
HAL Id: hal-01406273
https://laas.hal.science/hal-01406273

Submitted on 3 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online and Scalable Unsupervised Network Anomaly
Detection Method

Juliette Dromard, Gilles Roudiere, Philippe Owezarski

To cite this version:
Juliette Dromard, Gilles Roudiere, Philippe Owezarski. Online and Scalable Unsupervised Network
Anomaly Detection Method. IEEE Transactions on Network and Service Management, 2017, 14 (1),
pp.34-47. �10.1109/TNSM.2016.2627340�. �hal-01406273�

https://laas.hal.science/hal-01406273
https://hal.archives-ouvertes.fr

1

Online and Scalable Unsupervised Network
Anomaly Detection Method
Dromard Juliette, Roudière Gilles and Owezarski Philippe

Index Terms—Intrusion detection, Unsupervised learning,
Clustering algorithms

Abstract—Nowadays, network intrusion detectors mainly rely
on knowledge databases to detect suspicious traffic. These
databases have to be continuously updated which requires impor-
tant human resources and time. Unsupervised network anomaly
detectors overcome this issue by using “intelligent” techniques
to identify anomalies without any prior knowledge. However,
these systems are often very complex as they need to explore
the network traffic to identify flows patterns. Therefore, they
are often unable to meet real-time requirements. In this paper,
we present a new Online and Real-time Unsupervised Network
Anomaly Detection Algorithm: ORUNADA. Our solution relies
on a discrete time-sliding window to update continuously the fea-
ture space and an incremental grid clustering to detect rapidly the
anomalies. The evaluations showed that ORUNADA can process
online large network traffic while ensuring a low detection delay
and good detection performance. The experiments performed on
the traffic of a core network of a Spanish intermediate Internet
service provider demonstrated that ORUNADA detects in less
than half a second an anomaly after its occurrence. Furthermore,
the results highlight that our solution outperforms in terms of
TPR and FPR existing techniques reported in the literature.

I. INTRODUCTION

Network administrators cope every day with network in-
trusions and network failures. This abnormal traffic requires
a rapid detection so that network administrators can take
appropriate counter-measures to protect the network from
any disturbance. Nowadays, detection relies mainly on prior
knowledge of the attacks or the normal traffic. There are two
main types of detectors: signature-based and behavioral-based
detectors. Signature-based detectors compare the incoming
traffic with a set of known signatures of attacks: any traffic
matching a signature is flagged as anomalous. Behavioral-
based detectors compare the incoming traffic with a set of
normal behavior profiles: any traffic matching a profile is
flagged as normal. The knowledge databases of these systems
have to be continuously updated as new attacks and normal
traffic profiles evolve over time. However, building new attack
signatures or new normal traffic profiles is a time-consuming
manual task. Consequently, detectors databases are often not
up-to-date and cannot provide effective protection against
intruders.

To solve these issues, a new generation of detectors
emerged: unsupervised network anomaly detectors. These
detectors take advantage of “intelligent techniques” to au-
tomatically learn from the network traffic. Therefore, they
can adapt to new normal traffic patterns and 0-day attacks.
They also avoid the long and fastidious hand work to build

signatures or normal traffic profiles. These detectors detect
network anomalies in an unsupervised way, i.e. without any
prior knowledge. They rely on one main assumption [25], [26]:

“Intrusive activities represent a minority of the whole traffic
and possess different patterns from the majority of the network
activities.”

A network anomaly can be defined as a rare flow whose
pattern is different from most of other flows. They are mainly
induced by:
• network failures and performance problems like server or

network failures, transient congestions, broadcast storms.
• attacks like DOS, DDOS, worms, brute force attacks.

It is important for a network manager to identify these anoma-
lies; it can help him protect, manage and gain insight into its
network. As unsupervised network anomaly detectors do not
rely on any previous database, they can adapt to changes in
the network traffic and be used in a plug and play manner. To
identify anomalies, they often rely on unsupervised machine
learning techniques. These techniques are usually complex,
time-consuming and unable to meet real-time requirements. To
solve this issue, some detectors only process sampled network
data, implying that the malicious traffic may not be processed
and detected [3].

The network traffic is usually collected in consecutive
equally sized time-slots on one or many network links. The
length of a time-slot has to be sufficiently large so that unsu-
pervised network anomaly detectors gather enough packets to
identify flows patterns.

Usually, a time-slot lasts for a long time (in the order of
tens of seconds). To uncover anomalies, detectors must explore
the network traffic and identify flows patterns. Therefore, they
usually have a high complexity. Collecting the network traffic
and spotting the anomalies inside the traffic take time. As
a result, a substantial period of time may elapse between an
anomaly occurrence and its detection. Indeed, this delay is, (in
the worst case) the sum of the time-slot length (in the order of
tens of seconds) and the processing time of the traffic (usually
done with a complex and time-consuming algorithm).

UNADA [4], [5] is an unsupervised network anomaly
detector developed in our laboratory which demonstrated good
detection performance. It relies on a clustering algorithm to
identify anomalies. A clustering algorithm aims at grouping
similar points in clusters and considers isolated points as
outliers. The set of points forms the feature space and the
output of a clustering algorithm is a partition of the feature
space. However, UNADA suffers from a high complexity and
the use of consecutive large time-slots. As a consequence,
UNADA cannot support real-time requirements. In the context

2

of this article, we define a real-time algorithm as an algorithm
able to process the incoming data when arriving. Therefore, a
detector execution time must be inferior to the time elapsed
between two feature spaces arrival (usually the length of a
time slot) to be considered as real-time.

To overcome these limitations, we propose ORUNADA, an
Online and near Real-time version of UNADA. ORUNADA
relies on a discrete time-sliding window and an incremen-
tal grid clustering algorithm allowing continuous network
anomaly detection. Whereas usual clustering algorithms re-
partition the whole space when few points are added or
removed from a feature space, an incremental clustering
only updates the previous feature space partition. Therefore,
incremental clustering algorithms are more time efficient than
usual clustering algorithms to update feature space partitions.
ORUNADA discrete time-sliding window updates in a near
continuous way the feature space. The partition of each
subspace is then upgraded using an incremental grid clustering
algorithm. Grid clustering algorithms divide the space into
units and place points into these units. Instead of partitioning
points, grid clustering algorithms partition units, therefore,
they scale well with the number of points. As increasing
the number of flows has limited impact on the number of
units to partition, ORUNADA scale with the number of flows
and thus, with the traffic load. Finally, ORUNADA preserves
UNADA detection performance while enabling online and
scalable detection in a near continuous way. Furthermore, the
discrete time-sliding window is generic, and any fast network
anomaly detector can take benefit from it.

This paper is structured as follows. For the sake of com-
pleteness of this paper, Section 2 presents UNADA, an unsu-
pervised network anomaly detector which has been previously
described in [4], [5]. In Section 3, we describe the discrete
time-sliding window in details and the feature space update
method. In Section 4, we present our solution ORUNADA. In
Section 5, we describe the evaluations and discuss the obtained
results. Section 6 surveys the commonly used methods for
unsupervised network anomaly detection.

II. UNADA

Incoming traffic is usually aggregated into flows. Each flow
is then described by a large set of statistics or features.
However, high dimensional data poses special challenges
to data mining algorithm: distance between points becomes
meaningless and tends to homogenize. This phenomenon is
known as the “curse of dimensionality”. Due to this curse,
unsupervised network anomaly detectors may be unable to
detect anomalies in high dimensions.

UNADA is a robust and efficient detector that addresses
this issue by applying subspace clustering and evidence ac-
cumulation techniques. It can be divided into three parts:
the preprocessing, the subspace clustering and the evidence
accumulation (EA) steps. UNADA collects the traffic crossing
a network device in consecutive fixed length time-slots ∆t.
During the preprocessing step, packets are aggregated into
flows using an aggregation flow key, which can be, for
example, the IP destination and/or the IP source associated

with a mask (/32, /24, /16, /8). Numerous features can be
computed over a flow such as: nbDsts (# of different IPdsts),
nbSrcs (# of different IPsrcs), nbPkts (# of pkts), nbSYN,
nbICMP etc. Each flow f is described by a set of n features
in a vector xf = (x1, x2, ..., xn). The set of vectors is stored
in a normalized matrix of size |F | × n denoted X , |F | being
the total number of flows. X represents the feature space.

