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Internship search and choice of subject
I started searching for an internship in November 2015, roughly around
the date of the Business Networking Day (BND) at TSE. I had been told
that the BND was a good experience for undergraduates, but that it was
really meant for master students and it would be unlikely for me to find
an internship there. However, I spoke to several representatives of partner
companies who assured me that it was possible for third year students to
apply for the internships they offered. I therefore completed two application
forms for different companies but was quickly out of the selection process so
I assumed that my chances were not good with the other firms either.

It was then that I started looking for an internship more independently,
using the Alumni website from TSE and some contacts in Spain. I was
rather disappointed when I realised that most of the internship offers at the
Alumni website were also for master students, and I only managed to send
an application email to a firm in the energy sector, but they told me the
position was no longer available.

Finally, I had just found a possibility in a local firm from my home town in
Spain when a fellow student told me about this internship at LAAS-CNRS.
I found that this would be much more interesting and useful than what I
could have done at my home town, so I finally did not apply for the position
in Spain.
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General working conditions
My internship took place at the Laboratory of Analysis and Architecture
of Systems (LAAS), which is a CNRS research unit, located near the Paul
Sabatier University campus in Toulouse. In paricular, I worked at the De-
pendable Computing and Fault Tolerance (TSF) team, which studies the
dependability of computing systems.

The working conditions at TSF were excellent, as a big multipurpose
room is available for interns to use. I was therefore assigned to a personal
computer I used during the entire internship, running Ubuntu 14.04 and all
necessary open-source software, such as R, python and LaTeX which I have
used throughout the internship. Furthermore, the environment at TSF was
friendly and welcoming from the first day.

Finally, my particular task consisted in trying to find an alternative
way of detecting anomalies in a cloud application in the context of Carla
Sauvanaud’s PhD thesis, as will be later explained in more detail. As a re-
sult, my task was rather unbounded and independent, although many clar-
ifications were necessary so discussions were frequent. For example, when
I experienced some difficulties understanding specific vocabulary at the be-
ginning of my internship.
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Report summary
In this section I will explain the objective of this internship, the strategy I
adopted and I will give a brief overview of the results that will follow.

In very general terms, my internship consisted in analysing data from
several experiments [10] on the evolution of a virtual network over time.
Using the available data, the objective was to develop a program which
could perform online anomaly detection on virtual networks.

The available data for this study consists of tables containing informa-
tion regarding several virtual machines (i.e. the system) which are moni-
tored every 15 seconds. Two sources of data are available: the first source
provides data with 150 variables, and the second source with 250. In any
case this number of variables is considered as high-dimensional. In addition,
a qualitative variable classifies every entry into several possible categories,
according to the state of the system, which is either exhibiting normal or
anomalous behaviours.

In statistical terms, the problem we deal with in this work implies cre-
ating a certain decision rule based on the data collected to be able to (accu-
rately) forecast the state of the system (the value of the qualitative variable)
knowing the value of the other variables. Therefore this is a classification
problem.

At first I thought about the possibility of applying techniques I already
knew from my bachelor studies. Those range from descriptive statistics to
more sophisticated techniques such as cluster analysis and principal com-
ponent analysis. However, it was clear that descriptive statistics would be
of little use here, and cluster analysis had already been tested during Carla
Sauvanaud’s PhD thesis [11] with results that were not promising compared
to other techniques.

Therefore it soon became clear that principal component analysis was
the only tool I could use and that I would have to learn new techniques
currently in use. The algorithm I used the most is random forest.

Using mainly these two tools, and sometimes other tools described later,
I tried to solve this classification problem in many different cases depending
on the source of the data and the precision of the fault detection, i.e. the
number of categories. As the reader will see, the report shows how principal
component analysis does not help anomaly detection in this case and random
forest generally obtains the best results.
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1 Abbreviations and acronyms

Acronyms
AUC Area Under the Curve

BCP Bayesian Change Point

CSP Communications Service Provider

FPR False Positive Rate

GMM Gaussian Mixture Models

PCA Principal Component Analysis

PSR Percentage of Successful Requests

PUR Percentage of Unsuccessful Requests

ROC Receiver Operating Characteristic

SLA Service-Level Agreement

SLAV Service-Level Agreement Violation

TPR True Positive Rate

VM Virtual Machine

VNF Virtual Network Function
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3 Preliminary chapter
This internship took place at the Laboratory of Analysis and Architecture
of Systems (LAAS), one of the research units of the National Center for
Scientific Research (CNRS). The CNRS is a public organisation which de-
pends on the Ministry of Education and Research and was founded in 1939.
Its missions and research fields are very diverse, and the LAAS is part of
the Institute for Engineering and Systems Sciences, one of the ten research
institutes of the CNRS.

In particular, the laboratory is one of the 34 institutes to hold the "Carnot"
label, a distinction which proves the scientific excellence of its research as
well as its socio-economic influence. In addition, LAAS is associated with
all of the founding members of the University of Toulouse.

Research at LAAS is in turn subdivided into eight different departments,
which cover different fields such as Energy Management or Robotics, for
example. I worked at the research team on Dependable Computing and
Fault Tolerance (TSF), which is part of the Crucial Computing department,
which deals with dependability and resilience issues in computing.

In particular, TSF is specialised in analysing the ways to maintain the
dependability of complex systems that evolve over time and are subject
to accidental as well as malicious faults. A general overview and many
important definitions of this research area were given in a famous paper [2]
which has been very useful for me during this internship.

The report that will follow has been written during this internship and is
intended to constitute an organised summary of my work at LAAS and the
results I found. I have tried to keep its structure close to that of a research
article, which is why I have used LaTeX throughout this internship.
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4 Introduction
Virtualisation is a computing method that enables by software means to run
several machine instances on a single hardware. The machines are called
Virtual Machines (VMs) and are potentially different to each other in that
they rely on different operating systems. The VMs instructions to access
the hardware resources (CPU, memory, etc) are interpreted and filtered
by a single entity called the Virtual Machine Monitor or hypervisor. The
hypervisor shares the underlying resources between each of the VMs. Cloud
computing is a marketing paradigm that makes use of virtualisation. As
grid computing, it uses virtualised servers so as to reduce deployment costs
of applications. Indeed, virtualisation enables several users to access all
types of services potentially deployed on the same server. In other words,
users can share hardware in the case their applications do not fully use all
resources. Clouds then make the service available on demand and through
the Internet.

