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Abstract: A control scheme is elaborated to perform the station keeping of a geostationary
satellite equipped with electric propulsion. The use of electric thrusters imposes to take into
account some additional mutually exclusive constraints on the control function that can be
reformulated as logical constraints. The resulting fuel optimal station keeping problem is thus
not solved with classical methods, either direct or indirect, but is transformed into a linear
integer programming problem. The linearised relative velocity of the satellite is computed and
some linear constraints on this velocity are added to the original station keeping problem in
order to perform the station kepping over one week after another. Simulation results validate
the efficiency of the optimal control thrusts obtained by the solution of the overall linear integer
programming problem.

Keywords: Satellite control, GEO satellite station keeping, electric propulsion, integer
programming.

1. INTRODUCTION

Satellites operating in Geostationary Earth Orbit (GEO)
naturally drift outside their station keeping (SK) window
(a rectangular box of a given geographical longitude and
latitude range) due to orbital disturbing forces. Performing
an accurate SK strategy is therefore necessary by using
electric and/or chemical thrusters in order to counteract
the effect of orbital perturbations.

Chemical propulsion systems have been and are still widely
used. For these propulsion systems with high thrust capa-
bilities, SK control laws are usually designed assuming an
impulsive idealisation of the thrust, as described for exam-
ple in Soop (1994). Electric propulsion for station keeping
has been used since the late sixties (see, e.g. the work of
Barrett (1967) and Hunziker (1970) ) and some theoretical
developments have been presented in the eighties by Anzel
(1988) and Eckstein (1980). Nowadays, the SK of GEO
satellites can be performed reliably by electric as well as
by the chemical propulsion. The bigger specific impulsion
of electric thrusters leads to a consequent savings in fuel
consumption, what enables a reduction of the satellite
mass and increased payload capacity and/or improved
satellite lifetime.

Considering these technological and operational features,
optimal control strategies for electrical SK, taking various

constraints into account (minimum elapsed time between
two consecutive firings, on-off profile of the thrusters,
thrust allocation) have to be carefully designed. Some
references as for example Sidi (1997), Campan et al. (1995)
or Soop (1994) have established some rule of thumb based
on the physical analysis of the effect of the external forces
in order to perform the SK. In general, the problem of
station keeping can be expressed as an optimal control
problem even if the above mentioned constraints, inherent
to the use of electric thrusters, prevent us to solve it with
classical methods.

Optimal SK control problems may be solved according
to several approaches. When simplifying assumptions are
used, analytical control laws may be obtained, as in
Sukhanov and Prado (2012). Otherwise, it is in general
necessary to resort to numerical methods, such as direct
collocation based methods as described in Hull (1997) and
Betts (1998). For this kind of approaches integrating the
satellite dynamic, the state and the control variables are
discretised to produce a non linear programming problem
and get an optimal open loop control. To deal with on-
off models of the thrusts, rectangular profiles may be
generated from a continuous one with the Pulse Width
Modulation technique (see Vazquez et al. (2015) and the
references therein). Losa et al. (2005) has formulated a
method based on differential inclusion and Losa et al.



(2006) and Gazzino et al. (2016) have implemented a
decomposition technique. In this last reference, an equiv-
alent problem has been tackled by means of a two-step
methodology combining the application of the maximum
principle on a simplified version of the SK problem and a
transcription method initialized with the solution of the
first step. Even if the proposed two-step decomposition
succeeds in finding a feasible plan of manoeuvers, the
difficulty of tuning the numerous parameters due to their
high sensitivity clearly leaves room for improvement.