In a second step, UNADA divides the feature space into
subspaces of two dimensions (features). It builds as many
subspaces as there are combinations of two dimensions. There-
fore, it generates N = (n−1).n

2 subspaces. Every subspace is
then partitioned using a clustering algorithm. The clustering
algorithm groups similar flows into clusters and identifies as
outilers isolated flows. The similarity between two flows is
evaluated using a distance function like, for example, the
Euclidean or the Mahalanobis distance function. Two flows
are considered as similar if they are close to each other, and
dissimilar if they are far from each other. UNADA is based
on a density-based clustering algorithm DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) [11].
DBSCAN has the advantage of discovering clusters of any
shape in data with noise. There is noise in the data when
some points are very different from the others. These points
are called outliers. DBSCAN takes two input parameters:
• a radius r which defines the neighborhood of a point.

Every point situated within a distance r from a point p
is a neighbor of p.

• minClusPts which defines the minimum number of
points to form a cluster and a core point. A core point is
a point which has at least minClusPts neighbors.

DBSCAN defines different relations between points:
• a point p is directly density-reachable from a point q if
q is a core point and p is in its neighborhood.

• a point p is density-reachable from q if there is a chain
of points p1, p2, p3,..., pn where p = p1 and q = pn such
that pi+1 is directly density-reachable from pi.

• a point p is density-connected to a point q if there is
a point o where p is density-reachable from o and q is
density-reachable from o.

Finally, DBSCAN defines a cluster as the maximal set of
points where every pair of points p and q are density-
connected. DBSCAN consider isolated points, which do not
belong to any cluster, as outliers and noise.

The clustering step outputs N partitions, one for each
subspace. These partitions are then merged using an algorithm
based on evidence accumulation techniques: the EA algorithm
for outliers identification (EA4O). This algorithm assigns to
each flow a score of outlierness (dissimilarity). A flow score is
the cumulated sum of its abnormality level in every subspace.
In a subspace, if a flow belongs to a cluster its abnormality
level is set to null otherwise, it is proportional to its distance
to the centroid of the biggest cluster. Flows scores are stored
in the dissimilarity vector D of length |F |. The dissimilarity
vector D is then sorted and plotted to obtain a curve. A
knee point in the curve indicates a sudden change in flows
scores and therefore, in flows degree of abnormality. To extract
anomalous flows from the dissimilarity score, a threshold th

3

Fig. 1. Overall functionning of the detector

is set at the knee point value of the sorted curve. This value
is computed with the knee point algorithm proposed in [27].
Every flow with a dissimilarity score above this threshold is
considered as anomalous.

UNADA aims at detecting different types of anomalies
which can be classified into two categories. The first category
refers to network failures and performance problems like
server or network failures, transient congestions, broadcast
storms. The second category consists of network attacks like
DOS, DDOS, worms. In Table I, every anomaly is described
by a signature, i.e. by a set of inequalities that identifies a
specific anomaly. It also specifies the level of aggregation used
to get this signature and at least three subspaces where the
anomaly may be spotted as an outlier. It displays a possible
signature for a server failure. In our example, the server
failure triggered a large number of RTS packets due to clients
resetting their connection to the server. It also displays a
signature for a DDOS attack made up of ICMP and SYN
packets. Attackers often use different types of packets (here
ICMP and SYN packets) during a DDOS to mitigate its
detection.

Figure 1 displays a simple use of UNADA. UNADA is
installed on the edge router of the network to be protected.
It collects the traffic, aggregates it into flows and identifies
anomalous flows. For each anomalous flow, UNADA specifies
the value of its aggregation key which can be, for example,
the IP source address of the anomaly if the aggregation key is
IPsrc/32. The aggregation key value can then be used to filter
the network and remove the anomalous flow: every packet
matching the aggregation key may be discarded. The network
administrator should give his approval before the removal of
any anomalous flow as some of them may be legitimate like
flash crowds. A flash crowd is an unusual burst of traffic to a
single destination from a “typical” distribution of sources [19].
For example, a flash crowd may be induced by a temporal
discount on a website. To reduce the network administrator
task, UNADA provides for each anomalous flow its features
and the subspaces where it is detected as an outlier.

UNADA detection performance has been extensively stud-
ied with different public ground truths like the MAWILab
[13], the METROSEC [18] and the KDD9 dataset [4], [5].
Evaluations showed that UNADA is able to detect a large
fraction of attacks (at least 90% on every data set) with very

low false positive rates (less than 4%) and that it outper-
forms the most commonly used approaches for unsupervised
anomaly detection proposed in the literature: DBSCAN-based,
K-means-based, and PCA-based outliers detection techniques
[19], [20].

III. FEATURE SPACE UPDATE WITH A DISCRETE
TIME-SLIDING WINDOW

The detection is usually performed on network traffic col-
lected in large time-slots implying long period of time between
an anomaly occurrence and its detection. To overcome this
issue, we propose to use a discrete time-sliding window in
association with an unsupervised network anomaly detector.
The proposed method is generic: any sufficiently fast and
efficient detector can benefit from the proposed solution to
reach continuous and real-time detection.

The traffic has to be collected in large time-slots of length
∆t in order to gather enough packets to catch flows patterns.
Evaluations presented in [22] showed that UNADA detection
performance is maximized with time-slots of 15 seconds, i.e.
when ∆t = 15s. Collected traffic is then aggregated into flows
with an aggregation key. Each flow is described by a set of
features stored in a vector. These vectors are then concatenated
in a normalized matrix X which represents the feature space.
The network anomaly detection is then performed on the
matrix X . The process of consecutive time-slots is illustrated
in Figure 2.

To avoid that attacks damage the network, network anoma-
lies have to be rapidly detected. To speed up the anomaly
detection, we propose to update the feature space and launch
the detection in a near continuous way, i.e. every micro-slot
of length δt seconds.

However, if the feature space is computed with only the
network traffic contained in a micro-slot, it may not contain
enough information for the detectors to identify flows patterns
and thus anomalies. To solve this issue, we use a discrete time-
sliding window of length ∆t. The time window slides every
micro-slot of length δt. When it slides, the feature space is
updated. The feature space is the summary of the network
traffic collected during the current time-window (see figure
3).

A discrete time-sliding window is made up of M micro-
slots with M = d∆t/δte. To speed-up the feature space
computation, the sliding window associates to each of its M
micro-slots a micro-feature space mX . Each micro-feature
space is computed with the packets contained in its micro-
slot. The current window stores the M micro-feature spaces
in a FIFO queue Q = (mX1,mX2, ...,mXM). mXM denotes
the micro-feature space computed with the packets contained
in the newest micro-slot and mX1 in the oldest. When the
window slides a new feature space denoted Xnew can be
computed as follows:

Xnew = Xold +mXnew −mX1 (1)

where Xold is the previous feature space and mXnew the
new micro-feature space. Finally, the FIFO queue is updated
(mXnew is added to the FIFO queue and mX1 is removed),

4

TABLE I
FEATURES USED BY UNADA IN THE DETECTION OF SERVER FAILURE, NETWORK SCANS, SPREADING WORMS AND DDOS.

