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Abstract 

(W/WO3 –Ag/AgCl) and (Pt/IrO2 – Ag/AgCl) potentiometric microdevices were developed for pH 

measurement in liquid phase using a (Pt – Pt – Ag/AgCl) electrochemical microcells (ElecCell) 

silicon-based technological platform. A special emphasis was placed on the mass fabrication of the 

W/WO3 microelectrode using sputtering deposition and oxygen plasma processes. Compared to the 

Pt/IrO2-based one, the W/WO3-based microelectrodes showed lower performances regarding the pH 

measurement. Nevertheless, since W/WO3 microelectrodes yielded quasi-Nernstian sensitivity 

(around 55 mV/pH) in the [2-12] pH range, tungsten oxide WO3 can be considered as a good 

candidate for the mass fabrication of pH microsensors using silicon technologies, even if important 

temporal drift (at least 6 millivolts per hour) and high hysteresis (around 50 mV) were also 

evidenced. 

 

Keywords: microelectrodes, potentiometric microdevices, physical vapour deposition, tungsten W 
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1. Introduction 

 

 Since life-related processes concern mainly water-based samples, pH measurement was 

required for various analyses and pH monitoring was intensively studied [1]. Optical 

detection/transduction principles were successfully developed and industrialized for health 

applications. In order to meet requirements of small volume sample, high screening, high 

performance and low cost, pH coloured indicators have therefore been used for medical analysis 

[2]. Regarding environmental applications and food industry, electrochemical 

detection/transduction principles were preferred. As a result, pH-glass electrodes were widely 

developed to deal with high sample volumes, long-duration analysis and in-situ process monitoring 

(even if their use is still hindered by fragility) [3]. Nevertheless, since analysis techniques have 

followed the miniaturization path, the development of electrochemical detection/transduction 

principles attracted particular attention due to their higher compatibility with microelectronics, 

leading to the development of solid-state pH microsensors. On the one hand, pH-sensitive chemical 

field effect transistors (pH-ChemFET) were studied using different sensitive gate materials such as 

silicon nitride Si3N4, aluminium oxide Al2O3 and tantalum oxide Ta2O5 [4]. Thus, high 

compatibility of field effect transistors (FET) microdevices with silicon-based technologies ensured 

mass fabrication of integrated pH microsensors dedicated to pH measurement [5], bacterial analysis 

[6], on-line monitoring of cell metabolism [7], on-line biochemical detection [8] as well as genome 

sequencing [9]. On the other hand, research has been focused on pH-based ion-sensitive electrodes 

(pH-ISE) and many metal oxides were used as sensitive materials [10]. 

 Among them, iridium oxide IrO2 (or IrOx) was extensively studied. Through the development 

of anodic electrodeposition processes [11], IrO2 (micro)electrodes were produced, demonstrating 

near-Nernstian responses, high pH detection range, low interferences of other ionic species and 

improved long-term stability [12-18]. As a result, these anodically electrodeposited iridium oxide 
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films (AEIROF) were used for various pH-related applications: pH sensing [14,15,18], pH imaging 

using scanning electrochemical microscopy [19], biomedical analysis [20], neurostimulation [21], 

cell media microanalysis [22]. Nevertheless, even if first devices were reported for simultaneous 

fabrication of AEIROF-based microelectrodes into microfluidic channels [22-24], the integration of 

IrOx-based pH microsensors is still hindered by low compatibility of anodic electrodeposition with 

mass fabrication. In order to overcome these limitations, some technological processes were 

proposed, including thermal oxidation [25], physical vapour deposition [26,27] and sol-gel dip-

coating/patterning deposition [28,29]. However, in these different cases, IrOx (micro)electrodes are 

still characterized by good pH detection properties but also by non-Nernstian pH responses 

(sensitivity around 50 mV/pH). Thus, taking into account the mass integration limitation, other 

metal oxides were studied to compete with iridium oxide IrO2 regarding development of pH 

microsensors. 