As new services arise from the cloud paradigm, we particularly focus our
work on the network functions (such as routers, or firewalls) that are mi-
grated to cloud commodity servers. These functions are usually deployed
on specialised hardware (like CISCO) made for the purposes and stringent
requirements of the network functions. Telecommunication operators in-
tend to make the best out of clouds and deploy several network functions
on virtualised cloud commodity servers. They are called Virtual Network
Functions (VNF).

As it is a new concept, VNF are still to be improved, especially consider-
ing their dependability. In this document, we more particularly work on the
fault tolerance mechanisms of VNF through the task of detecting anomalies
in them.

Anomaly detection is an important problem that has been widely stud-
ied in several domains and often tackled with machine learning approaches
[3][6][5][12][1][7]. Our goal is to explore the ability of such methods to ac-
curately detect anomalies in VNF. The datasets used are the monitoring
data (CPU consumption, memory consumption...) collected from a sim-
ple VNF platform deployed at LAAS CNRS by Carla Sauvanaud. The
datasets were collected as anomalies were injected into the VNF VM at reg-
ular time steps. Also, heavy workload peeks were injected. The datasets
are labeled, meaning that each entry is labeled as corresponding to a time
during which an anomaly happened or not. We use data collected from three
VMs called Bono, Sprout, and Homestead. Data collection was performed
over five days. Data was collected from two different monitoring sources
during the same time period: a grey-box monitoring source (the operating
system of the VNF VMs is required for the monitoring to be executed) and
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a black-box monitoring source (no knowledge of the VNF is required). Carla
Sauvanaud’s PhD thesis work (from now on referred to as the "thesis study")
uses these datasets by transforming them and using the Random Forest al-
gorithm to detect anomalies in the VNF. The aim of this document is to
exploit the same datasets by transforming them in different manners and
using the transformed data to perform detection by means of the Random
Forest algorithm and other machine learning methods. We also compare
results obtained while using either one of the monitoring sources.

We more particularly compare the thesis results to the results obtained
using the following methods:

1. Using the Principal Component Analysis (PCA) method to reduce the
number of dimensions.

2. Assembling the data from the three virtual machines into one single
dataset to increase the amount of information.

3. Performing a Bayesian Change Point detection in time series.

4. Performing a Gaussian mixture model.

Some of these methods are supervised as they require a training of the
model on labeled data, and some of them are unsupervised and do not
require the labels of the data to perform detection.

As a basis for comparison, table 1 shows the detection results while using
the grey-box monitoring source. Results are presented depending on the
input data of the algorithm and on the ability of the algorithm to detect
anomalies while identifying the probable source of the anomaly (it corre-
sponds to a multiclass classification problem). For instance, the detection
from the data related to the Bono VM of anomalies happening in the Sprout
VM and correctly identified as such, is 0.99 precision, 0.87 recall and 0.92
F1-score. Thus, several detections are performed.

Firstly, in section 5, we explain the detection approach used in this doc-
ument. This consists of a definition of our case of study and a description
of the four feature selection approaches used in this document. More pre-
cisely, we apply the Random Forest algorithm to a dataset containing all the
metrics of the three VMs. The idea behind this is that with more available
data the algorithm should perform better for all predictions. The drawback
is that interpretation is harder with so many variables. Then, we apply
random forest to several datasets containing metrics from only one VM re-
spectively. We also apply the PCA method to reduce the number of variables
in an attempt to condense information from all three machines. Secondly,
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Table 1: Benchmark prediction results of SLAV: all detection-VMs, detec-
tion with root cause localization, grey-box.

Detection Measure Cause in Cause in Cause in Cause by
input Bono Sprout Homestead heavy load

Precision 0.98 0.99 0.99 0.93
Bono Recall 0.86 0.87 0.83 0.94

F1-score 0.92 0.92 0.91 0.93
Precision 0.99 0.98 0.98 0.92

Sprout Recall 0.80 0.90 0.80 0.93
F1-score 0.89 0.94 0.88 0.92
Precision 0.99 0.99 0.96 0.90

Homestead Recall 0.79 0.85 0.83 0.94
F1-score 0.88 0.92 0.89 0.92

Ensemble Precision 0.99 0.98 0.99 0.92
analysis Recall 0.82 0.93 0.83 0.96

F1-score 0.90 0.95 0.89 0.94

in section 6 we present the results of detection depending on these feature
selections. These detections are aimed at detecting service violations (slow
service for customers). As we will see, results show that with more data
the algorithm performs slightly better, and that satisfactory results can be
obtained with only 10 dimensions on the PCA. However, some information
is lost and these results are not optimal.

Thirdly, in section 7 we briefly present some results with detection of
errors, which are preliminary symptoms of service violations. These results
have proved to be better than those of service violations. Section 8 presents a
sensitivity study of the random forest algorithm, before presenting detection
with other methods in section 9 and finally concluding in section 10.

5 Detection approach

5.1 Detection objectives and classification problem

In this study we aim at detecting two types of anomalies in a system. The
first type is the detection of the anomalous behaviours of the system, and
the second type is the detection of service level violation. It is relevant to
detect anomalous behaviours (or errors) because they can lead to potential
degradation of the service level if they last in time or if they keep increasing
in intensity. Detecting anomalous behaviours is a way to anticipate potential
service level violation however some detection might not be relevant because
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they would have never lead to service level violation. The detection of service
level violations is another of our objectives which triggers alarms that should
be taken into consideration extremely fast because the user potentially might
be experiencing service degradation. The service level is evaluated as the
percentage of successful completion of user requests by the system, in other
terms, the percentage of successful requests (PSR). In our work, we evaluate
the percentage of unsuccessful requests (PUR = 1 − PSR) to study system
SLA violations. The SLA is satisfied as long as the PUR does not overpass a
maximal PUR value called PUR_max, or the PSR is not below a minimum
value. An SLA violation (SLAV ) happens when PUR_max is overpassed
(PUR > PUR_max).