Anomaly Agg. key Signature of the anomaly Some subspaces where it can be detected

Server failure IPdst nbRST/nbPkts > γ1 and nbSrcs > γ2 and
avgPktsSize < γ3

(nbRST/nbPkts, avgPcktsSize) and
(nbSrcs, nbRST/nbPkts) and
(nbRST/nbPkts, nbPkts/sec)

Spreading worms IPsrc nbDsts > η1 and nbDstPorts1 < η2 and
avgPktsSize < η3 and nbSY N/nbPkts > η4

(nbDstPorts, avgPktsSize) and
(nbSY N/nbPkts, nbDsts) and
(nbPackets/sec, nbSY N/nbPkts)

Network scan
(SYN)

IPsrc nbDsts > δ1 and nbDstPorts = 1 and
avgPktsSize < δ3 and nbSY N/nPkts > δ4

(nbSY N/nbPkts, nbDstPorts) and
(nbDstPorts, nbDsts) and
(nbDstPorts, avgPktsSize)

DDOS
(ICMP/SYN)

IPdst nbSrcs > β1 and nbSrcPorts2 > β2 and
avgPktsSize < β3 and nbSY N/nbPkts > β4 and
nbICMP/nbPkts > β4 and nbPkts/sec > β5

(nbSrcs, avgPktsSize) and
(nbICMP/nbPkts, nbSY N/nbPkts) and
(nbSrcPorts, nbICMP/nbPkts)

1. nbDstPorts: number of different destination ports

2. nbSrcPorts: number of different source ports

Fig. 2. Feature space computation at the end of each time-slot of ∆t seconds

Fig. 3. Feature space computation at the end of each micro-time-slot of δt seconds

and the detector is applied to the updated feature space Xnew.
Any fast detector that can process the feature space in less
than δt seconds can take benefit from this discrete time-
sliding window to detect continuously network anomalies.
To benefit from these feature space updates, we devised a
new detector ORUNADA capable of detecting in continuous
anomalies while preserving UNADA detection performance.

IV. ORUNADA

To reach real-time detection, ORUNADA takes advantage
of a grid and incremental clustering algorithm.

Grid clustering algorithms divide the space into consecutive
rectangular units or cells and then place points on the grid thus
formed. Instead of grouping directly points in clusters, grid
clustering algorithms group dense cells, i.e. cells containing
many points, to form clusters. As the number of cells is

significantly lower than the number of points, they are less
complex than usual clustering algorithms which group points
like DBSCAN and K-means.

The drawback is that grid clustering algorithms usually
output coarser clusters. For example (see Figure 4), a grid
algorithm may incorrectly classify a point as an outlier due to
its cells sharp edges.

However, we assume that replacing DBSCAN by a grid
algorithm has little impact on UNADA detection performance
as anomalies are extreme outliers, i.e. outliers located far away
from clusters.

Furthermore, we make the assumption that few points enter
and leave the feature space from one micro-slot to another.
As a consequence, the feature space changes little from one
micro-feature space to another. This assumption seems realistic
as few packets arrive in δt seconds. If the assumption holds,
updating the feature space partition instead of re-computing it

5

Window
slices

Update the
feature space

X

Q=(mX1,…,mXM)
Xold

Incremental grid
clustering

Incremental grid
clustering

Incremental grid
clustering

Evidence
Accumulation

(EA4O)

Previous partition

Previous partition

Extract
anomalies

from D

𝑋1
𝑟𝑟𝑟

 𝑋1
𝑎𝑎𝑎

 𝑋1
𝑢𝑢

𝑋𝑁
𝑟𝑟𝑟 𝑋𝑁

𝑎𝑎𝑎
𝑋𝑁
𝑢𝑢

𝑋𝑖
𝑟𝑟𝑟𝑋𝑖

𝑎𝑎𝑎 𝑋𝑖
𝑢𝑢

𝑃1

𝑃𝑖

𝑃𝑁

mXnew

Q=(mX2,…,mXnew)
Xnew

New partition P1

New partition Pi

New partition PN

Output of an action which is stored for the
next iteration of the alg.

Input of an action

Action

D

Previous partition

Fig. 5. ORUNADA principle

Fig. 4. Output of a grid clustering algorithm. The point in red should belong
to the cluster

entirely could save a significant amount of time.
Incremental clustering algorithms can update rapidly a fea-

ture space partition when few points are added or removed.
They take benefit from the fact that deleting or adding a point
affect the current partition of the feature space only in the
neighborhood of the point. Therefore, incremental clustering
algorithms can efficiently update a feature space partition by
re-computing only a few points.

Among available grid clustering algorithms, DGCA (Den-
sity Grid-based Clustering Algorithm) [8] offers many ad-
vantages; it can discover any shape of clusters and identify
outliers. In DGCA, a group of consecutive dense cells forms
a cluster. In the context of ORUNADA, we have slightly
modified DGCA. We denote S = {A1 ∗ ... ∗ Ak} a k-
dimensional space where A1, ..., Ak are the dimensions of S.
Our modified version of GDCA takes as input a feature space
X of size |F | ∗ k made up of k-dimensional points. DGCA

can be divided into four steps:
1) the space is divided into non-overlapping rectangular

units or cells. The units are obtained by partitioning
each dimension into intervals of size l. Each unit has
the form u ={u1, .., uk} where ui = [li, hi) is a right-
open interval in the partitioning of Ai.

2) points are placed into the cells. Cells containing at
least minDensePts are marked as dense units. A point
x ={x1, ..., xk} belongs to a unit u ={u1, .., uk} if
li ≤ xi ≤ hi for all ui.

3) set of connected dense units are grouped together to
form a cluster. Two k-dimensional dense units u1 and
u2 are connected if they have a common face or if
there exists another k-dimensional unit u3 such that u1
is connected to u3 and u2 is connected to u3. Units
u1 ={r1, ..., rk} and u2 ={r′1, ..., r

′
k} have a common

face if there are k−1 dimensions, assume A1, ..., Ak−1,
such that ri = r′i for all i in [1, k−1] and either hk = l′k
or h′k = lk.

4) it returns the clusters whose number of points is superior
to minClusPts

Points situated in cells which do not belong to any cluster are
considered as outliers. Let n be the total number of points, c
the number of cells, cn the number of non-empty cells, and
cd the number of dense cells, DGCA time complexity is then
O(n + cd.log(cn)). For the sake of comparison, DBSCAN
complexity is O(n2) and O(n.log(n)) when used with an R-
tree index. Therefore, and as usually cd < cn � c� n holds,
DGCA has a lower complexity than DBCAN.

6

There is an incremental version of GDCA called IDGCA
(Incremental DGCA). IDGCA is able to update a feature space
partition and, for a given input, outputs the same partition as
DGCA.

IGDCA requires three input parameters (the same as
GDCA): l the length used to divide each dimension into
intervals, minDensePts the minimum number of points in a
dense unit (or cell) and minClustP ts the minimum number
of points to return a cluster. As in GDCA, the space is
divided into non-overlapping rectangular units or cells. The
units are obtained by partitioning each dimension into intervals
of length li. At each feature space update, IDGCA upgrades
the previous partition. It takes as inputs the points to add Xadd,
the points to remove Xrem and the points to update Xup from
the previous partition. At each feature space update, IGDCA
upgrades the previous partition in five steps:

1) for each point xup ∈ Xup, IDGCA identifies its new
unit unew and its previous unit uold (the unit to which
it belonged at the last update). If unew is different from
uold, IGDCA removes the point x from uold and adds
it to unew. It then removes every point xrem ∈ Xrem

from its unit and place every point xadd ∈ Xadd into its
unit.

2) it then computes two lists: the list of new dense units
listNewDenseUnits and the list of old dense units
listOldDenseUnits. The first list contains the units
which are now dense and were not dense in the previous
partition. The second list contains the units which were
dense in the previous partition and wich are not dense
any longer.

3) every unit u in listOldDenseUnits is then processed
and a list of units to re-partition listUnitToRep is
built. For each unit u ∈ listOldDenseUnits IDGCA
removes u from the cluster C to which it belongs. If
the unit u has two neighboring units which belong to
the cluster C, then all the units of the cluster which are
still dense are put in listUnitToRep and the cluster is
removed. Indeed, if the unit has two neighbors belonging
to the cluster, its removal from the cluster may lead to a
division of the cluster into two little clusters. Therefore
all the units of the cluster which are still dense need to be
re-partitioned. Once every unit in listOldDenseUnits
has been processed, the dense units in listUnitToRep
are grouped to form clusters. Set of connected units
forms a cluster.