 In this context, tungsten oxide WO3 (or WOx) is also an interesting candidate and exhibits 

significant advantages compared to other metal oxides. Firstly, tungsten (W) is a well-known metal 

in silicon foundries since it has been used to create gate contacts and interconnects in very-large 

scale integration (VLSI) devices developed for microelectronic applications [30,31]. Secondly, 

tungsten oxide thin films were studied for the mass fabrication of photo-electrochemical devices 

while developing integration processes based on physical vapour deposition [32-35]. Thirdly, it was 

successfully elaborated as a sensitive material for the fabrication of pH-ChemFET microdevices 

[36] as well as pH-sensitive microelectrodes [37-41]. In most cases, tungsten oxidation was 

obtained by electro-oxidation in basic solutions, leading to the formation of stable WO3 thin films. 

Thus, non-Nernstian pH-responses (sensitivity around 55 mV/pH) were evidenced on wide pH 

range. Lastly, metallic tungsten (W) electrode was investigated as a potential candidate for pH 

measurement using WO2 or W2O5 native oxide as pH-sensitive layer, exhibiting lower sensitivity (~ 

50 mV/pH) [42]. In most cases, the mass fabrication requirement was not met. Nevertheless, this 
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last work offers opportunities for the integration of tungsten-based pH-sensitive layers and the 

development of mass–fabricated W/WO3 pH microsensors using silicon-based technologies. 

 This paper deals with the integration of pH-sensitive, electrochemical microsensors based on 

tungsten trioxide. In order to deal with mass fabrication, we have developed a two-step deposition 

process where we first deposit tungsten (W) via sputtering and then we oxidize the film using an 

oxygen (O2) plasma to form tungsten trioxide. Thus, W/WO3 integrated microelectrodes are 

microfabricated using a standard (Pt - Pt – Ag/AgCl) electrochemical microcell (ElecCell) based on 

silicon technologies. Finally, detection properties of W/WO3 pH-sensitive microelectrodes are 

studied and compared to standard Pt/IrO2 ones. 

 

2. Experimental 

 

2.1 Deposition of tungsten thin films 

 

 Growth experiments were carried out in a UNIVEX 450C cluster. Magnetron sputter 

depositions were performed using a tungsten cathode (99.999% purity). Electrical bias and 

sputtering power were fixed at 0 volt and 800 Watts respectively, while the argon (Ar) total 

pressure varied between 10-3 and 3 × 10-2 millibar. Thin tungsten films (thickness range: 200 – 500 

nm according to experimental conditions) were deposited on 4-inch, around 525 m thick, (100), 

oxidized (SiO2 thickness around 600 nm) silicon wafers. Films thickness was measured by 

profilometry using the shadow mask technique, and deposition rates were calculated by dividing 

deposited thickness by deposition duration. Then, wafer curvature shifts before and after deposition 

were also assessed by profilometry. Since the deposited tungsten films are very thin compared to 

the silicon wafer, its average stress was finally calculated through Stoney's formula [43]. Finally, 

electrical conductivity of tungsten films was estimated by four-probe measurements. For all these 
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different characterization techniques, measurement accuracy is estimated between ± 5% and ± 10%. 

Nevertheless, in order to define more precisely the standard deviations associated to deposition 

conditions and uniformity, experimental results were deduced from at least five measurements on 

the wafer. 

 

2.2 Electrochemical microcells fabrication 

 

 Different pH-sensitive microelectrodes were fabricated using a technological platform 

dedicated to the microfabrication of electrochemical microcells (ElecCell) [18,44]. Starting with an 

oxidized (oxide thickness: ~ 0.6 m) silicon wafer in order to ensure electrical insulation between 

different metallic layers, two successive evaporation processes were performed using the lift-off 

technique in order to fabricate (Pt - Pt - Ag) ElecCell microdevices. Firstly, a 120 nm platinum 

layer was deposited on a 20 nm titanium underlayer in order to enhance platinum adhesion on 

silicon oxide, followed by a 400 nm silver layer. For tungsten-based microelectrodes, a 500 nm 

tungsten layer was first deposited on the oxidized substrate without any adhesion layer and 

patterned using a standard lift-off process in order to enhance fabrication's reproducibility. Tungsten 

deposition parameters were selected so that technological defects related to residual stress are 

limited. An oxygen (O2) plasma process was then performed (plasma power: 800 W – duration: 15 

min) in order to oxidize the tungsten layer and to form a WO3 thin film on top. Then, typical Ti/Pt 

and Ag deposition/patterning procedures previously described were used. Finally, an inorganic 

Si3N4-based passivation layer (thickness around 0.1 m) was deposited on the whole wafer. 

