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Abstract

Moment-sum-of-squares hierarchies of semidefinite programs can be used to approx-
imate the volume of a given compact basic semialgebraic set K. The idea consists of
approximating from above the indicator function of K with a sequence of polynomials
of increasing degree d, so that the integrals of these polynomials generate a convergence
sequence of upper bounds on the volume of K. We show that the asymptotic rate of
this convergence is at least O(1/ log log d).

Keywords: moment relaxations, polynomial sums of squares, convergence rate, semidefinite
programming, approximation theory.

1 Introduction

The moment-sum-of-squares hierarchy (also known as the Lasserre hierarchy) of semidefinite
programs was originally introduced in the context of polynomial optimization, and later
on extended in various directions, see e.g. [5] for an introductory survey and [4] for a
comprehensive treatment.

In our companion note [3] we have studied the convergence rate of this hierarchy applied to
optimal control. In the present rate, we carry out the convergence analysis of the hierarchy
tailored in [2] for approximating the volume (and all the moments of the uniform measure)
of a given semi-algebraic set.
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Let us first recall the main idea of [2]. Given a compact basic semi-algebraic set

K := {x ∈ R
n : gKi (x) ≥ 0, i = 1, . . . , nK} (1)

described by polynomials (gKi )i ⊂ R[x], we want to approximate numerically its volume

volK :=

∫

K

dx.

We assume that we are also given a compact basic semi-algebraic set

X := {x ∈ R
n : gXi (x) ≥ 0, i = 1, . . . , nX} (2)

described by polynomials (gXi )i ⊂ R[x], such that K is contained in X , which is in turn
contained in the unit Euclidean ball:

K ⊂ X ⊂ Bn := {x ∈ R
n : ‖x‖2 ≤ 1}

and such that the moments of the uniform (a.k.a. Lebesgue) measure over X are known
analytically or are easy to compute, or equivalently, such that the integral of a given poly-
nomial over X can be evaluated easily. This is the case for instance if X is a box or a
ball, e.g. X = Bn. The set K, on the contrary, can be a complicated (e.g., non-convex or
disconnected) set for which the volume (as well as the higher Lebesgue moments) are hard
to compute. In addition we invoke the following technical assumption:

Assumption 1 The origin belongs to the interior of K, i.e, 0 ∈ intK.

This assumption can be satisfied whenever the set K has a non-empty interior by translating
the set such that the origin belongs to the interior.

For notationally simplicity, we let gK0 := gX0 := 1. Moreover, since K respectively X are
included in the unit ball Bn, we assume without loss of generality that one of the gKi resp.
gXi , i > 0, is equal to 1 −

∑n

k=1 x
2
k. Attached to the set K is a specific convex cone called

truncated quadratic module defined by

Qd(K) :=
{

nK
∑

i=0

gKi sKi : sKi ∈ Σ[x], deg(gKi sKi ) ≤ 2⌊
d

2
⌋
}

where Σ[x] ⊂ R[x] is the semidefinite representable convex cone of polynomials that can be
written as sums of squares of polynomials. Attached to the outer bounding set X , we define
analogously the truncated quadratic module

Qd(X) :=
{

nX
∑

i=0

gXi sXi : sXi ∈ Σ[x], deg(gXi s
X
i ) ≤ 2⌊

d

2
⌋
}

.

Consider then the following hierarchy of convex optimization problems indexed by degree d:

v⋆d := inf
p∈R[x]d

∫

X

p

s.t. p− 1 ∈ Qd(K)
p ∈ Qd(X)

(3)
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where the decision variable belongs to R[x]d, the finite-dimensional vector space of polyno-
mials of total degree less than or equal to d. In problem (3) the objective function is a linear
function, the integral of p over X , for which we use the simplified notation

∫

X

p :=

∫

X

p(x)dx

here and in the remainder of the document. Since we assume that X is chosen such that
the moments of the uniform measure are known, the objective function is an explicit linear
function of the coefficients of p expressed in any basis of R[x]d. The truncated quadratic
modules Qd(K) and Qd(X) are semidefinite representable, so problem (3) translates to a
finite-dimensional semidefinite program. Moreover, it is shown in [2, Theorem 3.2] that the
sequence (v⋆d)d∈N converges from above to the volume of K, i.e.

v⋆d ≥ v⋆d+1 ≥ lim
d→∞

v⋆d = volK.