4) every unit u in listNewDenseUnits is processed. Each
unit can either (1) form a new cluster (2) be absorbed
by an existing cluster (3) or merge multiple clusters in
one. If the unit u has no neighboring dense unit, IDGCA
creates a new empty cluster to which it adds u. If the
unit u has at least one dense neighboring unit and all
its dense neighboring unit(s) belong to the same cluster,
IDGCA adds u to this cluster. If the unit u has two
or more neighboring dense units belonging to different
clusters, IDGCA merges these clusters in one and adds
u to this new cluster.

5) it returns the clusters whose number of points is superior

to minClusPts. Points which do not belong to any of
these clusters are considered as outliers.

Algorithm 1 ORUNADA
Require:

the interval length l, min nb of pts in a dense unit
minDensePts, min nb of pts in a cluster minClusPt,
length slot ∆t and length micro-slot δt

Ensure:
list of anomalies listAnom

1: Initialize every partition P1, P2..., PN to null
2: Intialize IGDCA and slidingWindow
3: IGDCA.setParam(l,minClusPts,minDensePts)
4: slidingWindow.setParam(∆t, δt)
5: nbUpdates = 0
6: while slidWindow.alive() do
7: if slidWindow. hasSlided() then
8: (Xrem, Xadd, Xup) = slidWindow.updateFS()
9: (Xrem, Xadd, Xup) = norm(Xrem, Xadd, Xup)

10: for i = 1 : N do
11: (Xrem

i , Xadd
i , Xup

i) = comp(Xrem, Xadd, Xup)
12: Pnew

i = IGDCA(Pi, X
rem
i , Xadd

i , Xup
i)

13: end for
14: nbUpdate++;
15: if nbUpdates ≥ d∆t/δte then
16: D = EA4O(Pnew

1 , ..., Pnew
N)

17: th = findKneePoint(D)
18: listAnom = extractAnomalies(D, th)
19: display(listAnom)
20: end if
21: end if
22: end while

Algorithm 2 EA4O
Require:

the N Partitions P1, P2..., PN

Ensure:
1: Initialize the dissimilarity vector D to null
2: for i = 1 : N do
3: center = getCenterBiggestCluster(Pi)
4: for outlier o in Pi.getOutliers() do
5: D(o) = D(o) + distance(o, center)
6: end for
7: end for
8: return sort(D)

ORUNADA takes advantage of both the discrete time-
sliding window and the incremental grid clustering algorithm
IDGCA. Algorithm 1 displays ORUNADA pseudo-code. First,
ORUNADA initializes and sets the parameters of the in-
cremental grid clustering algorithm and the discrete time-
sliding window (line 1 to 4). ORUNADA is then made up
of an infinite loop which is divided into three steps: the
preprocessing step (line 8 and 9), the clustering step (line 10
to 14) and the anomalies extraction step (line 14 to 20). Every
micro-slot, the window slides triggering the preprocessing
step. During this step, the feature space X is updated and

7

the sliding window returns the points to remove Xrem, to
add Xadd and to update Xup. These three matrices are then
normalized (line 9).

Next, the clustering step updates the partition of each
subspace (line 10 to 14). It computes for each subspace the
points to add Xadd

i , to remove Xrem
i , and to update Xup

i (line
11) and updates using IDGCA the previous subspace parti-
tion Pi. For each subspace, IDGCA outputs a new partition
Pnew
i . The extraction step only occurs after d∆t/δte feature

space updates (line 15). During the first d∆t/δte − 1 feature
space updates, the extraction step is not performed because
the sliding window is not full, and ORUNADA may not
have sufficient information on the network traffic to identify
abnormal flows. This step combines the N obtained partitions
using the EA algorithm for outliers identification (EA4O), and
outputs a dissimilarity vector D (line 16). This dissimilarity
vector associates to each flow a score of abnormality. A flow
score is the cumulated sum of its distance to the center of
the biggest cluster in every subspace where it is identified as
an outlier (see Algorithm 2). Flows whose score is beyond
a certain threshold are considered as anomalies. They are
extracted using the function extractAnomalies (line 18).
To set this threshold, the dissimilarity vector is sorted and
plotted to obtain a curve. Normal flows possess low scores
and form the tail of the curve. A change in the curve slope
indicates a gap in the scores. This gap separates normal scores
from abnormal ones. This change is represented by a knee
point on the curve which can be used as a threshold. Its
value can be easily computed with the knee point algorithm
proposed in [27]. Finally, ORUNADA displays on the network
administrator dashboard the set of anomalies using the display
function (line 19). Figure 5 gives an overview of ORUNADA’s
operation.

V. ORUNADA EVALUATION

UNADA has already been extensively evaluated on many
data sets in [5] [4]. These studies have shown that UNADA
reaches very good performance in terms of detection. Our
study aims at answering the four following questions:
• By which factor DGCA improves UNADA execution

time compared to DBSCAN?
• Does ORUNADA has the same detection performance as

UNADA-DBSCAN?
• What is the delay between an anomaly occurrence and

its detection?
• Is ORUNADA scalable with the traffic load?

ORUNADA is devised to run at the border link of the core
network of a Spanish medium size Internet service provider.
This link has to deal with a large amount of traffic: 300,000
packets/s and 1.2 Gbit/s on average. In the context of the ON-
TIC project [1], the traffic crossing this link has been captured
and anonymized since the beginning of 2014. For every packet,
only the 64-bytes header is stored. The collected traffic forms
the ONTS dataset and is available on demand for academic
researchers. The ONTS access request form is available at the
ONTIC project site [1]. To perform our validation, we use
the file 20150210231651.pcap which contains 900 seconds of
network traffic extracted the 10th of February 2015.

We use a second dataset: the MAWILab network traces. This
dataset has been collected since 2001 until now. It consists
of labeled 15 minutes network traces captured daily from a
trans-Pacific link between Japan and the United States. This
dataset is a ground truth and can be used to validate a detector
performance in terms of true positive rate (TPR) and false
positive rate (FPR). The labels were obtained by combining
the results of four unsupervised network anomaly detectors
[13].

The evaluations are performed on a single machine with 16
GB of RAM and an Intel Core 5-4310U CPU 2.00GHz. In
the following, the window size ∆t is set at 15 seconds, as
UNADA obtained the best detection performance using this
time window length (see [22]), and packets are aggregated
into flows according to their IPsrc/32. We use at maximum
17 features to describe a flow. Table II provides the 20 flows
features utilized for the evaluation, 17 can be obtained with
the aggregation key IPsrc/32 and 17 with the aggregation
key IPDst/32. The features can be modified according to the
network administrator needs.

TABLE II
FEATURES USED BY UNADA

Feature Agg. key Description

nbPacket IPDst and IPSrc number of pkts

perSyn IPSrc and IPDst percentage of SYN packets

perAck IPSrc and IPDst percentage of ACK

nbDstPort IPSrc and IPDst nb of different dest IP addresses

nbSrcPort IPSrc and IPDst nb of different src IP addresses

nbDsts IPSrc nb of different destinations

nbSrcs IPDst nb of different sources

perRST IPDst and IPSrc percentage of RST pkts

perFIN IPDst and IPSrc percentage of FIN pkts

perCWR IPDst and IPSrc percentage of CWR pkts

perURG IPDst and IPSrc percentage of URG pkts

avgPktSize IPDst and IPSrc average packet size

simIPsrc IPDst mean number of IPDsts per subnet-
work /24

simIPdst IPSrc mean number of IPSrcs per subnet-
work /24

meanTTL IPSrc and IPDst mean time to live

perICMPRed IPDst and IPsrc percentage of ICMP pkts redirect

perICMPTime IPDst and IPSrc percentage of ICMP pkts time ex-
ceeded

perICMPUnr IPDst and IPSrc percentage of ICMP pkts
unreacheable

perICMPOther IPDst and IPSrc percentage of other types of ICMP
pkts

For each dataset, we use the same methodology to set
ORUNADA parameters. First, we aggregate into flows the
traffic collected in a time window and remove the flows
which have an extreme value in at least one dimension.
We use the set of flows F thus formed, to set ORUNADA
parameters. To normalize the feature space, we use the max-

8

Fig. 6. UNADA execution time

min normalization: for each dimension, the min is set at 0 and
the max at the highest value for this feature in F . As we are
looking for flows whose patterns significantly differ from the
others, we do not need very accurate clusters. Therefore the
length l of the interval in every dimension is set at 0.1, i.e.
at 10% of the distance between the minimum and maximum
value in every dimension in F . The minimum number of points
minClusPts in a cluster is set at 30% of the total number of
flows in F . It implies that an anomaly cannot be detected if it
is made up of more than minClusPts flows. However, this
is not an issue, as by using the appropriate aggregation level
every anomaly can be summarized in one or few flows. The
minimum number of points in a dense unit minDensePts is
set at 5% of the total number of flows in F .