Patterning was performed using an optimized double layer lift-off process in order to define 

microelectrodes active surface and ensure electrochemical properties in liquid phase [45]. 

According to the photolithographic masks design, 50m-diameter disk working microelectrodes 

were developed (theoretic area: 19.6 × 10-4 mm2). In contrast, very large silver-based reference 
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microelectrodes (~ 0.02 mm2) were fabricated in order to improve the potentiometric detection 

behaviour. 

 Thus, (W/WO3 – Pt – Ag) and (Pt – Pt – Ag) microdevices were mass fabricated on silicon 

substrate. After dicing, ElecCell chips were placed, glued by an epoxy insulating glue and wire 

bonded on a specifically coated printed circuit. Packaging was completed by encapsulating wire 

bonds using a silicone glop-top in order to be completely compatible with liquid phase 

measurement. For the (Pt – Pt – Ag) configuration, an iridium oxide IrO2 thin film was 

electrodeposited according to methods proposed in literature [11,14,23]. Thus, 0.075 g of iridium 

tetrachloride IrCl4 was dissolved in 50 mL of deionized water, and the solution was stirred for 30 

minutes. Hydrogen peroxide H2O2 (30%, 0.5 mL) and then 0.25 g of oxalic acid C2O4H2 were 

added in the solution. After a 10-minutes stirring process, solution's pH was adjusted to 10.5 using 

dehydrated potassium carbonate K2CO3. Then, the solution was stored for stabilization for one 

week. Finally, platinum microelectrode was immersed in this iridium-based solution and a potential 

of 0.6 V was applied using an Ag/AgCl/KClsat double junction glass electrode as reference. The 

IrO2 electrodeposition process was finally interrupted when a 0.5 C/cm2 charge was deposited. 

 Finally, for all microdevices, after an initial Ag surface evaluation by cyclic voltammetry 

(potential scan rate: 50 mV/s between -1.1 and 0.5 V) in a 0.1 M KNO3-based acid solution (pH = 

3.5), the silver/silver chloride Ag/AgCl reference microelectrode was obtained by oxidizing the 

silver metallic layer in a 0.01 M KCl solution. This oxidation was performed by linear voltammetry 

(potential scan rate: 1 mV/s between 0 and 0.25 V) using an Ag/AgCl/KClsat double junction glass 

electrode as reference. Overall, (W/WO3 – Ag/AgCl) and (Pt/IrO2 – Ag/AgCl) pH-sensitive 

integrated microdevices were successfully fabricated (figures 1a and 1b). 

 

2.3 Electrochemical characterization 
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 All electrochemical characterizations were held using a multi-channel VMP potentiostat from 

Biologic. In order to define standard deviations associated to microfabrication process and/or 

characterization procedure, three Pt/IrO2 and six W/WO3 microelectrodes (thanks to the mass 

fabrication possibility) were characterized. Thus, Nernst potentials were estimated by potentiometry 

using the open-circuit method. First, electrochemical properties of the integrated Ag/AgCl reference 

electrode were studied. Using a commercial reference electrode (Metrohm Ag/AgCl glass double 

junction, with inner and outer compartments filled with KCl 3.5 M), open-circuit potentials at 

equilibrium were recorded in solutions consisting of a background electrolyte (CH3COOLi - 0.1 M) 

with potassium chloride KCl concentrations ranging from 10-5 M to saturation (~ 4.5 M). Thus, 

chloride ion (Cl-) detection properties as well as the temporal stability were thoroughly studied. 

Then, pH measurements were performed for different solutions (pH = 2.0, 4.0, 5.5, 7.0, 8.5, 10.0 

and 12.0). Chloride ion's concentration was kept constant for all the buffer samples in order to 

ensure proper use of the integrated Ag/AgCl reference microelectrode, and compare it to the 

commercial glass reference electrode. All chemical reagents were purchased from Sigma. 

