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Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra

Introduction

Integration of polynomial functions over arbitrarily-shaped polygons or polyhedra is required in computational methods such as extended finite elements [START_REF] Fries | The extended/generalized finite element method: An overview of the method and its applications[END_REF], embedded interface methods [START_REF] Sudhakar | An accurate, robust, and easy-to-implement method for integration over arbitrary polyhedra: Application to embedded interface methods[END_REF][START_REF] Sudhakar | Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods[END_REF][START_REF] Schillinger | The finite cell method: A review in the context of higher-order structural analysis of CAD and imagebased geometric models[END_REF], virtual element method [START_REF] Beirao Da Veiga | Basic principles of virtual element methods[END_REF], and the weak Galerkin method [START_REF] Chen | Equivalence of weak Galerkin methods and virtual element methods for elliptic equations[END_REF] to name a few. In these applications, accurate and efficient numerical integration techniques are needed.

For integrating functions over arbitrary polytopes, three general approaches have been employed: (i) tessellation of the domain into simplices; (ii) application of generalized Stokes's theorem to reduce the volume integral to a surface integral; and (iii) use of moment fitting methods. Tessellation requires partitioning the domain into smaller subdomains (usually simplices), and then performing numerical integration over the subdomains. The generalized Stokes's theorem (Gauss's divergence theorem) converts integration over the domain into integration over the boundary of the domain, but often requires the integrand to be predefined, or requires symbolic computations. Moment fitting methods solve a linear system of equations to build a cubature rule over the domain to integrate a given set of basis functions. For further details on these three approaches, the interested reader can refer to Sudhakar et al. [START_REF] Sudhakar | Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods[END_REF].

A technique for integrating arbitrary polynomial functions over convex polytopes was presented by Mousavi and Sukumar [START_REF] Mousavi | Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons[END_REF]. This method uses the properties of homogeneous functions to simplify integration over a d-dimensional arbitrary polytope to integration over the (d-1)-dimensional faces of the polytope. In Reference [START_REF] Mousavi | Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons[END_REF], cubature rules for polygons and polyhedra are constructed. However, these rules were only applied to convex polytopes, a limitation that was also noted in Reference [START_REF] Sudhakar | An accurate, robust, and easy-to-implement method for integration over arbitrary polyhedra: Application to embedded interface methods[END_REF]. Cubature rules that are applicable to both convex and nonconvex polytopes are desirable, and in this contribution we extend Lasserre's approach to nonconvex polytopes.

In this paper, we demonstrate that the method developed by Lasserre [START_REF] Lasserre | Integration on a convex polytope[END_REF] for integrating homogeneous polynomials is also valid for nonconvex polytopes, provided a precise definition of the polytope is given. This definition of the domain of the polytope in fact broadens the utility of the method, and we provide examples that illustrate its use to integrate homogeneous functions over a range of convex and nonconvex polygons and polyhedra. Through recursive application of Lasserre's method, we show that exact integration of homogeneous polynomials over arbitrary polytopes can be reduced to evaluation of the polynomial and its partial derivatives at the vertices of the polytope. The methods developed in this paper can be used to devise cubature rules, such as the ones constructed in Reference [START_REF] Mousavi | Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons[END_REF] and also elsewhere.

The remainder of this paper is organized as follows. In the following section, we establish the validity of the method described in Reference [START_REF] Lasserre | Integration on a convex polytope[END_REF] for nonconvex polytopes. In Section 3, we discuss three particular extensions of this method. Specifically, in Section 3.1, we extend the method to reduce integration to function evaluation at vertices; in Section 3.2, we consider the integration of homogeneous functions over domains bounded by polar curves; and in Section 3.3, we treat the integration of weakly singular integrands and discontinuous integrands in polar coordinates over polygons. In Section 4, we provide an efficient algorithm to implement the above methods. Several numerical examples that demonstrate the accuracy and versatility of the new method are presented in Section 5, and we close with some final remarks in Section 6.