A. UNADA Execution time
ORUNADA needs to process quickly the incoming traffic

to detect the anomalies efficiently. Therefore, we compared
UNADA execution time using different clustering algorithms.
Figure 6 depicts UNADA mean execution time (over 59
experiments) according to the clustering algorithm (DBSCAN,
DBSCAN with an R*-tree [17] and DGCA) and the number of
features (12, 15, 17) used. An R*-tree is a tree data structure
used for indexing multi-dimensional information. An R*-tree
can reduce DBSCAN execution time when it has to process
a large feature space. The y-axis has a log-scale, so that the
execution time of UNADA-DGCA can be observed and the
error bar represents the standard deviation. UNADA-DGCA
is in fact ORUNADA when ∆t = δt. The graph shows that
DGCA improves the execution time of the detector. With 17
features, 15 seconds of traffic can be processed using UNADA-
DGCA, on average, in two seconds.

Figure 7 confirms UNADA-DGCA performance. It displays
the speed up factor of UNADA-DGCA compared to UNADA-
DBSCAN and UNADA-DBSCAN with an R*-tree. One can
notice that DGCA speeds up the execution time of UNADA
by a factor of at least 300 compared to UNADA-R*-tree
and 900 compared to UNADA-DBSCAN for 12, 15, and 17
features. Furthermore, ORUNADA could be further improved
by distributing the computation of every subspace on a cluster
of servers as proposed in [9].

B. Detection Similarity

This gain in execution time could negatively impact UN-
ADA detection performance. To determine whether DGCA
degrades UNADA’s detection performance, we compare the
similarity of the anomalies found by UNADA-DGCA (i.e.,
ORUNADA with ∆t = δt) and UNADA-DBSCAN with
different numbers of features (12, 15, 17). We use the Jaccard
index (JI) to compare the set of anomalies found by these two
detectors. This Jaccard index reflects the similarity between
two sample sets. Let A be the first set and B the second set,
the similarity between A and B according to the Jaccard index
is computed as follows:

J(A,B) =
|A

⋃
B|

|A
⋂
B|

(2)

If the index is close to one, then the two sets are very
similar, and if it is close to 0, then they are considered as very
dissimilar. However, this index cannot provide any information
about the degree of similarity between the anomalies rankings.
Indeed, it could be interesting to determine if the anomalies
with the highest dissimilarity scores are the same for both
detectors as a network administrator will likely inspect them
first. To evaluate the similarity between the detectors anomaly
ranking we use a second similarity measure; the Spearman
rank correlation coefficient (SC) [30]. Let two vectors X and
Y of length n be two different rankings of n elements. Item
i rank is denoted xi in X and yi in Y . The Spearman rank
correlation coefficient between these two vectors is computed
as follows:

S(X,Y) = 1− 6 ∗
∑
d2i

n(n2 − 1)
(3)

where di = xi − yi is the difference in rank for item
i. The rank of an anomaly depends on its position in the
sorted dissimilarity vector D. The most dissimilar flow, i.e. the
anomaly with the highest dissimilar value is ranked first. The
second most dissimilar flow in the vector D is ranked second,
etc. A Spearman rank correlation coefficient of 1 reflects a
perfect similarity between the two rankings and a SC of -1,
a complete dissimilarity. To point out the difference between

Fig. 7. UNADA-DGCA speedup factor

9

Fig. 8. Jaccard index between UNADA-DGCA and UNADA-DBSCAN
outputs

the two clustering algorithms (DBSCAN and DGCA), we also
compute the Jaccard index and the Spearman rank correlation
coefficient for every flow detected as an outlier in at least one
subspace.

Figure 8 displays the Jaccard index for the set of anomalies
(in red) and outliers (in yellow) output by UNADA-DGCA
and UNADA-DBSCAN with different numbers of features.
In terms of anomalies, it can be noticed that the JI is equal
to one which implies that UNADA-DGCA and UNADA-
DBSCAN find the same anomalies and have, therefore, the
same detection performance. However, the JI in terms of
outliers is low (0.58 for 12 features), meaning that they do
not find the same outliers in every subspace and do not
output the same partitions. Figure 9 confirms these results and
displays the Spearman rank correlation coefficient between
the anomalies and outliers ranking obtained by UNADA-
DGCA and UNADA-DBSCAN. In terms of anomalies, the
SC is equal to 1, which means that the detectors find the
same anomalies and rank them in the same order. In terms
of outliers, the SC is quite high (always superior to 0.83),
therefore the detectors outliers rankings are quite similar. The
above figures demonstrate that UNADA-DGCA and UNADA-

Fig. 9. Spearman rank correlation coefficient between UNADA-DGCA and
UNADA-DBSCAN outputs

Fig. 10. DBSCAN partition of a two-dimensional subspace

DBSCAN output the same anomalies with a similar ranking
even though they generate different subspaces partitions. Thus,
the evaluations show that DGCA can replace DBSCAN in
UNADA with nearly no impact on the detection performance
while improving its speed by a factor of at least 900.

Figures 10 and 11 display respectively DBSCAN and
DGCA partitions of a two-dimensional subspace. The y-axis
represents the percentage of RST packets, and the x-axis the
percentage of SYN packets. DBSCAN and DGCA both find
one big cluster which represents the set of normal flows. The
differences between the two partitions are surrounded in Figure
11. UNADA-DGCA and UNADA-DBSCAN find the same
five anomalies depicted by red circles. Three are related to
this subspace: the two RST attacks and the SYN attack. The
other two are classified as anomalies because they are extreme
outliers in other subspaces.

Fig. 11. DGCA partition of a two-dimensional subspace

10

Fig. 12. ORUNADA execution time according to the micro-slot length

C. ORUNADA Detection Frequency

The following evaluation aims at determining the smallest
length of the micro-slot below which ORUNADA cannot be
run online. The maximum frequency of ORUNADA detection
is inversely proportional to this length. The smaller the micro-
slot size, the faster ORUNADA identifies the anomalies and
the network administrator takes countermeasures. Thus, we
have evaluated ORUNADA execution time with different
micro-slot sizes. The experiments have been performed using
different numbers of features and the results are displayed in
Figure 12. It can be noticed that a reduction of the micro-slot
size improves ORUNADA average runtime. ORUNADA can
process the incoming traffic faster than it arrives as long as
the micro-slot size is superior or equal to 0.3 seconds (for 17
features) and 0.2 for (15 features).

These results may be explained by the fact that few points
are added, updated or removed from the feature space from
one micro-slot to another (otherwise there would have been no
gain in ORUNADA runtime with the decrease of the micro-
slot size). Figure 13 confirms this assumption by displaying
the average number of points that ORUNADA has to deal
with each time the window slides according to the micro-slot
length. It corresponds to the cumulated sum of the number of
points to add, to remove and to update. This evaluation proves
that ORUNADA can detect online with a low delay network
anomalies (less than half a second elapses between an anomaly
occurrence and its detection).