 

3. Results and discussion 

 

3.1 Deposition of tungsten thin films 

 

 Properties of different sputtered tungsten films were studied as a function of argon total 

pressure (table 1). Concerning the deposition rate, it is proportional to ions current in the plasma 

[46]. Since total pressure increase is known to be responsible for the formation of argon plasma 

with higher density and therefore higher ionic current, it consequently leads to a deposition rate 

increase (figure 2). 
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 Furthermore, total pressure increase is found to be responsible for an intrinsic stress increase 

from very compressive to very tensile values (figure 3). This transition was already evidenced in 

literature [47-49]. Given the fact that this transition was found to depend on tungsten film's density 

and microstructure [47,49], the intrinsic stress origin into sputtered tungsten films was not fully 

explained. It is assumed that the compressive stress is related to atomic peening of the film due to 

particles bombardment during sputtering deposition process and that total pressure increase is 

responsible for plasma particles thermalization that induces tensile stress [48,50]. Nevertheless, this 

compressive-tensile stress transition yields a no-stress tungsten film. Such condition of no-stress (or 

slightly tensile stress) is very important in order to be able to deposit tungsten films with various 

thicknesses without encountering non-adhesion and/or delamination phenomena. Given our 

sputtering conditions (bias: 0 V, power: 800 W), this no-stress film was obtained for an argon total 

pressure of 20 × 10-3 millibars. The aforementioned experimental conditions were finally used for 

the integration of (W/WO3 – Pt – Ag/AgCl) ElecCell microdevices. 

 Finally, the tungsten film's resistivity was found to be at least two or three times higher than 

the one obtained with the bulk material (around 5 cm [50]). This ratio was already found in 

literature and is related to impurities systematically introduced in the films during sputtering 

process [51]. According our results, argon total pressure increase induces a resistivity increase. 

Nevertheless further conclusions can hardly be provided for contradictory reasons. On one side 

according to the grain-boundaries model [52], resistivity depends on the film's thickness and not on 

the deposition rate. On the other side, in disagreement with the grain-boundaries model, the use of 

argon-based plasma was found to be responsible for complex resistivity variations with film 

thickness due to huge discrepancies in terms of microstructure, morphology and porosity [46]. 

These variations were related to the deposition of different tungsten phases –W and -W 

according to the deposition parameters: plasma power, temperature and pressure [51,53]. However, 

coming back to our main interest, resistivity values obtained for the no-stress tungsten film (~ 16.5 
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cm) were low enough to enable use of such film for the development of microelectrodes and 

electrochemical microcells. 

 

3.2 Characterization of the integrated Ag/AgCl reference electrode 

 

 In order to validate the integrated Ag/AgCl reference electrode, its behaviour was studied for 

the measurement of chloride ion (Cl-) concentration in liquid phase using a Metrohm Ag/AgCl glass 

double junction reference electrode. Typical potentiometric responses were obtained for the Nernst 

potential at equilibrium, yielding quasi-Nernstian sensitivities of 57 ± 2 mV/pCl on the [10-5 M – 

100 M] concentration range (figure 4) [54-56]. Then, its stability was studied in 0.01M KCl 

solutions with different pH (pH= 2.0, 7.0 and 12.0) (figure not shown). Whatever the pH (i.e. acid, 

neutral or basic), after an initial decrease of around 5 mV during half an hour, the Ag/AgCl 

microelectrode's potential at equilibrium was found to be quite stable with a value of around 0.10 V, 

exhibiting a very low negative drift (around 3 mV/h) during one hour. Such result is in agreement 

with literature [54,56] and validates our microfabrication process based on thin, i.e. micrometric or 

smaller, metallic films and passivation layers. 