The detection of anomalous behaviors or SLAV can be handled as a
binary classification task: is there an anomalous behaviour or not? And is
there an SLAV or not?

Nonetheless, the detection with root cause localisation handled by means
of multiclass classification is the preeminent detection investigated in this
work. It performs detection with localisation of an anomalous behaviour
cause, by assigning one class label to each anomalous behaviour depending
on its localisation. In this work, we show results while localising anoma-
lies causes with two different granularities: the VM granularity, and the
component granularity. Considering the VM granularity, the cause of an
anomalous behavior can be an anomalous VM suffering from local perfor-
mance stressing, or it can also result from a global heavy workload toward
the system. Considering the component granularity, the cause of an anoma-
lous behavior is regarded as coming from either the CPU, memory, disk or
network interface components.

Machine learning is a famous field of computer science aimed at getting
automatic computing procedures to learn a task without it being explic-
itly programmed. It turned out to be extremely relevant for classification
problems [8]. Machine learning can be applied to our problem so as to clas-
sify behaviors corresponding or leading to anomalies, or not. There are a
plethora of machine learning algorithms and a lot of them are specifically
dedicated to handle numerical data. Actually, monitoring data enables us to
directly observe a system and represent its behaviours by means of numer-
ical data. Representing a behaviour needs some heavy preprocessing when
using audit data, OS logs, or application logs.

This work particularly focuses on the identification of anomalies from
monitoring data of VMs OSs such as CPU consumption, disk I/O, and free
memory.

With respect to the machine learning models that we aim to build for
detection (in our case, classifiers), samples of labeled monitoring data are
needed to train them to discern different system behaviours. Considering our
two first objectives, samples should be labeled with two classes correspond-
ing to normal or anomalous behavior so as to train models to classify these
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two behaviors. As for the third objective, samples should be labeled with
several classes according to the several SLA violation origins in the system.
This method is called supervised learning (by opposition to unsupervised
learning, i.e., clustering). Samples are called training data. They are ob-
tained during a training-purposed runtime phase (i.e., training phase) during
which a testbed or a development infrastructure is monitored while expe-
riencing different types of behaviors. Based on our field knowledge about
system anomalies that may lead to SLAVs, we can emulate them during a
training phase and train models from the collected data. The emulation is
performed through errors campaigns. Once a model is trained from a train-
ing dataset, it can be used online during a detection phase (i.e. during the
runtime of the system). Thereupon, it performs predictions of whether a
given monitoring sample belongs to a particular class of behaviours that it
learned to discern. The ability of models to perform accurate predictions is
referred to as predictive ability in this study.

5.2 Monitoring

5.2.1 Definition

Monitoring provides units of information about a system that are called
performance counters (referred to as counters). The actual counter values
being collected from a system are called performance metrics (referred to as
metrics). A vector of metrics collected at a given timestamp corresponds to
a monitoring observation (also referred to as observation).

5.2.2 Monitoring sources

In this work, observations related to a system VMs hosted in a virtualized
infrastructure are collected from two monitoring sources, namely the hyper-
visor, or the OS of the VMs. They are described below and represented in
Figure 1.

App
OS

VM

App
OS

VM

App
OS

VM

Hypervisor

Monitoring via
agents installed

in OS

Monitoring via
hypervisor API

Grey-box

Black-box

Figure 1: Monitoring sources

• The hypervisor hosting the system VMs can provide monitoring data
related to each VM it hosts such as the memory, the CPU speed or
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the network bandwidth that the hypervisor grants to the VM. Such a
monitoring source is called black-box as it does not need any tool to
be installed in the VMs.

• Monitoring data can also be collected directly from the OS of the sys-
tem VMs. Collected observations from VMs require the installation of
monitoring agents in VMs. This is referred to as a grey-box monitoring
source. Considering this source, the number of available counters is
more important than in the case of the black-box source since they
can relate to the OS performance in terms of system buffers size and
use, and in terms of memory pages state for instance. These low level
VMs counters cannot be known by the underlying hypervisor.

Both monitoring sources provide periodically observations related to
each single VM of the system. We evaluate the benefits in terms of the
predictive accuracy a grey-box monitoring may provide for the detection
objectives. For both monitoring sources, our approach does not require
knowledge about the system under study.

5.3 Feature selection approach

Having described the two monitoring sources, we now describe the methods
used for feature selection. Several possibilities are investigated. Firstly,
using only features from one virtual machine, which we call per virtual
machine detection, secondly, using data from all virtual machines, which
will be called the joint approach, and finally using principal components of
a Principal Component Analysis on our original variables.

5.3.1 The per-VM approach

The per-VM approach consists in applying one anomaly detection task on
subsets of the monitoring data according to the VM to which they are re-
lated. It is represented in figure 2

Système

Détection d'anomalie globaleVM1

VM2

VMN Métriques VM1
Métriques VM2

Métriques VMN
...

...

Détection d'anomalie VM1

Détection d'anomalie VMN

Détection d'anomalie VM2
...

Alarme(s) VM1

Alarme(s) VM2

Alarme(s) VM3

Figure 2: Per-VM approach.

For each of the two monitoring sources described, there are three moni-
tored virtual machines for which data is available, called Bono, Sprout and
Homestead. Once the datasets have been cleaned and the useless (constantly

16



equal to zero) variables removed, we have the following data available: for
the grey-box source, we dispose of a dataset of 13126 observations and 118
features in the case of bono, 122 features for sprout and 120 features for
Homestead; for the black-box source, the data available is composed of 6600
observations and 95 features for Bono, 98 features for Sprout and 94 features
for Homestead.

5.3.2 The joint approach

The joint approach consists in applying one anomaly detection task on the
entire monitoring data comprising monitoring from all the monitored VMs.
It is represented in figure 3

Système

Détection d'anomalie globaleVM1

VM2

VMN Métriques VM1
Métriques VM2

Métriques VMN
...

...
Détection d'anomalie : toutes VMs+

concatenation

Alarme(s) VM1
ou VM2
ou VM3

Figure 3: Joint approach.