Integration of polynomials over arbitrary polytopes

Consider a closed polytope P ⊂ IR d on an orientable manifold whose boundary is denoted by ∂P . The boundary ∂P is defined by m (d -1)-dimensional boundary facets F i , where F i ⊂ a T i x = b i for some vectors a i and b. This definition is broader than the one used in Reference [START_REF] Lasserre | Integration on a convex polytope[END_REF], since it now includes nonconvex polytopes. In comparison, a convex polytope is defined by Ax ≤ b for a matrix A of dimensions m × d, and a vector b of length m. As illustrated in Figure 1, this definition is no longer valid for nonconvex polytopes, since it will erroneously include or exclude parts of the polytope P .

We wish to integrate a polynomial function, g(x), over a polytope P , i.e.,

I = P g(x) dx. (1) 
For this purpose, we introduce the generalized Stokes's theorem, which can be stated as (see Reference [START_REF] Taylor | Partial Differential Equations: Basic Theory[END_REF]):

P (∇ • X) f (x) dx + P X, ∇f (x) dx = ∂P X, n f (x) dσ. (2) 
In ( 2 vector field X := x, one obtains

d P dx = m i=1 Fi x, a i a i dσ = m i=1 b i a i Fi dσ, (3) 
where dσ is the Lebesgue measure on the (d-1)-dimensional affine variety1 that contains the facet F i . The formula (3), which first appeared in Reference [START_REF] Lasserre | An analytical expression and an algorithm for the volume of a convex polyhedron in IR n[END_REF], relates the volume of a polytope to the (d -1)-dimensional volume of its boundary, the collection of all boundary facets F i , i = 1, . . . , m.

Geometrically, each term of the summation can be thought of as the volume of a simplex emanating from the origin to the boundary facet, F i . In (3), b i and a i are related by a T i x = b i , the equation of the hyperplane in which F i lies. Furthermore, the normal to the hyperplane is: n = a i / a i . This is readily verified by normalizing the gradient of a T i x, which is in the direction that is perpendicular to the isocontours of a T i x. Let f (x) be a positively homogeneous function of degree q that is continuously differentiable:

f (λx) = λ q f (x) (λ > 0), (4) 
which satisfies Euler's homogeneous function theorem:

qf (x) = < ∇f (x), x > ∀x ∈ IR d . (5) 
Note that for functions with degree of homogeneity q < 0, the validity of ( 5) is for x ∈ IR d \{0}. For a homogeneous function f and X := x, (2) yields

d P f (x) dx + P ∇f (x), x dx = m i=1 b i a i Fi f (x) dσ. (6) 
On invoking Euler's theorem given in ( 5), ( 6) simplifies to

P f (x) dx = 1 d + q m i=1 b i a i Fi f (x) dσ. (7) 
Equation ( 7) relates integration of a positively homogeneous, continuously differentiable function f (x) over a polytope in IR d to integration of the same function over the polytope's (d -1)-dimensional boundary, ∂P . This equation appears in Reference [START_REF] Lasserre | Integration on a convex polytope[END_REF]; however, the proof therein was only valid for convex polytopes. Here, the equation applies for both convex and nonconvex polytopes, provided P is defined by its boundary facets.

The method can be extended to arbitrary polynomial functions by decomposing such a function into a collection of homogeneous polynomials, then integrating each one. More formally, consider g(x) to be a polynomial of highest degree q, i.e., g(x) := q j=0 fj (x) = f0 (x) + . . . + fq (x), where fj (x) is a homogeneous polynomial of degree j. If a polynomial contains no terms of degree j, we simply have fj (x) = 0. Now, selecting X := x and f (x) := g(x), (2

) becomes P g(x) dx = q j=0 1 d + j m i=1 b i a i Fi fj (x) dσ. (8) 
3 Extensions of Lasserre's method

Integration on facets of lower dimensions

We further reduce the integration of Fi f (x) dσ through application of Stokes's theorem. We define

F ij := F i ∩ F j for j = i. H ij is the (d -2)
-dimensional variety that is the intersection of H i and H j , and n ij is the d-dimensional unit vector that lies in H i and is normal to F ij . Now,

x := x 0 + d-1 i=1 x i e i (9) 
is a point in IR d that lies in H i . In (9), x 0 ∈ H i is an arbitrary point (serves as the origin) that satisfies a T i x 0 = b i , and {e i } d-1

i=1 form an orthonormal basis on the (d -1)dimensional subspace H i . Note that the divergence of x (restricted to H i ) is d -1. For a homogeneous function f (x) and choosing the vector field