 

3.3 pH measurement using W/WO3 and Pt/IrO2 microelectrodes 

 

 Measurement properties of the different pH-sensitive microelectrodes were studied in 

different solutions (pH = 2.0, 4.0, 5.5, 7.0, 8.5, 10.0 and 12.0) while keeping chloride ion 

concentration constant to avoid any interference associated to the integrated Ag/AgCl reference 

electrode. Nevertheless, in a first step, both Pt/IrO2 and W/WO3 microelectrodes were studied using 

a Metrohm commercial reference electrode. As expected, both microelectrodes were found to be 

sensitive to pH and be able to monitor pH variations from 2 to 12 (figures 5 and 6). So, Pt/IrO2 
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microelectrodes yielded Nernstian sensitivity (around 60 mV/pH) [14-18,24-27]. It should be 

mentioned that literature showed supra-Nernstian pH responses for AEIROF-based microelectrodes 

and related them to variations in the IrO2 oxidation state [12,19,20,22,23,25]. In our case, such 

improved sensitivity values were not obtained. Concerning tungsten oxide based microelectrodes, 

they exhibited linear, sub-Nernstian sensitivity (around 55 mV/pH). Such value is representative of 

stoichiometric tungsten oxide WO3 rather than non-stoichiometric oxide [38,41,42]. 

 Measurement stability was also examined for three different solutions (pH = 2.0, 7.0 and 

12.0) during several hours. It should be mentioned that no deterioration of the W/WO3 structure was 

noticed during these experiments. Both Pt/IrO2 and W/WO3 microelectrodes were characterized by 

a similar temporal drift around 6 mV/h, i.e. 0.1 pH/h (results not shown). Such low values should be 

related to the silicon-based thin-film fabrication process. According to these results, hysteresis was 

studied for the acid/basic/acid transition. Thus, a low value (around 5 mV) was obtained for the 

Pt/IrO2 microelectrodes whereas a higher one (around 50 mV) was found for the W/WO3 

microelectrode. Such result could be related to the electrochemical stability of tungsten oxides in 

water-based solutions. According to the metastable E-pH diagram proposed for the WO3-H2O 

system [38,57], the formation of tungstate ions (WO4
2-) occurs for pH higher than 6. A careful 

analysis of our experimental results (figure 6) demonstrate a potential shift of 50 mV around pH = 

6, correlating the high hysteresis value to electrochemical instabilities of WO3 films obtained 

through oxygen (O2) plasma oxidation. This phenomenon is quite problematic since it will be 

responsible for possible measurement errors at neutral pH. Nevertheless, this should be solved by 

improving the tungsten oxidation process [42]. 

 Then, (Pt/IrO2 – Ag/AgCl) and (W/WO3 - Ag/AgCl) pH-sensitive microdevices were used for 

pH monitoring in an autonomous way, i.e. using the integrated Ag/AgCl reference microelectrode 

(rather than the Metrohm commercial reference electrode as reported previously). In both cases, pH 

was monitored successfully, demonstrating the integration of pH-sensitive potentiometric 
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microcells using iridium oxide IrO2 or tungsten oxide WO3 sensitive layers (figure 7). According to 

calibration curves (figure 8) and as previously reported, the Pt/IrO2-based pH-ElecCell yielded 

higher sensitivity compared to the W/WO3-based one, i.e. 60 versus 55 mV/pH (table 2). 

Concerning stability at pH 2.0, 7.0 and 12.0, a temporal drift of approximately 18 mV/hour, i.e. 0.3 

pH/h, was obtained (results not shown). Compared to the previous result, the increase should be 

directly correlated to the use of the integrated Ag/AgCl reference microelectrode. Firstly, its own 

temporal drift (~ 3 mV/h, cf. §3.2) is interfering with the final pH measurement. Secondly, the 

electrical polarization of the whole microdevices should be responsible for leakage currents 

between microelectrodes due to technological defects at the wafer level. From a measurement 

reproducibility point of view, such high temporal drift should strongly hinder the long-term use of 

the examined technology. Nevertheless, it can be reduced by developing specific techniques not 

only on wafer-level but also regarding and (micro)system packaging techniques [58-60]. Finally, as 

previously reported, the W/WO3-based pH-ElecCell yielded higher hysteresis compared to the 

Pt/IrO2-based one: -25 mV versus +75 mV. Similarly, the discrepancy is clearly related to some 

potential variation occurring around pH 6 and previously associated to the formation of tungstic 

acid H2WO4 [38,57]. Finally, the hysteresis value obtained for the Pt/IrO2-based pH-sensitive 

microdevices was not clearly understood. It should be related to the use of the integrated Ag/AgCl 

reference electrode and needs to be further studied. 