The joint approach uses data from the three virtual machines, consider-
ing data from one monitoring source. This is easily feasible because data for
the three virtual machines is collected at the same time, therefore the three
data sets have the same number of observations, which are recorded at the
same time. In this case, we have two datasets to test: for grey-box mon-
itoring, it contains 13126 observations and 360 features, and for black-box
monitoring it has 6600 observations and 287 variables.

5.3.3 Both sources approach

Finally, the last feature selection approach used in this study. It combines
the data from both monitoring sources. Most of the data is actually re-
dundant, but this is an insightful approach, as it allows the study to assess
the relative importance of information collected by each of the monitoring
sources, in order to decide which one should be used.

5.3.4 Principal Component Analysis

PCA is a statistical method that aims to reduce the amount of variables
in a dataset by eliminating redundancies between them. The procedure to
achieve this consists in an orthogonal transformation, which projects the
observations to a new space where the variables (called principal compo-
nents) are uncorrelated. In more detail, the first principal component is
chosen as the linear combination of variables with the highest variance, and
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the subsequent components are chosen in the same way with the additional
constraint of zero covariance with the previous components. The number
of principal components kept can be chosen, but is necessarily smaller than
or equal to the number of variables. In general, many components are dis-
carded because, by construction, the last components have small variance
and therefore increase the size of the dataset without providing much addi-
tional information.

The main interest of PCA is that it can considerably reduce the number of
dimensions of a dataset. This can sometimes be very useful, especially when
several variables are highly correlated, which leads to redundancy in the data
studied. The idea behind this procedure is that we might achieve better
results if we manage to concentrate the important information contained
in the data in a smaller number of variables, which are called principal
components. This PCA method will be used in all approaches described
above. The important choice of the number of components to keep, which
will be explained in further detail, leads to a number of different datasets
to test for both monitoring sources.

5.4 Validation metrics

The validation of the machine learning models to classify anomalous behav-
iors is based on the Receiver Operating Characteristic (ROC) curve, as well
as the precision, recall and F1-score. ROC curves are obtained by computing
performance measures for different thresholds of the prediction probabilities.
The ROC curve corresponds to the true positive rate (TPR) against the
false positive rate (FPR). A perfect classifier would have an area under the
curve (AUC) of 1.

The ROC curves are relevant to study the predictive accuracy of our
models and their consistency while the prediction probability thresholds
change. They enable us to evaluate our approach with metrics that do
not change with the proportion of normal or anomalous behaviors in the
validation dataset. In other words, they are not sensitive to the class skew
and the results can easily be generalized to several case scenarios of detection
with different baseline distributions. Also, the FPR (i.e., the rate of false
alarm) can easily be analysed and it is of interest in our domain. Indeed,
it is expensive (in terms of time and money) for a system administrator to
take counter measures on components, and the fewer false alarms there are,
the better is the approach.

As for precision and recall, they are defined by the well known formulas:
Precision = T P

T P +F P and Recall = T P
T P +F N where TP are the true positives,

FP are the false positives, and FN are the false negatives. The F1-score
corresponds to the harmonic mean between precision and recall. These
metrics provide a precise evaluation of the predictive accuracy, that can
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give an account of the efficiency of our method for a CSP. They are defined
with a given prediction probability threshold.

Precision, recall and F1-score metrics are provided for the description
of experiments results for which they are more relevant for the sake of our
discussion.

6 Detection results of SLA violations
In this section we perform detection on the data described above to detect

Service Level Agreements (SLA) violations in the deployment of a case study
presented in [10]. The three main entities on which we focus our work
are a proxy named Bono, a router named Sprout, and a database named
Homestead. In order to evaluate whether our detection methods perform
good detection we put labels on each entry of the data depending on whether
there was an SLAV during the recording of the entry or not. Labels are
integers identifying the type of SLAV and its root cause. The label 0 means
that there is no anomaly.

Given that our work on anomaly detection is ruled by two monitoring
sources, two detection objectives and several levels of root cause localisation,
(we either detect the root cause to be in one single VM or in one resource of
a VM) our study has a lot of parameters and all combinations of parameters
are not presented in this document. We particularly focus our work on the
use of PCA and black-box monitoring data.

Detection results are presented throughout this section in the form of
tables showing mainly ROC AUC (referred to as AUC) but also Precision
and Recall, computed as we have explained previously. The reason for this
choice is that our main purpose is comparing the effectiveness of the differ-
ent approaches tested in this study. For comparative analysis, a table is the
most concise and easily interpretable way of presenting our results. However,
using Random Forest algorithm implies that it is possible to repeat the de-
tection experiment and obtain different results by introducing randomness.
This is why box plots constructed from, for example, 100 detection results,
would be a more rigorous way of presenting results. However, in order to
avoid making this report unnecessarily long, we will not present these box
plots in this document. The reader may bear in mind that the conclusions
drawn from the tables prevailed when analysing the box plots.
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6.1 Results with data from grey-box monitoring

6.1.1 Joint approach

In this section we will show the results obtained with all metrics from the
three virtual machines (named Bono, Sprout and Homestead). Intuitively,
we expected that results would be higher than in the thesis study because
there are more variables in the dataset. Results are shown in table 2 for
64 trees. Please refer to the sensitivity study on page 29 for a detailed
explanation of this choice of number of trees.

Table 2: ROC AUC for all metrics with 64 trees, grey-box

Number Measure Cause in Cause in Cause in Cause by
of trees Bono Sprout Homestead heavy load

64 AUC 0.999 0.999 0.999 0.961
Precision 0.94 0.94 0.94 0.85

64 Recall 0.94 0.93 0.90 0.93
F1-score 0.94 0.93 0.92 0.89

As we can see in table 2, the results obtained seem better with all metrics
combined. To confirm this, the results showing precision and recall for each
fault type are also shown in the same table.

We can now compare these results to those obtained from the thesis study.
It seems that these results are similar to those produced by the ensemble
analysis method in the thesis study. This is an intuitive outcome given that
in both cases the same data is used.

6.1.2 Per-VM detection: comparison of results

In this section we present the results of detection performed on data re-
lated to each VM respectively. The aim is to compare the results obtained
with those achieved with the joint approach, and record the computation
times. Ultimately, this section should allow us to decide whether having
more data can provide better detection results, in terms of the increase in
predictive ability and/or computation time. Computation time and AUC
are shown for 64 trees in table 3. These results enable us to compare both
approaches.