The approach developed in this paper is a more straight-
forward process with few tuning parameters and only one
step. If the operational constraints cited above are difficult
to account for, the present work take advantage to trans-
form the linearised SK optimal control problem in a linear
integer programming problem, using a discretisation of
the control variables. Unlike the direct collocation method
used in Gazzino et al. (2016), the dynamic equation of
the satellite evolution is integrated beforehand to provide
its state transition matrix. Using the computed transition
matrix, the dynamic constraint is removed and the opti-
mal variable set is only composed of the control vector.
Instead of removing the operational constraints, that are
difficult to deal with in the Pontryagin Maximum Principle
framework, and finding afterwards an equivalent control
strategy respecting these constraints, their particular dis-
juntive structure is used in order to express them as logical
constraints such that the control variables are now binary
variables in this formulation. A simple way of transforming
the logical constraints in binary variables constraints is
investigated. A realistic numerical example illustrates the
efficiency of the proposed approach and some comparison
are made between a rule of thumb for SK strategies found
in the literature and the systematic optimisation based
approach presented in this paper.

2. STATION KEEPING PROBLEM

2.1 Dynamic Modeling

Let us consider a satellite equipped with 4 electric
thrusters mounted on the anti-nadir face. The position of
the satellite on its orbit is described with the equinoctial
orbit elements as defined in Battin (1999):

xeoe =
[
a ex ey ix iy `MΘ

]t ∈ R6, (1)
where a is the semi-major axis, (ex, ey) are the eccentric-
ity vector components, (ix, iy) are the inclination vector
components, `MΘ = ω+ Ω +M −Θ is the mean longitude
where Ω is the right ascension of the ascending node, ω
is the argument of perigee, M is the mean anomaly and
Θ(t) is the right ascension of the Greenwich meridian.
The dynamics of the satellite may be represented by the
following non linear state-space model:

dxeoe
dt

= fL(xeoe, t) + fG(xeoe, t)u, (2)

where fL ∈ R6 is the Lagrange contribution part of the
external force model described by the CNES ORANGE

model (cf. Campan and Brousse (1994)) and fG ∈ R6×3

is the Gauss contribution part.

In order to deal with the station keeping problem, the
relative state of the satellite with respect to the station
keeping state:

xsk =
[
ask 0 0 0 0 `MΘsk

]t
, (3)

is defined, where ask is the synchronous semi-major axis
and `MΘsk

is the station mean longitude.

The relative dynamics are developed by linearisation of
Equation (2) about the station keeping point (3). By
denoting x = xeoe − xsk the relative state model reads:

ẋ = A(t)x + D(t) +B(t)u, (4)
where the matrices:

A(t) = ∂

∂xeoe

(−→
fL(xeoe(t), t)

)∣∣∣∣
xeoe=xsk

∈ R6×6, (5)

B(t) = fG(xsk, t) ∈ R6×3, (6)
D(t) = fL(xsk, t) ∈ R6, (7)

are obtained from the linearisation of functions fL and
u 7→ fGu.

As opposed to what is done in the literature, the linearisa-
tion is not performed with respect to an equilibrium point,
but around a fictitious geostationary point. In other words,
the equinoctial orbital elements xeoe undergo all disturb-
ing external forces whereas the geostationary equinoctial
elements xsk evolve following a keplerian motion. These
two different dynamics for the state vector and the station
keeping state vector explains the term D(t) in the relative
state model (4).

Recalling that 4 thrusters are available to realize the
control, the transcription of the station keeping problem
expressed in terms of the control vector u would require
to solve an allocation problem to find a right combination
of thrusts. An alternative consists in considering directly
the 4 thrusts provided by the 4 engines in the satellite
dynamic. The control u(t) can be written as a linear com-
bination of the 4 thrusts such that u = ΓF , where F ∈ R4,
Γ ∈ R3×4. In order to model the on-off nature of the con-
trol profile, the thrust vector F = Fmax

[
F1 F2 F3 F4

]t is
composed of four normalized variables scaled by Fmax, the
mximum thrust delivered by each propeller. The thrust
direction matrix Γ =

[
Γ1 Γ2 Γ3 Γ4

]t ∈ R3×4 is defined
such that each thrust direction Γj ∈ R3 are given by :