The goal of this note is to analyze the rate of convergence of this sequence.

2 Convergence rate

Let us first recall several notions from approximation theory. Given a bounded measurable
function f : X → R we define

ωx
f (t) := sup

y∈X

|f(y)− f(x)|

s.t. ‖y − x‖2 ≤ t

as the modulus of continuity of f at a point x ∈ X . In addition, we define

ω̄f(t) :=

∫

X

ωx
f (t)dx

as the averaged modulus of continuity of f on X . Finally we define

ef (d) := inf
p∈R[x]d

∫

X

(p− f)

s.t. p ≥ f on X

as the error of the best approximation to f from above in the L1 norm by polynomials of
degree no more than d.

Theorem 1 ([1]) For any bounded measurable function f and for all d ∈ N it holds

ef(d) ≤ c̄ ω̄f(1/d) (4)

for some constant c̄ depending only on f .

Theorem 1 links the L1 approximation error from above to the averaged modulus of conti-
nuity. Now we derive an estimate on the averaged modulus of continuity when f = IK , the
indicator function of K equal to 1 on K and 0 outside.
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Lemma 1 For all t ∈ [0, 1] it holds

ω̄IK(t) ≤ c t

for some constant c depending only on K and X.

Proof: Let ∂K denote the boundary of K and let

∂K(t) := {x ∈ X : min
y∈∂K

‖x− y‖2 ≤ t}

denote the set of all points whose Euclidean distance to the boundary of X is no more than
t. Then we have ωx

IK
(t) = 0 for all x 6∈ ∂K(t). Hence

ω̄IK(t) =

∫

X

ωx
IK
(t)dx =

∫

∂K(t)

ωx
IK
(t)dx ≤

∫

∂K(t)

1 dx = vol:∂K(t).

Therefore we need to bound the volume of ∂K(t). In order to do so, we decompose

∂K =

n∂
⋃

i=1

∂Ki

where each ∂Ki is a smooth manifold of dimension no more than n − 1 and n∂ is finite.
Defining

∂Ki(t) := {x ∈ X : min
y∈∂Ki

‖x− y‖2 ≤ t},

Weyl’s tube formula [8] yields the bound

vol ∂Ki(t) ≤ ci t

for all t ∈ [0, 1] and for some constant ci depending on K and X only. Hence we get

vol ∂K(t) ≤

n∂
∑

i=1

vol ∂Ki(t) ≤

n∂
∑

i=1

ci t = c t

where c :=
∑n∂

i=1 ci depends on K and X only, as desired. �

This leads to the following crucial estimate on the rate of convergence of the best polynomial
approximation from above to the indicator function of K:

Theorem 2 For all d ∈ N it holds
eIK (d) ≤

c1
d

(5)

for some constant c1 depending only on K and X.

Proof: Follows immediately from Theorem 1 and Lemma 1 with c1 := c̄ c. �

We need the following assumption, which we conjecture is without loss of generality:
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Assumption 2 (Finite Gibbs phenomenon) For d ∈ N there is a sequence

pd ∈ argmin
p∈R[x]d

∫

X

(p− IK)

s.t. p ≥ IK on X

and a finite constant cG such that maxx∈X pd(x) ≤ cG.

In addition to the results from approximation theory, we need the following result which is
a consequence of the fundamental result of [6] and of [3, Corollary 1]:

Theorem 3 Let p ∈ R[x] be strictly positive on a set S ∈ {K,X} and let Assumption 1
hold. Then p ∈ Qd(S) whenever

d ≥ cS2 exp
[(

k(deg p)(deg p)2ndeg pmaxx∈S p(x)

minx∈S p(x)

)cS
2
]

for some constant cS2 depending only the algebraic description of S and with k(d) = 3d+1rd,
where

r :=
1

sup{s > 0 | [−s, s]n ⊂ K}
, (6)

which is the reciprocal value of the length of the side of the largest box centered around the
origin included in K1.