D. ORUNADA Scalability Performance

As IDGCA groups units instead of points, ORUNADA
should scale well with the number of points (flows). To
validate its scalability, we measured the execution time of
ORUNADA using 9 different network traces from the MAW-
ILab database. Every network trace lasts 15 minutes and was
collected at various time periods between 2006 and 2015.
Therefore, they exhibit different numbers of flows per time
window of 15 seconds. Figure 14 displays the mean execution
time of ORUNADA according to the average number of flows
per time window for each network trace. These experiments
were performed using a micro slot of 500 ms and 17 features

Fig. 13. Mean number of points to add, remove or update at each update of
the feature space partition according to the size of the micro-slot length

Fig. 14. Mean execution time of ORUNADA according to the average number
of flows using a micro-slot of 500 ms and 17 features

per flow. We can observe a linear relationship between the
number of flows and ORUNADA execution time with an
intercept of 42 and a slope of 0.04. This evaluation shows
that ORUNADA has a linear relationship with the number of
flows and can thus scale well with the traffic load.

The intercept low value indicates that the time dedicated
to the partition of the units is very short (inferior to 42
ms). As explained in Section 1, two lists are generated to
increment the feature space partition: the list of new dense
units listNewDenseUnits and the list of old dense units
listOldDenseUnits. If there is no unit in these lists, the fea-
ture space partition does not change. Furthermore, ORUNADA
time complexity depends on the units in these lists. The short
time dedicated to the partition of the units can be explained
by a very small number of units in listNewDenseUnits and
listOldDenseUnits.

Figures 15 and 16 display the number of units
in listNewDenseUnits and in listOldDenseUnits
at each feature space update using two different
network traces: a MAWILab pcap file collected in 2015
(201501301400.dump) and an ONTS network trace collected
in 2015 (20150210231651.pcap). Mots of the time the number
of old dense units in both figures is hidden by the number

11

Fig. 15. Number of old and new dense units in time at every update of the
feature space partition with the MAWILab dataset

Fig. 16. Number of old and new dense units in time at every update of the
feature space partition with the ONTS dataset

of new dense units. In the first updates of the feature space
partition, we can observe peaks in the number of new dense
units. There are one large peak in the MAWILab network
trace and one large peak followed by two smaller ones in
the ONTS dataset. These peaks are linked to the creation of
the feature space partition. Once the feature space partition
is created, the number of new and old dense units remains
very low and is most of the time null. These results reveal
an important aspect on the nature of the network traffic used
for these evaluations: flows features statistics are quite stable
in time. Therefore, the network traffic feature space partition
changes little over time. These two lists are both empty
86% percent of the time in the MAWILab network traces
and 99.5% in the ONTS dataset. This study shows that the
partition of the feature space is stable in time, which explains
the low impact of the units partition upadte on ORUNADA
execution time.

E. ORUNADA Detection Performance

UNADA detection performance has already been demon-
strated via extensive studies in [4] and [5]. Furthermore,
we have shown in subsection V-B that UNADA-DGCA
(ORUNADA when ∆t = δt) and UNADA-DBSCAN detect
the same anomalies and should then get the same detection
performance. However, for completeness of this study, we
validate ORUNADA on recent network traffic. As the ONTS
dataset is not a ground-truth, the evaluations are performed
with the MAWILab dataset. We use the 15 minutes traces
collected the thirty of January 2015. These traces contain the

64 bytes-header of 130 M packets and 56 GB of network
traffic. ORUNADA detection performance is compared with
two detectors: a PCA-based [20] and a DBSCAN-based [31]
detector. Figures 17 and 18 display the ROC curves obtained
with different detectors using 17 features and the IPsrc/32 and
the IPdst/32 aggregation flow key, respectively. To generate
these curves, we vary the minimum number of points re-
quired to form a cluster (for the DBSCAN-based detector and
ORUNADA) and the number of principal component direc-
tions of the abnormal subspace (for the PCA-based detector).
These curves show that ORUNADA has a high detection rate
with a low number of false positives and outperforms the
other detectors. Its performance can be explained by the fact
that it does not make any assumption on the data distribution
unlike detection methods based on PCA and does not suffer
from the curse of dimensionality like the DBSCAN-based
detector. Indeed, the DBSCAN-based detector is sensitive to
high dimensions because it processes the whole feature space
directly and does not divide it into subspaces.

0.5

0.6

0.7

0.8

0.9

1.0

0.0000 0.0005 0.0010 0.0015
FPR

T
P

R

Detector

DBSCAN

ORUNADA

PCA

Fig. 17. ROC curves with an aggregation flow performed at the IPsrc/32

0.5

0.6

0.7

0.8

0.9

1.0

0.000 0.001 0.002 0.003
FPR

T
P

R

Detector

DBSCAN

ORUNADA

PCA

Fig. 18. ROC curves with an aggregation flow performed at the IPdst/32

VI. RELATED WORKS

There are two main types of network anomaly detectors:
supervised and unsupervised network anomaly detectors. Su-
pervised network anomaly detectors rely on labels to learn a

12

Detector Technique(s) Advantage(s) Drawback(s)

[21] Grid clustering Reduce time complexity Low detection frequency

[10] Association rule learning Generate clear signatures to describe
anomalies

(1) Use sampled traffic (2) High complexity

[21] One class SVM (1) Adaptive to the operator feedback (2)
Give a confidence level for every anomaly

(1) High complexity (2) Suffer from the
curse of dimensionality

[20] PCA Low false alarm rate Identify only points in time where anoma-
lies occur

[28] PCA Solve PCA scalability issues Detect only volume anomalies

[6] ARMA (1) Predict anomaly occurrence (2) Visual-
ization method of the anomalies

Identify only points in time where anoma-
lies occur

[32] ARMA and an abrupt changes de-
tection technique

Synthesize information from multiple met-
rics

Assume that the traffic variables are quasi
stationary

[7] Hadoop Generic framework for unsupervised net-
work anomaly detectors

Require a large cluster of servers

TABLE III
COMPARISON OF UNSUPERVISED NETWORK ANOMALY DETECTION SOLUTIONS

model for normal and abnormal traffic. These techniques suffer
from two main issues: they are unable to adapt to new normal
traffic and new types of anomalies. In contrast, unsupervised
network anomaly detectors do not rely on any training data or
prior knowledge. Therefore, they do not require any human
input to build signatures, traffic profiles or to put labels
on network traffic. They also have the ability to detect 0-
day attacks. They rely on the assumption that anomalous
traffic is rare and has different patterns from normal traffic.
If the assumption does not hold, they may suffer from a high
false alarm. However, by selecting an appropriate aggregation
key to aggregate the traffic, the previous assumption might
always be respected. In the literature, different techniques are
used to detect network anomalies in an unsupervised way;
machine learning techniques (clustering algorithm [26], [21],
[23], outlier detection algorithms, Support Vector Machines
(SVM)) [14], statistical techniques (Gaussian mixture model
[15], histograms [16], Principal Component Analysis (PCA)
[19]) and signal processing techniques (Auto-Regressive and
Moving Average (ARMA) method [6] [32], change detection
method [32]). Table III summarizes the techniques, advan-
tages and drawbacks of some existing unsupervised network
anomaly detection solutions.

In [21], Leung et al. propose a new density and grid-
based clustering algorithm that is suitable for unsupervised
network anomaly detection. It decreases the time complexity
of usual clustering using histograms and frequent pattern
tree. However, their solution is still exponential with the
number of dimensions and quadratic in the number of clusters.
Furthermore, the feature space partition has to be entirely re-
computed at each time-slot.

