, certificates
exist in some algebraic extension of the field of rational numbers.
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In the graded reverse lexicographic ordered monomial basis, the Gram matrix of f is the
matrix

A(x) =

















1 0 x1 0 −3/2− x2 x3

0 −2x1 1/2 x2 −2− x4 −x5

x1 1/2 1 x4 0 x6

0 x2 x4 −2x3 + 2 x5 1/2
−3/2− x2 −2 − x4 0 x5 −2x6 1/2

x3 −x5 x6 1/2 1/2 1

















depending linearly on 6 real parameters. The Gram spectrahedron S = {x ∈ R6 : A(x) � 0}
parametrizes the set of all SOS decompositions of f . We deduce by the discussion above
that S does not contain rational points. In particular, its interior is empty.

Let us use spectra to compute points in S and hence to get positivity certificates for f :

> A := Matrix([[1,0,x1,0,-3/2-x2,x3], [0,-2*x1,1/2,x2,-2-x4,-x5], [x1,1/2,1,x4,0,x6],

[0,x2,x4,-2*x3+2,x5,1/2], [-3/2-x2,-2-x4,0,x5,-2*x6,1/2], [x3,-x5,x6,1/2,1/2,1]]):

> out := SolveLMI(A, {rnk, deg, par});

-8581452335803113365 -4290726167901519779 -4611686018427402223 -9223372036854747171

[[[x1 = [--------------------, --------------------], x2 = [--------------------, --------------------],

9223372036854775808 4611686018427387904 4611686018427387904 9223372036854775808

6745044697806705179 1686261174451679625 -4956654678096131785 -4956654678096116467

x3 = [-------------------, -------------------], x4 = [--------------------, --------------------],

9223372036854775808 2305843009213693952 18446744073709551616 18446744073709551616

4290726167901543733 536340770987693255 -8581452335803091439 -2145363083950772283

x5 = [-------------------, ------------------], x6 = [--------------------, --------------------]],

4611686018427387904 576460752303423488 9223372036854775808 2305843009213693952

rnk = 2, deg = 3,

par = [8*z^3+8*z+1, 24*z^2-8, [16*z+3, -24*z^2+8, 8*z^2+6*z+8, -16*z^2+6*z+16, -16*z-3, 16*z+3]]]

We obtain an irrational point x ∈ S whose coordinates are algebraic numbers of degree 3,
and which belongs to the finite set
{(

16z + 3

24z2 − 8
,
−24z2 + 8

24z2 − 8
,
8z2 + 6z + 8

24z2 − 8
,
−16z2 + 6z + 16

24z2 − 8
,
−16z − 3

24z2 − 8
,
16z + 3

24z2 − 8

)

: 8z3 − 8z − 1 = 0

}

At this point, the Gram matrix A has rank 2, and hence f is an SOS of 2 polynomials.

Let us compute more non-negativity certificates of rank 2:

> out:=SolveLMI(A,{rnk,deg,par,all},[2]);

In addition to the point already obtained above, we get another point. The user can compare
this output with [6, Ex. 2.8]: it turns out that these are the only 2 points of rank 2. Other
points in the Gram spectrahedron have rank 4 and they are convex combinations of these 2.

4 Input

The calling sequence of function SolveLMI is as follows:

> SolveLMI(A, options, ranks);
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where

• A is a symmetric matrix of size m with rational coefficients, depending affinely on n
variables;

• options (optional) is a set that can contain the following keywords:

all : compute as many solutions as possible, which can be computationally demand-
ing; when this option is not specified, the algorithm is stopped as soon as one
solution is computed, which is typically much faster;

rnk : return the rank of A at every computed solution;

par : return the rational univariate parametrization of every computed solution;

deg : return the algebraic degree of every computed solution;

• ranks (optional) is a list of nonnegative integers corresponding to expected ranks of
computed solutions. The default value is [0, 1, . . . , m − 1]. The algorithm is run for
each value r in ranks by solving the quadratic system of equations

A(x)Y (y) = 0

for a vector x and a matrix Y (y) with m rows and m − r columns whose entries are
stored in a vector y. It may happen that the rank of A(x) at a computed solution x is
strictly less than r.

5 Output

Let us denote by x1, x2, . . . , xn the variables on which matrix A depends affinely. They are
gathered in a vector x ∈ R

n. When the input argument options is empty, the output
returned by SolveLMI is

• eithter the empty list [] in which case S is empty, or

• a rational enclosure of a single point x ∈ S , in the form

> SolveLMI(A)

[[x1 = [a1, b1], x2 = [a2, b2], ..., xn = [an, bn]]]

where ai, bi are rational numbers, displayed as ratios of integers. This means that each
coordinate xi belongs to the interval [ai, bi] ensuring a floating point approximation of
x valid to a number of digits equal to the Maple environment variable Digits. When
ai = bi this implies that xi is a rational number.

When options contains the keyword all, more points can be returned, in the form of a list
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> out := SolveLMI(A, {all})

[[x1 = [a11, b11], x2 = [a12, b12], ..., xn = [a1n, b1n]],

[x1 = [a21, b21], x2 = [a22, b22], ..., xn = [a2n, b2n]],

...]

such that nops(out) is the number of computed points, out[1] is the first point, out[2] is
the second point, etc.

When options contains the keyword rnk, the rank of A at x is returned:

> SolveLMI(A, {rnk})

[[x1 = [a1, b1], x2 = [a2, b2], ..., xn = [an, bn], rnk = r]]

These keywords and the following ones can be freely combined:

> SolveLMI(A, {all, rnk})

[[x1 = [a11, b11], x2 = [a12, b12], ..., xn = [a1n, b1n], rnk = r1],

[x1 = [a21, b21], x2 = [a22, b22], ..., xn = [a2n, b2n], rnk = r2],

...]

When options contains the keyword par, a rational univariate parametrization of x is
returned:

> SolveLMI(A, {par})

[[x1=[a1,b1], x2=[a2,b2], ..., xn=[an,bn], par=[q,q0,[q1,q2,...,qn]]]

This parametrization is such that q, q0, q1, q2, . . . , qn are univariate polynomials with integer
coefficients such that x belongs to the finite set

{(

q1(z)

q0(z)
,
q2(z)

q0(z)
, · · · , qn(z)

q0(z)

)

: q(z) = 0, z ∈ C

}

.

The intervals [ai, bi] are provide to isolate the computed point from this set of points.

When options contains the keyword deg, the degree of the polynomial q in the rational
univariate parametrization of each computed point x is also returned:

> SolveLMI(A, {deg})

[[x1 = [a1, b1], x2 = [a2, b2], ..., xn = [an, bn], deg = d]]
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