 Overall, the different results related to pH detection were summarized in table 2. Thus, it 

appears that the Pt/IrO2-based pH-ElecCell is better compared to the W/WO3-based microdevice. 

Nevertheless, these lower performances are fully counterbalanced by the fact that W/WO3-based 

pH-ElecCell is mass fabricated due to tungsten layer oxidation using an oxygen O2 plasma process 

while Pt/IrO2-based microdevice is still fabricated individually through to a standard anodic 

electrodeposition process. 
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4. Conclusion 

 

 A silicon-based technological platform dedicated to (Pt – Pt – Ag/AgCl) electrochemical 

microcells (ElecCell) was used to fabricate (Pt/IrO2 – Ag/AgCl) and (W/WO3 – Ag/AgCl) 

potentiometric microdevices. Specific attention was brought on the mass fabrication of the W/WO3 

microelectrode. As a matter of fact, a no-stress thin tungsten film was deposited by sputtering in 

order to avoid any non-adhesion and/or delamination problems, and was then oxidized through an 

oxygen (O2) plasma process to mass fabricate the tungsten oxide thin layer. Compared to the 

Pt/IrO2-based one, the W/WO3-based microdevices showed lower performances concerning pH 

measurement. Nevertheless, since quasi-Nernstian sensitivity (around 55 mV/pH) as well as 

acceptable stability (around 18 mV/h) and hysteresis (around 50 mV) were evidenced on the [2-12] 

pH range, (W/WO3 – Ag/AgCl) pH-sensitive microdevices were successfully developed for pH 

monitoring in liquid phase. As a result, tungsten oxide WO3 was finally found to be a good 

candidate for the mass fabrication of pH microsensors using silicon-based technologies. 

 From our results, two drawbacks still need to be solved. First, even if fabrication 

reproducibility is ensured by the use of a well-defined, silicon-based process, measurement 

reproducibility is still hindered by relatively high temporal drifts: values around 6 or 18 millivolts 

per hour, i.e. 0.1 or 0.3 pH per hour, were evidenced according to the use of the integrated Ag/AgCl 

reference microelectrode. This drawback appears to be not related to working electrode materials, 

i.e. Pt/IrO2 or W/WO3, but to the technological compatibility between potentiometric devices and 

liquid phase analysis. Secondly, the WO3/H2WO4 transition at pH 6 was found to be responsible for 

measurement instabilities and finally high hysteresis (around 50 mV). Both drawbacks will be 

solved through technological process improvements associated with the tungsten plasma oxidation 

process under oxygen (O2) as well as wafer-level and/or (micro)system packaging procedures. 
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TABLE & FIGURE CAPTIONS 

 

 

Table 1: characteristics of tungsten thin films deposited by sputtering 

(bias: 0 V, power: 800 W) as a function of argon total pressure 

(deviations were estimated through at least five different measurements on the wafer) 

 

Table 2: Comparison of pH detection properties 

of Pt/IrO2–based and W/WO3-based potentiometric microdevices 

(deviations were estimated by characterizing three Pt/IrO2 and six W/WO3 microelectrodes) 

 

Figure 1: a) optical and (inset) scanning electron microscopy (SEM) of (W/WO3 – Pt – Ag/AgCl) 

electrochemical microcell chips and b) SEM and (inset) optical micrographs of (Pt/IrO2 – Pt – 

Ag/AgCl) electrochemical microcell chips 

 

Figure 2: variations of the sputtered tungsten deposition rate as a function of argon total pressure 

(linear fit is given by the dotted line, error bars represent standard deviation across at least five 

measurements) 

 

Figure 3: variations of the sputtered tungsten film intrinsic stress as a function of argon total 

pressure (linear fit is given by dotted line, error bars represent standard deviation across at least five 

measurements) 
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Figure 4: pCl calibration curve of the integrated Ag/AgCl reference electrode 

(linear fit is given by dotted line, error bars represent standard deviation across at least nine 

measurements) 

 

Figure 5: pH analytical responses of a) W/WO3 and b) Ti/Pt/IrO2 microelectrodes 

using a Metrohm commercial reference electrode 

 