In [10], the authors propose an unsupervised network
anomaly detector based on an outlier detection algorithm
which uses association rules for summarizing anomalous
flows. Their solution shows promising results to detect and
generate clear signatures for every anomaly. However, due the
high complexity of their algorithm (quadratic with the number
of flows), they use a sampled traffic. Sampling may have a
negative impact on the detection performance: the detector

may not have enough information to take accurate decisions.
In [14], the authors propose an online and adaptive anomaly

detection system based on a one-class SVM. This one-class
SVM computes a hyperplane with unlabeled training data. This
hyperplane identifies a small region of the feature space that
contains most of the vectors. Normal flows are supposed to be
located in this small region. Future input vectors are classified
based on their relationship to the hyperplane. Their solution
provides several interesting properties: it can handle dynamic
input normalization, adapt the detection to the feedback of
the operator and determine for each detected anomaly a level
of confidence. The authors claim that their solution can be
used online, however, computing the hyperplane is a very
complex task performed in O(n3) in the worst case with n
the number of flows. Furthermore, the hyperplane has to be
recomputed each time the operator feedback is in contradiction
with the detector output. SVM also suffers from the curse
of dimensionality [12], [2] and is, therefore, limited in the
number of features it can use (they use three features per flow
in the article). A low number of features may have a negative
impact on the detection performance of the solution.

Detectors based on PCA divides the whole space into two
subspaces. The first k principal component (PC) directions of
the data matrix are used to construct the normal subspace and
the remaining PC directions to build the abnormal subspace.
Points with a large norm in the abnormal subspace deviate
from the normal subspace and are, therefore, identified as
outliers. Many network anomaly detectors has successfully
applied PCA [29], [19], but the work of Lakhina et al,
published in [19] is one of the most exhaustive. However,
and as mentioned in [24], PCA-based detectors consider that
the data follows a jointly Gaussian distribution which may
be unrealistic in the case of network traffic. This assumption
allows them to apply the Q-statistic to set the threshold used
to detect the anomalies. This threshold guarantees a theoretical
bound for the FPR.

Lakhina et al. [19] propose a PCA-based detector to detect
anomalies on multiple time-series and use entropy to capture
features distribution and improve detection. Their evaluation

13

shows good results. However, their solution can identify the
points in time where an anomaly occurs but is unable to
identify the flow(s) which trigger(s) the alert.

In [28], Schölkopf et al. propose a solution to overcome
the scalability problem of PCA-based anomaly detectors. To
solve this issue they use an adaptive local data filter which
sends to a coordinator just enough data to enable accurate
global detection. The coordinator applies then the PCA-based
anomaly detector as proposed by Lakhina et al. Their solution
aims at detecting only volume anomalies, as a result, it cannot
detect many interesting anomalies like network or port scans,
ping of the death, and teardrops.

Some unsupervised machine learning techniques use time
series and signal processing techniques to identify anomalies.
These systems usually only detect the point in time where an
anomaly occurs and are unable to detect the flows responsible
of an anomaly. After an anomaly detection the network ad-
ministrator has to examine the data manually to identify the
flow(s) which trigger(s) the anomaly.

In [6], Celenk et al. propose a method to visualize and
predict network anomalies. Their solution collects statistics on
the incoming traffic in consecutive time windows. It computes
for each statistic its entropy and its fisher linear discriminant
(FLD) performance index. A high FLD indicates a network
anomaly. They consider that every attack is preceded by an
initialization phase, therefore, their solution can predict an
attack by identifying its initialization phase. They apply a
Wiener filter and an Auto-regressive moving average model
on the traffic statistics to forecast anomalies. Their solution
can predict when an anomaly occurs, however, it is unable to
identify the flow(s) responsible for the anomaly.

In [32], Thottan et al. present a network anomaly detection
method based on signal processing techniques and abrupt
changes and allow to synthesize information from multiple
metrics. They apply their solution on time series of MIB
variables. Each time series is described by an ARMA model.
It detects changes in time series using a hypothesis test on
the generalized likelihood ratio (GLR). Each GLR outputs
an abnormality vector which is then combined using a linear
operator. However, the authors assume that the traffic variables
are quasi stationary. This strong assumption has not yet, to
our knowledge, been proven or demonstrate. Furthermore, as
the network traffic evolves in time, this assumption may seem
unrealistic.

The solutions presented above are offline detectors which
do not consider time and scalability. There exist few solutions
which tackle these issues. One of them is Hashdoop [7].
Hashdoop is a generic framework which aims at speeding
up any unsupervised network anomaly detector. To do so,
it launches many instances of the detector in parrallel on a
cluster of servers using the distributed computing framework
MapReduce of Hadoop [7]. To distribute the traffic while
respecting detectors requirements, the authors propose to dis-
tribute the incoming network traces in such a way that the
traffic spatial and temporal structure is preserved. The authors
claim that their solution allows speeding up any network
anomaly detector. However, their solution requires a large
cluster of servers, and few firms can afford dedicating a cluster

of servers for network anomaly detection.
Our solution solves the issues pointed out in the articles

described above:
• it solves the curse of dimensionality by using subspaces

and evidence accumulation techniques. Therefore, it can
deal with high dimensions whereas [14] is limited in the
number of dimensions as it suffers from the curse.

• it detects when an anomaly occurs and identifies the flows
responsible. Solutions presented in [32], [6] and [19] can
only detect the points in time where an anomaly occurs.

• it does not make any assumption on the normal network
traffic model. PCA-based detectors presented in [19] and
[28] consider that normal network traffic follows a mul-
tivariate Gaussian distribution. However, this assumption
may not always be true and, to our knowledge, has never
been proven.

• it detects many types of anomalies. Some detectors detect
only volume anomalies [28], as a consequence, they
cannot identify subtle anomalies like scans, pings of the
death, and smurfs.

• it has a low complexity. Network anomaly detectors often
suffer from a high complexity like [14] and [10]. As
shown in our experiments, the time complexity of our
solution is nearly linear with the number of flows as the
feature space partition remains stable in time. Therefore,
it can detect network anomalies online and on a single
machine.

VII. CONCLUSION AND FUTURE WORKS

ORUNADA is a scalable and real-time unsupervised net-
work anomaly detector. It relies on a discrete time-sliding
window to process in continuous the incoming traffic and
on an incremental grid clustering to update the feature space
partition. It detects, with a low delay, network anomalies in
order to remove them before they damage the network.

ORUNADA collects the network traffic at the border link
of the network to be protected using a discrete time sliding
window. The traffic is then aggregated into flows. Flows are
described by a large set of features. To overcome the curse
of dimensionality, the feature space is divided into subspaces.
A clustering algorithm is then performed on each subspace to
detect outliers. To speed up the clustering step, ORUNADA
relies on a grid and incremental clustering algorithm which
updates every partition instead of recomputing them. The
obtained partitions are then merged to identify the most
dissimilar outliers and thus, the anomalies. Our discrete time-
sliding window is generic and can be used by any fast detector
to detect anomalies in a continuous way.

Our evaluation shows that ORUNADA is scalable with the
number of flows and can be used online to detect anomalies
with a low delay and good detection performance. The results
demonstrate that the use of a grid clustering algorithm speeds
up by a factor of at least 900 ORUNADA. They also show
that the subspace partition is stable in time, as a consequence,
the execution time of ORUNADA is nearly always linear
with the number of flows. The evaluations demonstrate that
ORUNADA can detect on the core network of an intermediate

14

size Internet service provider, anomalies in less than half a
second after their occurrence, using 17 features. Furthermore,
our solution offers similar detection performance in terms of
TPR and FPR to UNADA.

To further improve its speed, we have planned to distribute
its computation over a cluster of servers using tools from the
Big Data world such as Spark Streaming. Spark Streaming
is a framework for distributing the computation of algorithms
which have, as input, very large stream of data. Moreover, we
would like to integrate the feedback of the network adminis-
trator to refine the detection performance of our solution.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement n°619633 (Collabo-
rative project ONTIC).

REFERENCES

[1] Online network traffic characterization. http://ict-ontic.eu/, 2014. Ac-
cessed: 2016-02-18.

[2] Y. Bengio, O. Delalleau, and N. Le Roux. The curse of highly variable
functions for local kernel machines. In Proc. of the 18th Int. Conf.
on Neural Information Processing Systems, pages 107–114, Cambridge,
MA, USA, 2005. MIT Press.