These results show that predictive ability is improved for all SLAV with
the joint approach. However computation time also increases with more
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Table 3: Predictions of SLAV: all metrics versus single VM, detection with
root cause localisation, grey-box.

Detection Metrics Train Test AUC AUC AUC AUC
input number time time WL Bono Sprout Hs
Joint 360 4.0s 2.3s 0.984 0.998 0.999 0.998
Bono 118 2.1s 1.9s 0.981 0.998 0.993 0.996
Sprout 122 2.1s 1.8s 0.973 0.992 0.998 0.992
Hs 120 2.0s 1.8s 0.975 0.993 0.998 0.998

variables. Nevertheless, training time only increases by a factor smaller than
2, and remains acceptable for our purposes. Taking into account that the
model is probably going to be trained once a month, the training time with
the joint approach is acceptable. In addition, testing time does not increase,
which means that in the case of online detection (when the model is already
trained and used during runtime) having a larger number of variables does
not seem to slow down the algorithm. These results show that, in this case,
all variables should be used.

6.1.3 Principal Component Analysis with Joint Approach

In this case, a PCA was performed on a dataset containing all grey-box
metrics for the three virtual machines, having eliminated the metrics which
are always equal to 0. The result is a dataset with 360 quantitative vari-
ables and one qualitative variable which gives the class of each observation
vector. The PCA is performed on the quantitative variables, and the results
obtained have interesting interpretations.

The key choice here is to decide how many dimensions should be kept
to be used for the detection. This depends on a tradeoff between accuracy
and interpretability. However, there are several typical PCA criteria we can
use to guide our choices. The first one is interpretability, which means that
only the principal components which have interpretable associated groups
of highly-correlated variables are kept. The second criterion is keeping all
the principal components with a variance greater than 1. Finally, in line
with our previous examples, it was chosen to maintain enough components
to achieve a cumulative variance of 91%. Several tests were realised with
different numbers of dimensions, for which the results are shown in table 4.

These results show that PCA is not relevant in this case. Although the
dimension reduction is efficient (from 360 metrics to as low as 10 in the
case of the first line of table 4), some information is lost and results are
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Table 4: Predictions of SLAV: all metrics with PCA, detection with root
cause localisation, grey-box.

Detection Measure Cause in Cause in Cause in Cause by
input Bono Sprout Homestead heavy load

Precision 0.98 0.90 0.92 0.85
PCA 10 Recall 0.58 0.72 0.67 0.90

F1-score 0.73 0.80 0.78 0.87
Precision 0.98 0.88 0.90 0.85

PCA 12 Recall 0.59 0.73 0.72 0.88
F1-score 0.74 0.80 0.80 0.86
Precision 0.98 0.90 0.94 0.87

PCA 20 Recall 0.60 0.72 0.69 0.88
F1-score 0.75 0.80 0.80 0.87
Precision 1.00 0.90 0.92 0.86

PCA 30 Recall 0.58 0.73 0.68 0.85
F1-score 0.74 0.80 0.78 0.86
Precision 0.99 0.93 0.94 0.88

PCA 100 Recall 0.71 0.73 0.68 0.88
F1-score 0.82 0.82 0.79 0.88

somewhat lower than those obtained with all the dimensions. It does not
seem possible to provide an acceptable prediction with only some variables,
as F1-scores have dropped to around 0.75 with PCA compared to 0.9 in the
thesis study. From the different number of dimensions tested, 100 is the
best option if one seeks to maximise the algorithm’s performance. However,
if the decision criterion is to ease the interpretation of results, 10 or 12
dimensions would be the best alternative considering that with a higher
number of dimensions results are not interpretable. The AUC is shown in
table 5 for the twelve-dimensional case.

Table 5: AUC for PCA with 12 components and 50 trees, grey-box

Detection Measure Cause in Cause in Cause in Cause by
input Bono Sprout Homestead heavy load

PCA 12 AUC 0.961 0.970 0.978 0.951
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We can see that results are not much better with 100 variables than with
only 12 of them, which illustrates the power of PCA. Only a few components
gather most of the information. Such results were not expected.

6.1.4 Principal Component Analysis with the per-VM approach

In this section we investigate the results in terms of precision and recall
when the PCA is used on data from one VM at a time. This approach
has not yet been tested, and it is interesting to know which metrics will
be assembled together in each principal component. Due to the bad results
achieved by PCA in the case of the joint approach, this section seeks to
determine whether the PCA is not suitable in this case or whether the
problem relies on mixing data from all virtual machines.

Therefore a PCA was performed on each of the data sets from the three
virtual machines. For this study, only grey-box metrics have been used, as
PCA did not perform differently on these metrics than those from black-box
monitoring. The parameters chosen for the random forest algorithm were
the same we have used previously in PCA examples.

Results are shown respectively for Bono, Sprout and Homestead in tables
6, 7 and 8. We kept three different numbers of principal components to test
the results, according to the three typical PCA criteria presented previously.
In this case, these criteria led to keeping 10,21 and 46 components in the case
of Bono, and 10,18 and 36 components in the case of Sprout and Homestead.

Table 6: Predictions of SLAV: PCA on Bono, detection with root cause
localisation, grey-box.
Detection AUC Cause in Cause in Cause in Cause in
input WL Bono Sprout Homestead

PCA 10 ROC 0.942 0.953 0.939 0.941
PCA 21 ROC 0.957 0.973 0.939 0.953
PCA 46 ROC 0.955 0.977 0.948 0.950

Looking at the results obtained in the previous section without PCA
clearly makes this method pale in comparison. If the results are not bad,
they are clearly worse than those obtained without the PCA, as we can see
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Table 7: Predictions of SLAV: PCA on Sprout, detection with root cause
localisation, grey-box.
Detection AUC Cause in Cause in Cause in Cause in
input WL Bono Sprout Homestead

PCA 10 ROC 0.922 0.919 0.981 0.939
PCA 18 ROC 0.935 0.932 0.984 0.938
PCA 36 ROC 0.937 0.927 0.986 0.914

Table 8: Predictions of SLAV: PCA on Homestead, detection with root
cause localisation, grey-box.
Detection AUC Cause in Cause in Cause in Cause in
input WL Bono Sprout Homestead

PCA 10 ROC 0.920 0.938 0.951 0.984
PCA 18 ROC 0.928 0.944 0.967 0.982
PCA 36 ROC 0.934 0.938 0.967 0.981

by comparing the areas under the ROC curves. We can therefore conclude
that PCA loses information and even in the case of data from a single VM
it is not advisable to use it. For some reason, this analysis does not combine
appropriately with the random forest algorithm.