Figure 6: pH calibration curves of W/WO3 and Pt/IrO2 microelectrodes 

using a Metrohm commercial reference electrode (linear fits are given by dotted lines, error bars 

represent standard deviation across at least nine measurements) 

 

Figure 7: pH analytical responses of a) (W/WO3 –Ag/AgCl) and 

b) (Pt/IrO2 – Ag/AgCl) potentiometric microdevices 

 

Figure 8: pH calibration curves of (W/WO3 – Ag/AgCl) and (Pt/IrO2 – Ag/AgCl) 

potentiometric microdevices (linear fits are given by dotted lines error bars represent standard 

deviation across at least nine measurements) 
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total pressure 

(millibar) 

deposition rate 

(nm/min) 

residual stress 

(GPa) 

resistivity 

(cm) 

1 × 10-3 77 ± 4 - 2.6 ± 0.13 13.7 ± 0.7 

5 ×10-3 83 ± 4 - 2.3 ± 0.12 14.0 ± 0.5 

10 × 10-3 87 ± 4 - 1.9 ± 0.1 13.5 ± 1.0 

20 × 10-3 96 ± 3 0.1 ± 0.1 16.5 ± 0.5 

22 × 10-3 100 ± 3 0.7 ± 0.1 16.5 ± 0.5 

30 × 10-3 133 ± 3 1.3 ± 0.1 33 ± 1 

 

Table 1: characteristics of tungsten thin films deposited by sputtering 

(bias: 0 V, power: 800 W) as a function of argon total pressure 

(deviations were estimated through at least five different measurements on the wafer) 
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 sensitivity 

(mV/pH)  

temporal drift 

(mV/h) 

hysteresis 

(mV) 

Pt/IrO2 microelectrode 

vs reference electrode 

60 ± 1 6 ± 1.5 +5 ± 0.5 

W/WO3 microelectrode 

vs reference electrode 

55 ± 1 6 ± 1.5 -50 ± 2 

(Pt/IrO2 - Pt - Ag/AgCl) 

ElecCell 

60 ± 1 18 ± 3 +25 ± 1 

(W/WO3 - Pt - Ag/AgCl) 

ElecCell 

55 ± 1 18 ± 3 -75 ± 5 

 

Table 2: Comparison of pH detection properties 

of Pt/IrO2–based and W/WO3-based potentiometric microdevices 

(deviations were estimated by characterizing three Pt/IrO2 and six W/WO3 microelectrodes) 
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a) b)  

Figure 1: a) optical and (inset) scanning electron microscopy (SEM) of (W/WO3 – Pt – Ag/AgCl) 

electrochemical microcell chips and b) SEM and (inset) optical micrographs of (Pt/IrO2 – Pt – 

Ag/AgCl) electrochemical microcell chips 
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Figure 2: variations of the sputtered tungsten deposition rate as a function of argon total pressure 

(linear fit is given by the dotted line, error bars represent standard deviation across at least five 

measurements) 
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Figure 3: variations of the sputtered tungsten film intrinsic stress as a function of argon total 

pressure (linear fit is given by dotted line, error bars represent standard deviation across at least five 

measurements) 
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Figure 4: pCl calibration curve of the integrated Ag/AgCl reference electrode 

(linear fit is given by dotted line, error bars represent standard deviation across at least nine 

measurements) 
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 a)  b)  

Figure 5: pH analytical responses of a) W/WO3 and b) Ti/Pt/IrO2 microelectrodes 

using a Metrohm commercial reference electrode 
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Figure 6: pH calibration curves of W/WO3 and Pt/IrO2 microelectrodes 

using a Metrohm commercial reference electrode (linear fits are given by dotted lines, error bars 

represent standard deviation across at least nine measurements) 
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 a)  b)  

Figure 7: pH analytical responses of a) (W/WO3 –Ag/AgCl) and 

b) (Pt/IrO2 – Ag/AgCl) potentiometric microdevices 
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Figure 8: pH calibration curves of (W/WO3 – Ag/AgCl) and (Pt/IrO2 – Ag/AgCl) 

potentiometric microdevices (linear fits are given by dotted lines error bars represent standard 

deviation across at least nine measurements) 
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