X := x -x 0 = d-1 i=1 x i e i , (2) becomes (d -1) Fi f (x) dσ + q Fi f (x) dσ = i =j Fij x -x 0 , n ij f (x) dν + Fi ∇f (x), x 0 dσ.
Let d ij := xx 0 , n ij be the algebraic distance from x 0 to H ij . Then, the above equation simplifies to 

f (x) dσ = 1 d + q -1 i =j Fij d ij f (x) dν + Fi ∇f (x), x 0 dσ . (10)
Equation [START_REF] Lasserre | An analytical expression and an algorithm for the volume of a convex polyhedron in IR n[END_REF] appears in Reference [START_REF] Lasserre | Integration on a convex polytope[END_REF]; however, here it is shown to be valid for both convex and nonconvex polytopes. When f (x) is a polynomial, (10) can be applied recursively to reduce integration over the polytope to evaluations of f (x) and its partial derivatives at the vertices. A simple example demonstrating this reduction is provided in Section 5.

In [START_REF] Lasserre | An analytical expression and an algorithm for the volume of a convex polyhedron in IR n[END_REF], the choice of x 0 ∈ H i is arbitrary. However, careful selection of x 0 can reduce the number of function evaluations that are required. For example, consider the function f (x) = x 100 y defined in IR 2 . If F i is not parallel to the y-axis, choosing x 0 such that it lies at the intersection of H i and x = 0 greatly reduces the number of partial derivatives that need to be taken.

Combining [START_REF] Lasserre | An analytical expression and an algorithm for the volume of a convex polyhedron in IR n[END_REF] with [START_REF] Mousavi | Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons[END_REF], we can write down an explicit formula for the volume of a polytope in terms of the locations of its vertices. In 2D, this formula is:

P f (x) dx = 1 2 m i=1 b i a i j =i d ij . (11) 
Geometrically, j =i d ij is the length of the boundary edge, F i , and b i / a i is the algebraic distance (can be positive or negative) from the origin to H i . Therefore, the summation can be thought of as a set of triangles, of positive and negative areas, emanating from the origin to the boundary edges. In 3D, the volume formula is:

P f (x) dx = 1 3 m i=1 b i a i 1 2 j =i d ij k =i,k =j d ijk , (12) 
where

k =i,k =j d ijk = length of F ij , 1 2 j =i d ij k =i,k =j d ijk = area of F i .
Equation ( 12) can be viewed as the sum of volumes of tetrahedrons, of positive and negative volumes, emanating from the origin to the boundary facets. Let α = (α 1 , α 2 , . . . , α n ) be an n-tuple of nonnegative integers with absolute value |α| = α 1 + . . . + α n . Let D be the differential operator in multiindex notation. We can use [START_REF] Lasserre | An analytical expression and an algorithm for the volume of a convex polyhedron in IR n[END_REF] with [START_REF] Mousavi | Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons[END_REF] to generate a closed-form expression for the integral of f (x) over P . For example, we have the following formula in 2D:

P f (x) dx = m i=1 b i a i j =i d ij I(v ij ), (13a) 
where

I(v ij ) := q k=0 k! (q + 2)! Q k (v ij ), (13b) 
Q k (v ij ) := d |α|=q-k D |α| f (v ij ). (13c) 
In ( 13), v ij is the location of the vertex of the polygon that coincides with H ij . Also, when k = q, the final summation reduces to just the evaluation of the function f (x) at v ij . Equation ( 13), which is valid for homogeneous polynomials of degree q, can be used as a cubature formula or for integrating homogeneous functions of degree q that are nonpolynomial and are differentiable at least q times. Note that this cubature is canonical in the sense that it only requires evaluations at vertices of the polygon, whereas cubature rules for polygons are specific to each particular polygon.

While the method described here provides a simple, and appealing route to reduce integration to lower-dimensional facets, it is not the only way to accomplish this task. An alternative geometric method to reduce integration to pointevaluations at the vertices of the polytope is presented in the Appendix.

Integration of homogeneous functions over domains bounded by polar curves

In Reference [START_REF] Lasserre | Integration and homogeneous functions[END_REF], a formula is derived that reduces integration of a homogeneous function over a d-dimensional region to an integral over its (d-1)-dimensional boundary surfaces, where the surfaces are described by homogeneous functions. Here, we provide a few extensions of this approach for polar curves and for homogeneous functions in polar form.