Now we are in position to prove our main result:

Theorem 4 For all ε > 0 it holds v⋆d − volK < ε whenever

d ≥ c2 exp
[(3c3(ǫ)

2(3rn)c3(ǫ)(2cG vol Bn + ε)

ε

)c2
]

= O
(

exp
[ 1

ε3c2
(3rn)

2c1
ε

])

(7)

where c3(ǫ) := ⌈2c1/ε⌉, r is defined in (6) and the constants c1 and c2 depend only on X and
K.

Proof: Let ε > 0 be fixed and decompose ε = ε1+ ε2 with ε1 > 0 and ε2 > 0. Let p ∈ R[x]d
be any polynomial feasible in (3) for some d ≥ 1. Then we have

v⋆d − volK = v⋆d −

∫

X

IK ≤

∫

X

(p− IK) ≤

∫

X

(p̃d̃ − IK) +

∫

X

|p− p̃d̃|

where p̃d̃ is an optimal polynomial approximation to IK from above of degree d̃ satisfying
Assumption 2, i.e.,

∫

X
(p̃d̃ − IK) ≤ c1/d̃ and maxx∈X ‖p̃d̃(x)‖ ≤ cG. Selecting d̃ = ⌈c1/ε1⌉ we

obtain

v⋆d − volK ≤ ε1 +

∫

X

|f − p̃d̃|

1By assumption K ⊂ X and hence it is sufficient to take K in the definition of r in (6) rather than S.
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Hence it suffices to find a d ≥ 0 and a polynomial p feasible in (3) for this d such that
∫

X
|p− p̃d̃| ≤ ε2. Let p := p̃d̃ + ε2/volBn, then

∫

X

|p− p̃d̃| =

∫

X

ε2
vol Bn

≤
ε2

vol Bn

∫

Bn

= ε2.

In addition, since p̃d̃ ≥ IK on X , we have p ≥ ε2/volBn > 0 on X and p−1 ≥ ε2/volBn > 0
on K and hence p is feasible in (3) for some d ≥ 0 [7]. To bound the degree d we invoke
Theorem 3 on the two constraints of problem (3). Set c2 := max(cX2 , c

K
2 ), where the constants

cX2 and cK2 are the constants from Theorem 3 (note that these constants depend only on the
algebraic description of the sets, not on the polynomial p). Since maxx∈K |p(x) − 1| ≤
maxx∈X |p(x)| ≤ cG + ε2/vol Bn and dp(ǫ1) := deg p = d̃ = ⌈c1/ε1⌉, Theorem 3 applied to
the two constraints of the problem (3) yields

d ≥ c2 exp
[(k(dp(ǫ1))dp(ǫ1)

2ndp(ǫ1)(cG + ε2/vol Bn)

ε2/volBn

)c2
]

with k(d) = 3d+1rd and r is defined in (6). Setting ε1 = ε2 = ε/2 and c3(ǫ) := ⌈2c1/ε⌉, we
obtain (7).

�

Corollary 1 It holds v⋆d − volK = O
(

1/ log log d
)

.

Proof: Follows by inverting the asymptotic expression O
(

exp[ 1
ε3c2

(3rn)
2c1
ε ]

)

using the fact

that (3rn)
4c1
ε ≥ 1

ε3c2
(3rn)

2c1
ε for small ε. �

3 Concluding remarks

Our doubly logarithmic asymptotic convergence rate is likely to be pessimistic, even though
we suspect the actual convergence rate to be sublinear in d, see for example [2, Fig. 4.5]
which reports on the values of the moment-sums-of-squares hierarchy for an elementary
univariate interval length estimation problem. In this case we could compute numerically
the values for degrees up to 100 thanks to the use of Chebyshev polynomials. Beyond
univariate polynomials, it is however difficult to study experimentally the convergence rate
since the number of variables in the semidefinite program grows polynomially in the degree
d, but with an exponent equal to the dimension of the set K.
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