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Abstract: In this paper, a control scheme is elaborated to perform the station keeping of a
geostationary satellite equipped with electric propulsion. The use of electric thrusters imposes
to take into account some additional mutually exclusive constraints that can be reformulated
as logical constraints. The optimal station keeping problem is thus not solved with classical
methods, either direct or indirect, but is transformed into a linear integer programming problem.
The linearised relative velocity of the satellite is computed and some constraints on this velocity
are added to the station keeping problem . Simulation results validate the efficiency of the
optimal control thrusts obtained with these methods.
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1. INTRODUCTION

Satellites operating in Geostationary Earth Orbit (GEO)
drifts outside its station keeping (SK) window (a rectan-
gular box of a given geographical longitude and latitude
range) due to orbital disturbing forces. Performing an ac-
curate SK strategy is therefore necessary thanks to electric
and/or chemical thrusters in order to fulfil that role.

Chemical propulsion systems have been and are widely
used. For these propulsion systems with high thrust ca-
pabilities, SK control laws are usually designed assuming
an impulsive idealisation of the thrust, as described for
example in Soop (1994). Electric propulsion for station
keeping has been used since the sixties (see, e.g. the work of
Barrett (1967) and Hunziker (1970) ) and some theoretical
developments have been presented in the eighties by Anzel
(1988) and Eckstein (1980). Nowadays, the SK of GEO
satellites can be performed reliably by electric propulsion
as well as the chemical one. The bigger specific impulsion
of electric thrusters leads to a consequent savings in fuel
consumption, what enables a reduction of the satellite
mass and increased payload capacity and/or improved
satellite longevity.

Considering these technological and operational features,
optimal control strategies for electrical SK, taking various
constraints into account (minimum elapsed time between
two consecutive firings, on-off profile of the thrusters,

thrust allocation) have to be carefully designed. Some
references as for example Sidi (1997), Campan et al. (1995)
or Soop (1994) have established some rule of thumb based
on the physical analysis of the effect of the external forces
in order to perform the SK. In general, the problem of
station keeping can be expressed as an optimal control
problem even if the above mentioned constraints, inherent
to the use of electric thrusters, prevent us to solve it with
classical methods.

Optimal SK control problems may be solved according
to several approaches. When simplifying assumptions are
used, analytical control laws may be obtained, as in
Sukhanov and Prado (2012). Otherwise, it is in general
necessary to resort to numerical methods, such as direct
collocation based methods as described in Hull (1997) and
Betts (1998). For this kind of approaches integrating the
satellite dynamic, the state and the control variables are
discretised to produce a non linear programming problem
and get an optimal open loop control. To deal with on-off
models of thrusts, rectangular profiles may be generated
from a continuous one with the Pulse Width Modulation
technique (see Vazquez et al. (2015) and the references
therein). Losa et al. (2005) has formulated a method based
on differential inclusion and Losa et al. (2006) and Gazzino
et al. (2016) have implemented a decomposition technique.

In this paper, the idea is to use the particular form
of the thrusters operational constraints that cannot be



taken into account easily with classical methods for solving
the optimal control problem, in order to transform the
linearised SK optimal control problem in a linear inte-
ger programming problem, using a discretisation of the
state and control variables. Unlike the direct collocation
method, the dynamic equation of the satellite evolution
is integrated beforehand using its state transition matrix,
allowing to remove the state vector from the optimisation
variables set. The operational constraints are expressed
as logical constraints such that the control variables are
now be binary variables in this formulation. A simple way
of transforming the logical constraints in binary variables
constraints is investigated. A realistic numerical example
illustrates the efficiency of the proposed approach and
some comparison are made between a rule of thumb for
SK strategies found in the literature and the systematic
optimisation based approach presented in this paper.

2. STATION KEEPING PROBLEM

2.1 Dynamic Modeling

Let us consider a satellite equipped with 4 electric
thrusters mounted on the anti-nadir face. The position of
the satellite on its orbit is described with the equinoctial
orbit elements as defined in Battin (1999):

xeoe =
[
a ex ey ix iy `MΘ

]t ∈ R6, (1)

where a is the semi-major axis, (ex, ey) the eccentricity
vector components, (ix, iy) the inclination vector compo-
nents, `MΘ = ω + Ω + M − Θ is the mean longitude
where Ω is the right ascension of the ascending node, ω
is the argument of perigee, M is the mean anomaly and
Θ(t) is the right ascension of the Greenwich meridian.
The dynamics of the satellite may be represented by the
following non linear state-space model:

dxeoe
dt

= fL(xeoe, t) + fG(xeoe, t)u, (2)

where fL ∈ R6 is the Lagrange contribution part of the
external force model described by the CNES ORANGE
model (cf. Campan and Brousse (1994)) and fG ∈ R6×3

is the Gauss contribution part.