Γj =
1
m

[
− sin θj cosαj − sin θj sinαj − cos θj

]
(8)

where angles θj and αj are defined exactly as in Anzel
(1988). Finally, the relative state model for the addressed
SK problem is given by:

ẋ = A(t)x + D(t) +B(t)ΓF , (9)

The geographical coordinates of the satellite:
yeoe = T (xeoe, t)xeoe, (10)

are the variables of interest since the station keeping
problem consists in constraining them in the vicinity of



the station position ysk =
[
rsk 0 λsk

]t where rsk is
the synchronous radius and λsk is the station keeping
geographical longitude. The relative geographical position
with respect to the station-keeping position is denoted by:

y = yeoe − ysk = T (xsk, t)x = C(t)x, (11)
by linearising Equation (10).

The relative geographical velocity of the satellite is com-
puted by linearising the derivative of Equation (10). As
done with the linearisation of the derivative of the state
vector, the station-keeping position is a fictitious point
supposed to evolve following a keplerian motion, whereas
yeoe undergoes all the external forces. The dynamics of
the relative geographical position reads thus:
ẏ(t) = E(t)x(t) + C(t)D(t) + FmaxC(t)B(t)ΓF̃ (t), (12)

with E(t) = 2H(t) + C(t)A(t) + Ċ(t) ∈ R3×6 (13)

and H(t) = ∂[T (xeoe, t)]
∂xeoe

∣∣∣∣
x=xsk

D(t), (14)

2.2 Station Keeping as a Constrained Optimal Control
Problem

The objective of the system is to maintain the longitude
and the latitude of the satellite in a box defined by its size δ
on a fixed time horizon by acting on the orbital parameters
via the 4 thrusters. An open loop control law can thus be
obtained by solving an associated optimal control problem.
In this context, optimality means that a minimum fuel-
solution is looked for to extend the operational life time of
the satellite. Therefore, performing minimum-fuel station
keeping amounts to minimizing the following performance
index under the dynamic constraint (9):

Ĵ =
∫ T

0

4∑
thruster i=1

(|uRi
(t)|+ |uTi

(t)|+ |uNi
(t)|) dt

⇔ J =
4∑

thruster i=1
||Γi||1

∫ T

0
Fi(t)dt. (15)

2.2.1 Station Keeping Requirements (Orbital Constraints)
Station keeping constraints are imposed to ensure that

the satellite stays in the geographical box. This box is
defined in the plane (latitude,longitude) of width 2δ × 2δ
centered on the station keeping geographical position. By
denoting y = yeoe − ysk, the station-keeping constraints
over a finite time interval can be written as:
|[0 1 0]y(t)| 6 δ and |[0 0 1]y(t)| 6 δ ∀t ∈ [0, T ]. (16)

The initial condition is given by x(0) = x0 whereas the
final state x(tf ) is free. The constraints on the geographi-
cal position may not suffice to perform the station keeping
over several time intervals. For instance, the final position
at t = T may be close to the boundary of the SK window
with the satellite velocity pointing outward. In such a case,
it may not be possible for a limited-propulsion satellite to
remain in the SK window for the ensuing time interval.

For this reason, a constraint on the final velocity of the
geographical variables is added:

|[0 1 0]ẏ(T )| 6 ν and |[0 0 1]ẏ(T )| 6 ν, (17)
where the parameter ν is chosen small.

2.2.2 Operational Constraints on Actuation
Beside the station keeping geographical constraints and

the usual bounds on the maximum thrust, technological
operational constraints on the actuation have to be taken
into account:

(a) actuators can only provide on-off thrusts;
(b) thrusters cannot be active simultaneously;
(c) each thrust must last at least Tl (s);
(d) two successive thrusts of a given thruster must be

separated of an interval of latency equal to Ts = mTl
(s) with m ∈ N?;

(e) two thrusts of two different thrusters must be sepa-
rated by an interval of latency equal to Td = Tl (s).