[3] D. Brauckhoff, B. Tellenbach, A. Wagner, M. May, and A. Lakhina.
Impact of packet sampling on anomaly detection metrics. In ACM
SIGCOMM Conf. on Internet Measurement, pages 159–164. ACM,
2006.

[4] P. Casas, J. Mazel, and P. Owezarski. NETWORKING 2011: 10th Int.
IFIP TC 6 Networking Conf., chapter UNADA: Unsupervised Network
Anomaly Detection Using Sub-space Outliers Ranking, pages 40–51.
Springer Berlin Heidelberg, 2011.

[5] P. Casas, J. Mazel, and P. Owezarski. Unsupervised network intrusion
detection systems: Detecting the unknown without knowledge. Comput.
Comm., 35(7):772 – 783, 2012.

[6] M. Celenk, T. Conley, and J. Willis, J.and Graham. Predictive network
anomaly detection and visualization. IEEE Trans. Inf. Forensics Security,
5(2):288–299, Jun 2010.

[7] J. Chen, R. Fontugne, A. Kato, and K. Fukuda. Clustering spam
campaigns with fuzzy hashing. In AINTEC Asian Internet Eng. Conf.,
page 66, Febr. 2014.

[8] N. Chen, A. Chen, and L. Zhou. An incremental grid density-based
clustering algorithm. Journal of Software, 13(1), Aug. 2002.

[9] J. Dromard, G. Roudière, and P. Owezarski. Unsupervised Network
Anomaly Detection in Real-Time on Big Data. In New Trends in
Databases and Information Systems, volume 539, pages 197–206.
Springer, 2015.

[10] L. Ertoz, E. Eilertson, A. Lazarevic, P. Tan, J. Srivastava, V. Kumar, and
P. Dokas. The MINDS - Minnesota Intrusion Detection System. In Next
Generation Data Mining. MIT Press, 2004.

[11] M. Ester, H-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In Proc. of
the Second Int. Conf. on Knowledge Discovery and Data Mining, pages
226–231, 1996.

[12] P. F. Evangelista, M. J. Embrechts, and B. K. Szymanski. Taming the
Curse of Dimensionality in Kernels and Novelty Detection, pages 425–
438. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[13] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda. MAWILab: Combining
Diverse Anomaly Detectors for Automated Anomaly Labeling and
Performance Benchmarking. In ACM CoNEXT ’10, Philadelphia, PA,
2010.

[14] D. Ippoliti and X. Zhou. Online adaptive anomaly detection for
augmented network flows. In IEEE 22nd Int. Symp. on Modelling,
Analysis Simulation of Comput. and Telecommun. Syst., pages 433–442,
Sept. 2014.

[15] M. Khaleghi and M. Bahrololum. Anomaly intrusion detection system
using gaussian mixture model. Int. Conf. on Convergence Inform.
Technol., 01:1162–1167, 2008.

[16] A. Kind, M.P. Stoecklin, and X. Dimitropoulos. Histogram-based traffic
anomaly detection. IEEE Trans. on Network and Service Management,
6(2):110–121, June 2009.

[17] H-P. Kriegel, R. Schneider, B. Seeger, and N. Beckmann. The R*-tree:
an efficient and robust access method for points and rectangles. Sigmod
Record, 19:322–331, 1990.

[18] LAAS-CNRS. Metrology for security and quality of service. http:
//projects.laas.fr/METROSEC/. Accessed: 2016-02-18.

[19] A. Lakhina and M. Crovella. Mining anomalies using traffic fea-
ture distributions. ACM SIGCOMM Comput. Communication Review,
35(4):217, 2005.

[20] A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide traffic
anomalies. In Conf. on Applications, Technologies, Architectures, and
Protocols for Comput. Commun., pages 219–230, New York, NY, USA,
2004. ACM.

[21] K. Leung and C. Leckie. Unsupervised anomaly detection in network in-
trusion detection using clusters. In Twenty-Eighth Australasian Comput.
Science Conf. (ACSC2005), pages 333–342, 2005.

[22] J. Mazel. Unsupervised network anomaly detection. PhD thesis, INSA,
France, Dec. 2011.

[23] A. P. Muniyandi, R. Rajeswari, and R. Rajaram. Network anomaly de-
tection by cascading k-means clustering and c4.5 decision tree algorithm.
Procedia Engineering, 30:174 – 182, 2012.

[24] J. Ndong and K. Salamatian. Signal Processing-based Anomaly Detec-
tion Techniques: A Comparative Analysis. In INTERNET 2011, pages
32–39, Luxembourg, 2011.

[25] A. Patcha and J. Park. An overview of anomaly detection techniques:
Existing solutions and latest technological trends. Comput. Netw.,
51(12), Aug 2007.

[26] L. Portnoy, E. Eskin, and S. Stolfo. Intrusion detection with unlabeled
data using clustering. In Proc. of ACM CSS Workshop on Data Mining
Applied to Security (DMSA), 2001.

[27] V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan. Finding a “kneedle”
in a haystack: Detecting knee points in system behavior. In International
Conf. on Distributed Computing Systems Workshops, pages 166–171,
Minneapolis, Minnesota, USA, 2011.

[28] B. Schökopf, J. Platt, and T. Hofmann. In-Network PCA and Anomaly
Detection, pages 617–624. MIT Press, 2007.

[29] M-L Shyu, S-C Chen, K. Sarinnapakorn, and L. Chang. A novel anomaly
detection scheme based on principal component classifier. In IEEE
Foundations and New Directions of Data Mining Workshop, pages 171–
179, 2003.

[30] C. Spearman. The proof and measurement of association between two
things. The American Journal of Psychology, 15(1):72–101, 1904.

[31] T. M. Thang and J. Kim. The anomaly detection by using dbscan cluster-
ing with multiple parameters. In Information Science and Applications
(ICISA), pages 1–5, April 2011.

[32] M. Thottan and Chuanyi Ji. Anomaly detection in ip networks. IEEE
Trans. Signal Process., 51(8):2191–2204, Aug 2003.

Juliette Dromard has received her engineering de-
gree in 2010 in Information and Telecommunica-
tion Systems from the University of Technology of
Troyes (UTT). In 2013, she got a doctor’s degree in
Network, Knowledge and Organization from UTT
for her thesis entitled Towards a secure admission
control in a wireless mesh networks. She is currently
in post-Doctoral position in LAAS-CNRS. Her re-
search interests are in the areas of unsupervised
network anomaly detection, unsupervised machine
learning techniques, big data mesh networks and

admission control.

Gilles Roudiere is a PhD student working at the
LAAS (Laboratory for Analysis and Architecture
of Systems), in Toulouse, France. As a computer
science graduate from the INSA (National Institute
of Applied Science) of Toulouse, he started his PhD
in 2015. As his field of research relates to Internet
security issues, he is currently working on building
a new network anomaly detector that provides a
more autonomous detection. His researches lead him
to investigate techniques that are able to deal with
networks big data, such as machine learning and data

mining.

http://ict-ontic.eu/
http://projects.laas.fr/METROSEC/
http://projects.laas.fr/METROSEC/

15

Philippe Owezarski is director of research at CNRS
(the French center for scientific research), working
at LAAS (Laboratory for Analysis and Architecture
of Systems), in Toulouse, France. He got a PhD
in computer science in 1996 from Paul Sabatier
University, Toulouse III, and an habilitation for ad-
vising research in 2006. His main interests deal with
next generation Internet. More specifically Philippe
Owezarski takes advantage of IP networks monitor-
ing for enforcing Quality of Service and security. It
especially focuses on techniques as machine learning

and data mining on the big data collected from the networks for making the
network related analytics autonomous and cognitive.

	Introduction
	UNADA
	Feature Space Update with a Discrete Time-sliding Window
	ORUNADA
	ORUNADA Evaluation
	UNADA Execution time
	Detection Similarity
	ORUNADA Detection Frequency
	ORUNADA Scalability Performance
	ORUNADA Detection Performance

	Related Works
	Conclusion and Future Works
	References
	Biographies
	Juliette Dromard
	Gilles Roudiere
	Philippe Owezarski