In order to deal with the station keeping problem, the
relative state of the satellite with respect to the station
keeping state

xsk =
[
ask 0 0 0 0 `MΘsk

]t
, (3)

is defined, where ask is the synchronous semi-major axis
and `MΘsk

is the station mean longitude.

The relative dynamics equations are developed by lineari-
sation of Equation (2) about the station keeping point (3).
By denoting x = xeoe−xsk the relative state model reads:

ẋ = A(t)x + D(t) +B(t)u, (4)

where the matrices:

A(t) = ∂

∂xeoe

(−→
fL(xeoe(t), t)

)∣∣∣∣
xeoe=xsk

∈ R6×6, (5)

B(t) = fG(xsk, t) ∈ R6×3, (6)
D(t) = fL(xsk, t) ∈ R6, (7)

are obtained from the linearisation of functions fL and
u 7→ fGu.

As opposed to what is done in the literature, the lin-
earisation was not performed with respect to an equilib-
rium point, but around a fictitious geostationary point. In
other words, the equinoctial orbital elements xeoe undergo
all disturbing external forces whereas the geostationary
equinoctial elements xsk evolves under a keplerian motion.
These two different dynamics for the state vector and the
station keeping state vector explains the term D(t) in the
relative state model (4).

Recalling that 4 thrusters are available to realize the
control, the transcription of the station keeping problem
expressed in terms of the control vector u would require
to solve an allocation problem to find a right combination
of thrusts. An alternative, consists in considering directly
the 4 thrusts provided by the 4 engines in the satellite
dynamic. The control u(t) can be written as a linear
combination of the 4 thrusts such that u = ΓFmaxF ,
where F ∈ R4, Γ ∈ R3×4 and Fmax is the maximum
value of thrust of all the 4 thrusters. . In order to
model the on-off nature of the control profile, the thrust
vector F = Fmax

[
F1 F2 F3 F4

]t is composed of four
normalized variables. The thrust direction matrix Γ =[
Γ1 Γ2 Γ3 Γ4

]t ∈ R3×4 is defined such that each thrust
direction Γj ∈ R3 are given by :

Γj =
1
m

[
− sin θj cosαj − sin θj sinαj − cos θj

]
(8)

where angles θj and αj are defined exactly as in Anzel
(1988). Finally, the relative state model for the addressed
SK problem is given by:

ẋ = A(t)x + D(t) +B(t)ΓF , (9)

The geographical coordinates of the satellite:
yeoe = T (xeoe, t)xeoe, (10)

are the variables of interest since the station keeping
problem consists in constraining them in the vicinity of
the station position ysk =

[
rsk 0 λsk

]t where rsk is
the synchronous radius and λsk is the station keeping
geographical longitude. The relative geographical position
with respect to the station-keeping position is denoted by:

y = yeoe − ysk = T (xsk, t)x = C(t)x, (11)
by linearising Equation (10).

The relative geographical velocity of the satellite is com-
puted by linearising the derivative of Equation (10). As
done with the linearisation of the derivative of the state
vector, the station-keeping position is a fictitious point
supposed to evolve following a keplerian motion, whereas
yeoe is supposed to undergo all the external forces. The
dynamics of the relative geographical position reads thus:



ẏ(t) = E(t)x(t) + C(t)D(t) + FmaxC(t)B(t)ΓF̃ (t), (12)
with: E(t) = 2H(t) + C(t)A(t) + Ċ(t) ∈ R3×6 (13)

and: H(t) = ∂[T (xeoe, t)]
∂xeoe

∣∣∣∣
x=xsk

D(t), (14)

2.2 Station Keeping as Constrained Optimal Control Problem

The station keeping problem consists in maintaining the
longitude and the latitude of the satellite in a box defined
by its size δ on a fixed time horizon by acting on the orbital
parameters via the 4 thrusters. An open loop control laws
can be obtained by solving an optimal control problem.
In this context, optimality means that a minimum fuel-
solution is looked for to extend the operational life time of
the satellite. Therefore, performing minimum-fuel station
keeping amounts to minimizing the following performance
index under the dynamic constraint (9):