Finally, the SK optimal control problem reads:

min
F (t)

J =
4∑
i=1
||Γi||1

∫ T

0
Fi(t)dt, such that:

ẋ = A(t)x + D(t) +B(t)ΓF ,

x(0) = x0, initial condition,
|ẏ2(T )| 6 ν, |ẏ3(T )| 6 ν, final conditions
|y2(t)| 6 δ and |y3(t)| 6 δ ∀t ∈ [0, T ] SK. const.
conditions (a)− (e) control const.

(18)

3. INTEGER FORMULATION OF THE SK
PROBLEM

As proposed earlier, the Optimal Control Problem (OCP)
(18) will be addressed in the sequel by means of a direct
methodology. Note that solving (18) with indirect methods
by applications of the classical optimality conditions (Pon-
tryagin principle) is difficult due to the complexity of the
operational constraints involved and the presence of state
constraints. In the proposed methodology, the particluliar
disjunctive structure of the operational constraints is in-
vestigated in order to transform them into linear integer
constraints. The whole station keeping problem is then
recast as a linear integer programming problem and solved
with dedicated solvers.

3.1 Control Parametrization and Operational Constraints

We first parameterize the control profiles and then dis-
cretise the constraints in order to obtain an integer linear
programming problem.

As mentioned before in condition (a), the electrical engines
only produce on/off thrusts so that F i at time τi can be
considered to be a 4-dimensional binary vector expressed
by:

F (t) =
[
s1 s2 s3 s4

]t
, (19)



where sl ∈ {0, 1}, l = 1, . . . , 4.

The time interval [0, T ] is divided in N equal intervals
[τi, τi+1] with:

0 = τ0 < τ1 < · · · < τN−1 < τN = T. (20)

The thrust vector F (t) will be considered constant over
each intervals [τi, τi+1], so that F (t) is completely param-
eterized by the vectors {F 1, . . . ,FN}:

F (t) = F i, if t ∈ [τi−1, τi], i = 1, . . . , N. (21)

In order to cope with condition (c), the length of each
interval is chosen such that τi+1 − τi = Tl.

Beside this, two different thrusters cannot thrust simul-
taneously according to conditions (b). Thus, the control
profile of the satellite can be considered at each time to
be a binary word that has to be chosen among the five
possibilities:

∀i, F i =


(s1)i
(s2)i
(s3)i
(s4)i

 ∈



0
0
0
0

 ,


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1


 .

(22)
With such a parametrisation of the control, it is possible
to write the operational constraints (b)-(e) as logical
constraints. Let us consider a discretisation {τi} of the
time interval [0, T ] in sub-intervals of length Tl. Defining
Fi = S(τi), the constraints (c) is automatically satisfied.
The constraint (d) can be transformed to:

∀i,
[
(F i 6= 0) & (F i+1 = 0)

]
⇒
[
(F i+2 6= F i)

& (F i+3 6= F i) & . . .& (F i+m 6= F i)
]
. (23)

The constraint (e) can be expressed as:
∀i, F i 6= 0⇒ F i+1 = {0,F i}. (24)

3.2 State Transition and States Constraints Transcription

Using the transition matrix of the differential equations
of the satellite state vector evolution (9) as defined in
Antsaklis (2003), the state vector trajectory, the geograph-
ical positions and velocities can be evaluated at each
discretisation point: ∀j = 0, . . . , N,

xj =Φj,0x0 +
j∑
i=1

Φj,i
[
BΦ
i F i + DΦ(τj)

]
, (25a)

yj =CjΦj,τ0x0 +
j∑
i=1

CjΦj,i
[
BΦ
i F i + DΦ

j

]
, (25b)

ẏj =EjΦj,0x0 +
j∑
i=1

EjΦji
[
BΦ
i F i + DΦ

j

]
+ Cj

[
B̃jF j + Dj

]
, (25c)

with xj = x(τj), yj = y(τj), ẏj = ẏ(τj), Cj = C(τj),
Dj = D(τj), Ej = E(τj), Φj,0 = Φ(τj , 0), Φj,i = Φ(τj , τi),
BΦ
i =

(∫ τi

τi−1
Φ(τi, s)B(s)ds

)
FmaxΓ, B̃ = FmaxBΓ and

DΦ
i =

∫ t
0 Φ(τi, s)D(s)ds.