6.2 Results with data from black-box monitoring

As we saw in the thesis case, detection is more accurate with grey-box
monitoring than with black-box monitoring. In this section we will apply
the previous methods to black-box monitoring data and compare the results
with those obtained with grey-box data. The aim of this section is to confirm
the results obtained in the thesis case and attempt to provide an explanation
for this difference in predictive ability. More precisely, we will try to identify
the important missing variables in black-box monitoring data that lead to
worse results, and the type of fault where this difference is most notable.

6.2.1 Joint approach

In this section we present the results of random forest algorithm on all black-
box data, with the aim of comparing them to the same procedure performed
on grey-box metrics. Results are shown for the 64-tree case in table 9.

These results show that in this case predictive ability is much better with
grey-box metrics than black-box metrics. This confirms previous results
from the thesis case.
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Table 9: AUC for all metrics with 64 trees, black-box

Number Measure Cause in Cause in Cause in Cause by
of trees Bono Sprout Homestead heavy load

64 AUC 0.982 0.993 0.998 0.955

6.2.2 Per-VM detection: comparison of results

In this section we present the results of detection with data from a single
VM in the case of black-box data. The aim is to compare the results obtained
with those achieved with the joint approach, and record the computation
times. As before, this section should allow us to decide whether having more
data is the best choice, considering the increase in predictive ability and/or
computation time. AUC and computation times are shown for 64 trees in
table 10.

Table 10: Predictions of SLAV: all metrics versus single VM, detection with
root cause localisation, black-box.

Detection Metrics Train Test AUC AUC AUC AUC
input number time time WL Bono Sprout Hs
Joint 287 2.0s 1.7s 0.955 0.982 0.993 0.998
Bono 95 1.2s 1.8s 0.951 0.984 0.995 0.997
Sprout 98 1.3s 1.8s 0.945 0.961 0.988 0.996
Hs 94 1.2s 1.7s 0.948 0.983 0.987 0.998

These results show that, as it happened in the case grey-box monitoring,
predictive ability is improved for all SLAVs with the joint approach. However
computation time also increases with more variables. Training time only
increases slightly and testing time does not increase. These results show
that, with black-box monitoring data, the joint approach provides the best
results as while using grey-box monitoring.

6.2.3 Principal Component Analysis with Joint Approach

As in the grey-box case, PCA is performed on the variables used in the
joint approach, and several numbers of components are used to test the
results of the random forest algorithm which are shown in table 11 for 10,
17 and 110 components. The choice of this number of components is done
for three typical specific PCA criteria. The choice of 10 components would
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be justified by ease of interpretation, that of 17 by keeping the components
with a variance higher than 1, and that of 110 components by the cumulative
variance, which is 91% at this point and can therefore allow us to compare
it to the 100 case for the PCA on grey-box metrics.

Table 11: AUC for PCA with 50 trees, black-box

Detection Measure Cause in Cause in Cause in Cause by
input Bono Sprout Homestead heavy load

PCA 12 AUC 0.975 0.940 0.983 0.934
PCA 17 AUC 0.970 0.973 0.988 0.940
PCA 110 AUC 0.986 0.957 0.992 0.955

As it was expected from previous results, we can see that predictive ability
improves with a higher number of dimensions, although the improvement is
not great from 17 components to 110, as AUC increases on average by only
0.005. In addition, results measured by AUC are worse for the components
providing 91% variance of black-box metrics than those with the same cu-
mulative variance of grey-box metrics. All these results are therefore in line
with previous conclusions.

6.3 Results with data from both monitoring sources

It has been shown by previous results that, in general, detections com-
puted using metrics from black-box monitoring obtain lower results for each
one of the selection approaches than those obtained from grey-box moni-
toring. In this section we try to ascertain the cause of this difference. Two
potential causes have been identified: firstly, the larger number of metrics in
grey-box, and secondly the higher frequency of the recordings. In fact, the
number of recordings in grey-box monitoring is approximately double that
of black-box monitoring. To be able to compare these two datasets on a
variable basis only, it is necessary to reduce the datasets to a common num-
ber of observations recorded at the same times. In our data it was possible
to do that and maintain 6568 common observations. This section will shed
light on the relative importance of the amount of variables and the amount
of observations in predictive ability.

We have chosen 1064 trees in this case to ensure we have the most accu-
rate results before comparing the performances of these metrics for SLAV
detection. Results in terms of Precision-Recall AUC are presented in ta-
ble 12. We call filtered the dataset with the common observations between
grey-box and black-box. Results show that the number of observations plays
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an important role in the accuracy of the random forest algorithm. In fact,
the results obtained with grey-box and black-box data in this case are ap-
proximately the same. Nevertheless, several important metrics have been
identified, that would improve detection accuracy with black-box metrics
if they were to be included. These results are shown as BB and 3 metrics,
which correspond to the most highly-correlated variables of the three princi-
pal components with the highest variance in PCA on grey-box metrics. We
also include detection results with these 3 principal components added to
black-box metrics, presented as BB and 3 PCA. We can see that, in either
case, adding only these three variables to the black-box dataset is enough
to improve results, which are close to those obtained will all grey-box and
black-box metrics combined.

Table 12: Predictions of SLAV with different variables: all vms, 1064 trees,
detection with root cause localisation, grey-box and black-box.