Ĵ =
∫ T

0

4∑
thruster i=1

(|uRi
(t)|+ |uTi

(t)|+ |uNi
(t)|) dt

⇔ J =
4∑

thruster i=1
||Γi||1

∫ T

0
Fi(t)dt. (15)

2.2.1 Station Keeping Requirements (Orbital Constraints)
Station keeping constraints are imposed to ensure that

the satellite stays in the geographical box. This box is
defined in the plane (latitude,longitude) of width 2δ × 2δ
centered on the station keeping geographical position. By
denoting y = yeoe − ysk, the station-keeping constraints
over a finite time interval can be written as:
|[0 1 0]y(t)| 6 δ and |[0 0 1]y(t)| 6 δ ∀t ∈ [0, T ]. (16)

The initial condition is given by x(0) = x0 whereas the
final state x(tf ) is free. The constraints on the geographi-
cal position may not suffice to perform the station keeping
over several time intervals. For instance, the final position
at t = T may be closed to the upper boundary of the
SK window with the satellite velocity pointing outward.
In such a case, it should not be possible for a limited-
propulsion satellite to remain in the SK window for the
following time interval. For this reason, a constraint on
the final velocity is added:

|[0 1 0]ẏ(T )| 6 ν and |[0 0 1]ẏ(T )| 6 ν, (17)
where the parameter ν is small.

2.2.2 Operational Constraints on Actuation Beside the
station keeping geographical constraints and the usual
bounds on the maximum thrust, electrical propulsion na-
ture and additional technological operational constraints
on the actuation have to be taken into account:

(a) actuators can only provide on-off thrusts;
(b) thrusters cannot be active simultaneously;
(c) each thrust must last at least Tl (s);
(d) two successive thrusts of a given thruster must be

separated of an interval of latency equal to Ts = mTl
(s) with m ∈ N?;

(e) two thrusts of two different thrusters must be sepa-
rated by an interval of latency equal to Td = Tl (s).

Finally, the optimal control problem reads:

min
F (t)

J =
4∑
i=1
||Γi||1

∫ T

0
Fi(t)dt, such that:

ẋ = A(t)x + D(t) +B(t)ΓF ,

x(0) = x0, initial condition,
|ẏ2(T )| 6 ν, |ẏ3(T )| 6 ν, final conditions
|y2(t)| 6 δ and |y3(t)| 6 δ ∀t ∈ [0, T ] SK. const.
conditions (a)− (e) command const.

(18)

3. INTEGER FORMULATION OF THE SK
PROBLEM

As proposed earlier, the Optimal Control Problem (OCP)
(18) will be addressed in the sequel by means of a direct
methodology. Note that solving (18) with indirect methods
by applications of the classical optimality conditions (Pon-
tryagin principle) is difficult due to the complexity of the
operational constraints involved and the presence of state
constraints. However, in Gazzino et al. (2016), an equiv-
alent problem has been tackled by means of a two-step
methodology combining the application of the maximum
principle on a simplified version of the SK problem and a
transcription method initialized with the solution of the
first step.

3.1 Control Parametrization and Operational Constraints

We first parametrize the control history profiles and then
discretise the constraints in order to obtain an integer
linear programming problem.

As mentioned before in condition (a), the electrical engines
only produce on/off thrust so that F i at time τi can be
considered to be a 4-dimensional binary vector expressed
by:

F (t) =
[
s1 s2 s3 s4

]t
, (19)

where sl ∈ {0, 1}, l = 1, . . . , 4.

The time interval [0, T ] is divided in N equal intervals
[τi, τi+1] with:

0 = τ0 < τ1 < · · · < τN−1 < τN = T. (20)

The thrust vector F (t) will be considered constant over
each intervals [τi, τi+1] so that F (t) is completely
parametrized by the parameter vectors {F 1, . . . ,FN}:

F (t) = F i, if t ∈ [τi−1, τi], i = 1, . . . , N. (21)

In order to cope with condition (c), the length of each
interval is chosen such that τi+1 − τi = Tl.