This leads to the following discretisation of the SK con-
straints (16) and of the velocity constraints (17):

j∑
i=1

βCjΦjiB
Φ
i F i 6 δ − βCjΦj,0x(0) − βCjDΦ

j ,

−
j∑

i=1

βCjΦjiB
Φ
i F i 6 δ + βCjΦj,0x(0) + βCjDΦ

j ,

N∑
i=1

βEN ΦNiB
Φ
i F i 6 ν − βEN ΦN,0x0 − βEN DΦ

j − βCN DN ,

−
N∑

i=1

βEN ΦNiB
Φ
i F i 6 ν + βEN ΦN,0x0 + βEN DΦ

j + βCN DN ,

(26)
with β being either [0 1 0] or [0 0 1]. The discretisation

of the SK requirements are rewritten in matrix format as:
BsF̄ 6 d− Bxx(0)−Bc,

−BsF̄ 6 d+ Bxx(0) + Bc,

GsF̄ 6 υ − Gxx(0)− Gc,

−GsF̄ 6 υ + Gxx(0) + Gc,

(27)

where F̄ = [F t
1, . . . ,F

t
N ]t. With the transformation of

the thrusters operational constraints of Section 2.2.2 and
the previous discretisation of the dynamics equation, it
is possible to use an integer programming formulation to
solve the minimum fuel SK problem.

3.3 Actuators Constraints and Integer Programming

Considering that the parameter vectors Fi are composed
of binary variables si (cf. (19)), the constraint (b) is
expressed as:

∀i, (s1)i + (s2)i + (s3)i + (s4)i 6 1. (28)

Constraint (c) is satisfied by definition of the control
parametrization. In order to express constraints (d) and
(e), an auxiliary binary variable γ ∈ {0, 1}N is used and is
defined as:

∀i, (s1)i + (s2)i + (s3)i + (s4)i = γi. (29)
The variable γi expresses the fact that one of the four
thrusters is firing on interval [τi, τi+1]. If γi = 0, all
thrusters are off. Thanks to γ, the constraint (d) reads:
∀k = 1, . . . ,m, ∀i = 1, . . . , N − k − 1, ∀l = 1, . . . , 4,
(sl)i+k + (sl)i + γi − γi+1 6 2,

(30)
and the constraint (e) is given by:
∀i = 1, . . . , N − 1, ∀l = 1, . . . , 4, (sl)i+1 − (sl)i + γi 6 1.

(31)

The fuel-consumption is expressed with the control profile
S by:

Js =
N∑
i=1

[1 1 1 1]F i, (32)

and the final SK linear integer programming problem is
defined by:



min
(sl)i,γi

Js =
N∑
i=1

[1 1 1 1]F i

s.t.



BsF̄ 6 d− Bxx(0)− Bc,
−BsF̄ 6 d+ Bxx(0) + Bc,
GsF̄ 6 υ − Gxx(0)− Gc
−GsF̄ 6 υ + Gxx(0) + Gc,
(s1)i + (s2)i + (s3)i + (s4)i 6 1,
(s1)i + (s2)i + (s3)i + (s4)i = γi,

(sl)i+k + (sl)i + γi − γi+1 6 2,
(sl)i+1 − (sl)i + γi 6 1.