Variables Workload Bono Sprout Homestead
GB complete 0.952 0.986 0.966 0.977
BB complete 0.928 0.876 0.932 0.967
BB filtered 0.919 0.868 0.892 0.923
GB filtered 0.939 0.909 0.875 0.876
GB and Py 0.960 0.939 0.905 0.916

BB and 3 PCA 0.930 0.940 0.901 0.937
BB and 3 metrics 0.923 0.937 0.898 0.933
BB and 10 metrics 0.943 0.941 0.898 0.942

7 Detection results of errors

7.1 Results with data from grey-box monitoring

Results of error detection with data from grey-box monitoring are not pre-
sented in this document. The reason for this is that no useful conclusion can
be drawn from these results. These results are similar to those obtained with
black-box monitoring, and better than those obtained with SLA violation
detection. However, our preeminent aim in this study is to assess detec-
tion results with black-box monitoring data, as we present in the following
section.

27



7.2 Results with data from black-box monitoring

In this section we present detection results for errors. The results are shown
in table 13 for error detection with random forest (64 trees) and black-
box metrics. Results for error detection are very good compared to SLA
violations for the black-box case, with the ROC AUC average being of 0.996
for error detection and only of 0.991 in the case of SLA violation detection.

Table 13: AUC for error detection: all metrics with 64 trees, black-box
Number Measure Cause in Cause in Cause in
of trees Bono Sprout Homestead

64 AUC 0.990 0.997 1.000

7.3 Results of detection with component localisation

In this section the aim is to detect all errors, in which machine they
occur as well as in which component. In this case we no longer have 4 fault
types but 15 (there are 3 VMs and 5 fault types for each of them). In this
case, results are best with many trees, so they are shown for 1064 trees, as
in general a larger number of classes requires a larger number of trees to
produce equally accurate results.

In table 14, results are shown for error detection with grey-box as well as
black-box data. The results show that all types of faults are detected with
reasonable predictive ability. However, in the case of black-box monitoring,
the same method produces bad results for errors 5,12 and 13. A possible
explanation for these results is that the lower frequency of the recordings
with black-box monitoring in this case might be critical when detecting these
rare errors.

8 Sensitivity analysis of the Random Forest algo-
rithm

This section constitutes a discussion on the best ways to proceed in order
to obtain good results in fault detection with random forest. Based on the
results presented previously, this section addresses two choices that have to
be made: the maximum number of decision nodes for the trees in random
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Table 14: ROC AUC for errors detection with component localisation: all
metrics with 1064 trees

Fault code Grey-box monitoring Black-box monitoring
1 0.966 0.955
2 0.999 1.000
3 1.000 1.000
5 1.000 0.998
6 1.000 1.000
12 1.000 0.970
13 1.000 0.592
15 0.997 1.000
16 0.999 1.000
17 1.000 1.000
22 0.999 0.994
23 1.000 1.000
25 1.000 1.000
26 1.000 0.999
27 1.000 1.000

forest and the number of trees. In the previous sections results were pre-
sented with no maximum number of nodes and 64 trees, and this section
will clarify the reasons for such choice.

8.1 Maximum number of nodes

An interesting parameter in random forest algorithm is the maximum
number of nodes in a decision tree, i.e. the maximum depth of the tree. In
results presented in previous sections we chose not to establish a maximum
number of nodes, so that the algorithm can select any number. In this
section we present the results obtained while varying this parameter. In
particular, we use the example of detection of SLA violations with a joint
approach based on grey-box monitoring. Results are shown in table 15
for different numbers of nodes, in terms of predictive ability of the models
obtained as well as training and testing times.

As we can see in these results, predictive ability improves notably when
the number of decision nodes increases, which was the result we expected. In
addition, we observe that there is no increase in testing time (the supplemen-
tary decisions which have to be made seem to have a negligible computation
time) and the increase in training time is not very large. For example, only
0.6 seconds separate the execution times with 3 maximum nodes and with no
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Table 15: Predictions of SLAV with different number of nodes: all vms, 50
trees, detection with root cause localisation, grey-box.

Maximum 3 5 7 10 15 No maximum
Train time 3.7s 3.6s 3.7s 3.9s 4.0s 4.3s
Test time 1.8s 1.8s 1.8s 1.9s 1.8s 1.8s

Workload PR 0.862 0.912 0.930 0.943 0.958 0.978
Bono PR 0.875 0.911 0.941 0.953 0.964 0.980
Sprout PR 0.798 0.884 0.917 0.945 0.965 0.978

Homestead PR 0.578 0.751 0.842 0.881 0.919 0.948

maximum number of nodes. Therefore we believe that imposing a maximum
number of nodes is not advisable.

8.2 Number of trees

In this section we explain the results obtained with different numbers of
trees in order to select the appropriate one for this dataset. The reason
for this is that selecting the appropriate number of trees for the random
forest algorithm prior to testing is not straightforward. In theory, results
should get better on average as the number of trees increases. However, the
improvement by adding trees is a decreasing function, and at some point the
benefit of adding more trees is insignificant and not worth the computational
cost. For example, in the tests performed on our small dataset, computation
takes under five seconds with 32 trees, versus almost a minute for 1064 trees.
Results do not seem to improve much beyond this number of trees, so it will
be considered as a maximum in this case. The example used here to explain
the choice of the number of trees is that of SLA detection with grey-box
monitoring data and a joint approach. AUC are shown in table 16 for four
tree number choices, namely 10, 32, 64 and 1064 trees.

Table 16: AUC for all metrics with different number of trees, grey-box

Number Measure Cause in Cause in Cause in Cause by
of trees Bono Sprout Homestead heavy load

10 AUC 0.999 0.998 0.999 0.947
32 AUC 0.999 0.999 0.999 0.959
64 AUC 0.999 0.999 0.999 0.961
1064 AUC 0.999 0.999 0.999 0.965
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As we can see in table 16, results improve generally with the number of
trees. However, the improvement decreasing with the number of trees, we
can see that the difference between 64 and 1064 trees is probably not worth
the computational cost. We will therefore establish 64 trees as a reasonable
amount for this dataset. The results showing precision and recall for each
fault type are shown in table 17.

Table 17: Predictions of SLAV: all metrics combined, detection with root
cause localisation, grey-box.