Moreover, it is forbidden to thrust simultaneously accord-
ing to conditions (b). Thus, the control profile of the



satellite can be considered at each time to be a binary
word that has to be chosen among the five possibilities:

∀i, F i =


(s1)i
(s2)i
(s3)i
(s4)i

 ∈



0
0
0
0

 ,


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0




0
0
0
1


 . (22)

With such a parametrisation of the control, it is possible
to write the operational constraints (b)-(e) as logical
constraints. Let us consider a discretisation {τi} of the
time interval [0, T ] in sub-intervals of length Tl. Defining
Fi = S(τi), the constraints (c) is automatically satisfied.
The constraint (d) can be transformed to:

∀i,
[
(F i 6= 0) & (F i+1 = 0)

]
⇒
[
(F i+2 6= F i)

& (F i+3 6= Fi) & . . .& (F i+m 6= Fi)
]
. (23)

The constraint (e) can be expressed as:
∀i, F i 6= 0⇒ F i+1 = {0,F i}, (24)

The previous transformation of the operational constraint
enables to write the station keeping problem as a linear
integer programming problem.

3.2 State Transition and States Constraints Transcription

Using the transition matrix of the differential equation of
the satellite state vector evolution (9) as defined in Antsak-
lis (2003), the state vector trajectory, the geographical po-
sition and velocity can be evaluated at each discretisation
point: ∀j = 0, . . . , N,

xj =Φj,0x0 +
j∑
i=1

Φj,iBΦ
i F i + DΦ(τj), (25a)

yj =CjΦj,τ0x0 +
j∑
i=1

CjΦj,iBΦ
i F i + CjD

Φ
j , (25b)

ẏj =
j∑
i=1

EjΦjiBΦ
i F i + CjB̃jF j + EjΦj,0x0

+ EjD
Φ
j + CjDj , (25c)

with xj = x(τj), yj = y(τj), ẏj = ẏ(τj), Cj = C(τj),
Dj = D(τj), Ej = E(τj), Φj,0 = Φ(τj , 0), Φj,i = Φ(τj , τi),
BΦ
i =

(∫ τi

τi−1
Φ(τi, s)B(s)ds

)
FmaxΓ, B̃ = FmaxBΓ and

DΦ
i =

∫ t
0 Φ(τi, s)D(s)ds.

This leads to the following discretisation of the station
keeping constraints (16) and of the velocity constraints
(17):

j∑
i=1

βCjΦjiB
Φ
i F i 6 δ − CjΦj,0x(0) − CjDΦ

j ,

−
j∑

i=1

βCjΦjiB
Φ
i F i 6 δ + CjΦj,0x(0) + CjDΦ

j ,

N∑
i=1

βEN ΦNiB
Φ
i F i 6 ν − EN ΦN,0x0 − EN DΦ

j − CN DN ,

−
N∑

i=1

βEN ΦNiB
Φ
i F i 6 ν + EN ΦN,0x0 + EN DΦ

j + CN DN ,

(26)

with β being either [0 1 0] or [0 0 1]. The discretisation of
the station keeping requirements are rewritten in matrix
format as: 

BsF̄ 6 d− Bxx(0)− Bc,
−BsF̄ 6 d+ Bxx(0) + Bc,
GsF̄ 6 υ − Gxx(0)− Gc,
−GsF̄ 6 υ + Gxx(0) + Gc,

(27)

where F̄ = [F t
1, . . . ,F

t
N ]t. With the transformation of

the thrusters operational constraints of Section 2.2.2 and
the previous discretisation of the dynamics equation, it
is possible to use an integer programming formulation to
solve the minimum fuel SK problem.

3.3 Actuators Constraints in Integer Formalism

Considering that the parameter vectors Fi are composed
of binary variables si (cf. (19)), the constraint (b) is
expressed as:

∀i, (s1)i + (s2)i + (s3)i + (s4)i 6 1. (28)

Constraint (c) is satisfied by definition of the control
parametrization. In order to express constraints (d) and
(e), an auxiliary binary variable γ ∈ {0, 1}N is used and is
defined as:

∀i, (s1)i + (s2)i + (s3)i + (s4)i = αi. (29)
The variable γi expresses the fact that one of the four
thrusters is firing on interval [τi, τi+1]. If γi = 0, all
thrusters are off. Thanks to γ, the constraint (d) reads:
∀k = 1, . . . ,m, ∀i = 1, . . . , N − k − 1, ∀l = 1, . . . , 4,
(sl)i+k + (sl)i + γi − γi+1 6 0,

(30)
and the constraint (e) reads:
∀i = 1, . . . , N − 1, ∀l = 1, . . . , 4, (sl)i+1 − (sl)i + γi 6 1.