(33)

4. NUMERICAL RESULTS

In this section, simulation results obtained with the pro-
posed methodology are presented. Let us consider a satel-
lite of mass 4850 kg equipped with 4 electric thrusters
oriented in the directions North-East, North-West, South-
East and South-West. This satellite has to be controlled
in order to remain close to its geostationary position at
a fixed longitude λ̄ and a fixed latitude ϕ̄ = 0. The SK
problem has been solved with Gurobi (see Gu et al. (2010))
and the Matlab parser Yalmip (see Löfberg (2004)) for a
time horizon T = 1 week. The initial relative geographical
position is y(0) = [0 0.03◦ −0.04◦]t and the relative initial
geographical velocity is ẏ(0) = [0 0 0]t.

The benefits of the constraints on the geographical vari-
ables derivatives in the integer formulation (33) are
checked by solving the SK problem on one hand with the
final constraint on the geographical variables derivatives
and on the second hand without the final velocity con-
straints. On Figure 1 and 2, the geographical positions for
two cases defined above are drawn. It is clear that these
differences in the design have a high impact on the final
trajectory, as well as on the control profile (see Figure 3).

In order to perform the station keeping one week after
another, the position in the SK window at the end of a
week is used as the initial position for the following one.
If the constraints on the geographical variables derivatives
at that time are not included in the optimisation stage,
the satellite trajectory may end near the boundary of
the SK window with an outward pointing velocity, so
that the optimisation problem can be infeasible the week
after. For the above initial conditions, this phenomenon
occurs at week 3. If the constraints on the derivatives of
the geographical parameters at the final time are added,
the station keeping problem can be solved week after
week, but the price to pay is a fuel consumption increase
by three times. With the integer formulation of the SK
problem, final velocity constraints are much easily handled
than with the Pontryagin Maximum Principle involved
in Gazzino et al. (2016). Therefore, it is much simpler
to optimise over several weeks with the proposed linear
integer programming formulation.

It is possible to find in the literature some rules of thumb
for geostationary SK strategies, in particular in Campan
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Fig. 1. Relative geographical position.
– : with final constraint on the geographical variables
derivatives.
– : without final constraint on the geographical vari-
ables derivatives.
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Fig. 2. Station Keeping window.
– : with final constraint on the geographical variables
derivatives.
– : without final constraint on the geographical vari-
ables derivatives.

et al. (1995), Soop (1994) and Sidi (1997). In these
references, the effect of the perturbing forces on the orbit is
studied, and some general SK laws are derived. The North-
South effect of the Sun and the Moon attractions are the
most pregnant forces and these forces must be corrected
each half orbit, once in the North direction and half an
orbit later in the South direction. The East-West drift is
meanwhile corrected by setting different thrust durations
for each thrusters. This SK strategy was usefully used in
an industrial context by Anzel (1995). The control profile
of Figure 3 shows that the two South thrusters have a
thrust at the beginning of each day, and the two North
thrusters have a thrust half a day later. On the control
profile, the thrusts have always different durations in
order to compensate for the East-West drift. The physical
rule of thumb can thus be recovered from a systematic
optimisation process.
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Fig. 3. Control profiles.
– : with final constraint on the geographical variables
derivatives.
- - : without final constraint on the geographical
variables derivatives.

5. CONCLUSION

In this paper, the optimal control formulation of the min-
imum fuel station keeping problem has been transformed
into a linear integer programming problem to cope with
the on-off characteristics of the electrical thrusters and var-
ious operational constraints. The methodology has been
illustrated with an example that highlights the interest of
constraining the derivative of the geographical variable at
the final moment of the optimisation horizon in order to
prevent the satellite to fly out the station keeping window.
The optimal SK strategy based on an optimisation method
that could be derived in this paper matches the general
rules of the literature for station keeping that have been
derived by analysing the physical effect of the disturbing
forces on the satellite orbit. The transition matrices used
to build up the linear integer programming problem have
been obtained under zero-holder assumption. However,
in order to improve the accuracy of our results, further
investigations have to be made to provide either closed-
form expression or numerically certified approximations
for the linearised dynamic.

REFERENCES

Antsaklis, P.J. (2003). Linear Systems. Cambridge
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