Number Measure Cause in Cause in Cause in Cause by
of trees Bono Sprout Homestead heavy load

Precision 0.99 0.91 0.97 0.85
10 Recall 0.64 0.64 0.71 0.90

F1-score 0.78 0.75 0.82 0.88
Precision 0.98 0.96 1.00 0.85

32 Recall 0.59 0.65 0.60 0.94
F1-score 0.74 0.78 0.75 0.89
Precision 0.98 0.98 0.98 0.85

64 Recall 0.59 0.63 0.63 0.93
F1-score 0.74 0.77 0.77 0.89
Precision 0.98 0.98 0.98 0.86

1064 Recall 0.55 0.62 0.60 0.94
F1-score 0.71 0.76 0.74 0.90

As we can see, these results are discouraging compared to those expected.
In fact, our problem relies on the choice of the appropriate alarm threshold.
The result of random forest is a probability, and it has to be decided when
to signal a fault or not. A 0 threshold yields 1.00 recall and low precision,
while a threshold close to 1 would give high precision and low recall. These
bad results in table 17 are due to a suboptimal choice of this threshold. In
fact, a better threshold would greatly improve results, as shown in table 18
for the 64-tree case, where we have not changed the threshold for the high
workload detection as it was already a sensible one.

In conclusion, we can establish 64 trees as a reasonable value for this
parameter in Random Forest algorithm. For comparison purposes, we have
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Table 18: Predictions of SLAV: all metrics combined, detection with root
cause localisation, grey-box.

Number Measure Cause in Cause in Cause in Cause by
of trees Bono Sprout Homestead heavy load

Precision 0.94 0.94 0.94 0.85
64 Recall 0.94 0.93 0.90 0.93

F1-score 0.94 0.93 0.92 0.89

maintained this number in all our tests with SLA detection. A similar
method (not presented here) to the one described above allowed us to choose
different numbers of trees for all the other tests carried out in this study. In
particular, we have found 1064 trees to be a reasonable value for detection
with component localisation and 50 trees for tests with PCA. The reason
for this is that a data set with fewer variables requires less trees, whereas
detection with more classes requires more trees.

9 Other methods

9.1 Detection with time series

Having analysed the results obtained with the random forest algorithm, a
different approach to the problem has been tested, using a method that does
not require training a model prior to SLAV detection. The method used is
Bayesian Change Point (BCP) detection in time series, implemented using
the BCP R package [4]. It comes from time series analysis which takes into
account the order of the observations in the data, which are collected in
regular fifteen-second intervals.

BCP is tested for detection using the original variables described previ-
ously, as well as the PCA components. The SLAV detection is performed
for the binary case with only two classes, namely "SLA violation" or "no
violation". The results for PCA components are shown in table 19.

Table 19: Predictions of SLAV with BCP: PCA components, binary detec-
tion, grey-box.

Results PCA PCA PCA PCA PCA
2 3 4 5 10

ROC AUC 0.77 0.77 0.75 0.75 0.74
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We can see from the results shown in table 20 that predictive ability with
the BCP method actually decreases with the number of variables. In order
to confirm this intuition, we tried BCP on the complete dataset with 360
variables, for binary detection. Results obtained an AUC of 0.42, which
confirms the idea that BCP does not achieve good predictions with many
variables. Several other tests were performed with a few grey-box metrics,
as we enumerate below:

• The first (most correlated) variable describing each of the first five
principal components

• The first 10 variables of the first principal component

– Detection of SLA violation against no violation
– Detection of network-related violations against no violation (NW)
– Detection of network-related violations and high workload (NW

& WL)
– Detection of high workload only (WL)

Results for BCP on the original variables are shown in table 20.

Table 20: Predictions of SLAV with BCP: original variables, binary detec-
tion, grey-box.

Results First five First ten First ten First ten First ten
variables SLA NW WL NW & WL

AUC 0.65 0.72 0.55 0.72 0.71

These results show that predictions are not very reliable with this method.
The time series approach with black-box data is expected to yield similar
results to those obtained in the case of grey-box data. The only test made
with all variables results in a ROC AUC of 0.43, very close to that obtained
with grey-box metrics.

9.2 Detection with gaussian mixture models

In this section we present a second alternative approach to random forest
that we have investigated. This method is called Gaussian Mixture Mod-
els (GMM) and we tested it using its python implementation [9]. This
method consists in separating the observations into groups according to a
number of gaussian distributions chosen in advance. To do this it relies on
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the Expectation-Maximisation Algorithm to calculate the means and covari-
ance matrices of these distributions by maximising the probability of these
realisations under the assumption that they follow one of the gaussian dis-
tributions. This can be seen as a generalisation of the k-means clustering
algorithm. The main problem we encountered is that, when using many
clusters, it is difficult to provide a decision rule to decide which clusters cor-
respond to anomalies. We therefore tried binary detection, yet results were
unsatisfactory and we cannot draw any conclusions from them. Therefore
these results are not presented in this document.

On the contrary, this method has a supervised approach which did produce
good results. The difference is that with this approach the means of the
gaussian distributions for each class are given in advance, according to the
data available. This method achieves much better results, however it is out
of the scope of our section, which aim was to provide a viable unsupervised
alternative to Random Forest. This is why these results are not presented
in this document either.

10 Conclusion
In this document we analyse several detection problems in a particular

case study by means of the Random Forest algorithm and other unsuper-
vised learning methods, focusing in particular in detection with VM granu-
larity and black-box data. This study shows most clearly that, in our case,
performing a PCA on monitoring data reduces predictive ability when using
Random Forest algorithm. This result was observed in all cases, regardless
of the virtual machine or monitoring source considered, as well as the pa-
rameters of the algorithm. These results suggest that the performance of
Random Forest algorithm is not affected by information redundancy or a
large number of dimensions.

In addition, this case study shows that results are better with grey-box
than black-box monitoring. Nevertheless, the reason for this difference in
this case is more related to the higher frequency of the observations than the
quality of the predictors obtained with the monitoring sources. This result
highlights the importance of having a large amount of observations and sug-
gests that anomaly detection with black-box or grey-box monitoring might
achieve equally good results in similar conditions. Finally, this study shows
that in our case, the unsupervised learning methods tested were ineffective
for anomaly detection for different reasons.
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