(31)

The fuel-consumption is expressed with the control profile
S:

Js =
N∑
i=1

[1 1 1 1]F i, (32)

and the SK linear integer programming problem reads:

min
(sl)i,γi

Js =
N∑
i=1

[1 1 1 1]F i

s.t.



BsF̄ 6 d− Bxx(0)− Bc,
−BsF̄ 6 d+ Bxx(0) + Bc,
GsF̄ 6 υ − Gxx(0)− Gc
−GsF̄ 6 υ + Gxx(0) + Gc,
(s1)i + (s2)i + (s3)i + (s4)i 6 1,
(s1)i + (s2)i + (s3)i + (s4)i = γi,

(sl)i+k + (sl)i + γi − γi+1 6 0,
(sl)i+1 − (sl)i + γi 6 1.

(33)

4. NUMERICAL RESULTS

In this section, simulation results obtained with the pro-
posed methodology are presented. Let consider a satellite



of mass 4850 kg equipped with 4 electric thrusters oriented
in the directions North-East, North-West, South-East and
South-West. This satellite has to be controlled in order to
remain close to its geostationary position at a fixed longi-
tude λ̄ and a fixed latitude ϕ̄ = 0. The SK problem has
been solved with using Gurobi (see Gu et al. (2010)) with
a Matlab interface done with Yalmip (see Löfberg (2004)).
The problem horizon was of few days. The initial relative
geographical position is y(0) = [0 0.03◦ − 0.04◦]t and the
relative initial geographical velocity is ẏ(0) = [0 0 0]t. The
initial orbit elements x0 are recover by inversion of Equa-
tions (9) and (12) written at t = 0 and F (0) = [0 0 0 0]t

In order to discuss the benefit of taken the relative velocity
into account, the integer formulation (33) of the SK prob-
lem has been solved on one hand with the final velocity
constraint and on the second hand without the this final
velocity constraints. On Figure 1 and 3, the geographical
position for the problem with the final velocity constraint
and without the final velocity constraint are drawn. It
can be easily noticed that taking this final constraint
into account or not can have a high impact on the final
trajectory, as well as on the control profile (see Figure
4). The consumption for the case with the final velocity
constraint is three times as high as the consumption for
the case without

However, as shown on Figure 2, adding the final velocity
constraint changes the velocity profile, and the difficulties
already mentioned in Section 2.2.1 concerning the high
final velocities can occur for a starting point too close to
the SK boundary.
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Fig. 1. Relative geographical position.
– : with final velocity constraint.
– : without final velocity constraint.

It is possible to find in the literature some rules of thumb
for geostationary SK strategies, in particular in Campan
et al. (1995), Soop (1994) and Sidi (1997). In these
references, the effect of the perturbing forces on the orbit is
studied, and some general SK laws are derived. The North-
South effect of the Sun and the Moon attractions are the
most pregnant forces and these forces must be corrected
each half orbit, once in the North direction and half an
orbit later in the South direction. The East-West drift is
meanwhile corrected by setting different thrust durations
for each thrusters. This SK strategy was usefully used in
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Fig. 3. Station Keeping window.
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Fig. 4. Control profiles.
– : with final velocity constraint.
- - : without final velocity constraint.

an industrial context by Anzel (1995). The control profile
of Figure 4 shows that the two South thrusters have a
thrust at the beginning of each day, and the two North
thrusters have a thrust half a day later. On the control
profile, the thrusts have always different durations in
order to compensate for the East-West drift. The physical
rule of thumb can thus be recovered from a systematic
optimisation process.



5. CONCLUSION

In this paper, the optimal control formulation of the min-
imum fuel station keeping problem has been transformed
into a linear integer programming problem to cope with
the on-off characteristics of the electrical thrusters. More-
over we show that such a formulation permits to nicely
describe the operational constraints on these actuators.
The methodology has been illustrated with examples that
highlight the interest of constraining the velocity at the
final moment of the week in order to prevent the satellite
to fly out the station keeping window. The optimal SK
strategy based on an optimisation method that could be
derived in this paper matches the general rules for station
keeping that have been derived by analysing the physical
effect of the disturbing forces on the satellite orbit. The
transition matrices used to build up the linear integer pro-
gramming problem have been obtained under zero-holder
assumption. However, in order to improve the accuracy
of our results, further investigations have to be made to
provide either closed-form expression or numerically cer-
tified approximations for the linearised dynamic. Another
venue of improvement can be the use of advanced integer
transcription or branch-and-bound algorithm in order to
perform more effectively the numerical solution of the
linear integer programming problem.
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