Consider a closed region V ∈ IR d bounded by m (d-1)dimensional surfaces, A i , which are described by the functions h i (x) = b i , with h i (x) being a homogeneous function of degree p i . We wish to integrate f (x), a homogeneous function of degree q, over V . Applying (2) to the integral with X := x, we obtain [START_REF] Lasserre | Integration and homogeneous functions[END_REF]

] V f (x) dx = 1 d + q m i=1 Ai ∇h i ∇h i , x f (x) dσ. ( 14 
)
Using the homogeneity of h i (x), we can simplify this to

V f (x) dx = 1 d + q m i=1 p i b i Ai ∇h i -1 f (x) dσ. ( 15 
)
This result can be extended to a region bounded by curves, each of which can be expressed as a linear combination of homogeneous functions (for example, polynomials). First, we define ĥi

(x) = n j=1 h (j) i (x) = b i , where ĥi (x) is a linear combination of n homogeneous polynomials, h (j) i (x). The function h (j) i (x) is homogeneous with degree p (j)
i . Now, the result in [START_REF] Beatty | Vector analysis of finite rigid rotations[END_REF] can be generalized to

V f (x) dx = 1 d + q m i=1 Ai ∇ ĥi -1 f (x) n j=1 p (j) i h (j) i (x) dσ. ( 16 
)
In IR 2 , it may be the case that f (x) is more conveniently represented in polar coordinates. An example in fracture mechanics is when f (x) represents elastic stresses in the vicinity of a crack-tip -stresses are proportional to 1/ √ r, where r = x 2 + y 2 represents the distance from the crack-tip. Note that the function f (x) is homogeneous with degree q = -1 2 . Even though the function is homogeneous, the method described in Section 3.1 is not exact since the partial derivatives of the function do not eventually vanish. As a result, we compute the one-dimensional line integrals in [START_REF] Mousavi | Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons[END_REF] using Gauss quadrature. In this section, we present a method to convert line integrals of this type to polar coordinates. After applying this transformation, the convergence rate is shown to improve for weakly singular integrands when compared to using quadrature on the Cartesian integral.

Consider a region in IR 2 that is defined by the polar curves r = H i (θ). This curve can be described as the linear combination of two homogeneous functions:

ĥi (r, θ) = r -H i (θ) = 0.
The gradient (in polar coordinates) of this function is

∇ ĥi (r, θ) = 1, - 1 r dH i (θ) dθ .
On setting h

(1) i := r and h

(2) i := -H(θ) with p (1) i = 1 and p (2) i = 0, respectively, one can use (16) to obtain V f (x) dx = 1 2 + q m i=1 Ai rf x(θ) r, dHi(θ) dθ 1 r r, -dHi(θ) dθ dθ,
where dσ = ∇ ĥi (r, θ)r dθ is the differential of the arclength in terms of θ. Since r = H i (θ), the above equation simplifies to

V f (x) dx = 1 2 + q m i=1 β α H 2 i (θ)f x(θ) dθ, (17) 
where θ ∈ [α, β] defines the polar curve and f x(θ) represents f (x) parameterized in terms of θ.

Equation (17) allows very accurate integration over regions whose boundary facets are described by equations of the form r = H i (θ) where H i (θ) can be any function given in terms of θ. The utility of ( 17) is demonstrated with the evaluation of the following integral:

I = A f (r, θ) dxdy, f (r, θ) = 1 √ r , (18a) 
where the region A (see Figure 2) is given by

A := r ∈ [0, 1], θ ∈ [0, π/2] . (18b) 
Direct integration yields the exact value: I = π 3 . Note that the function f (r, θ) becomes singular at one of the vertices of the region A. The integral is also calculated using (17) on its three boundary facets. Since b i = 0 on the two boundary facets that intersect the origin, the only nonzero contribution comes from the boundary facet r = 1. Therefore, on applying (17) to this problem, we obtain:

A 1 √ r dxdy = 2 3 π/2 0 dθ.
Since the integrand only contains a constant, one-point Gauss quadrature produces a result that is accurate to machine precision. The previous example, while illustrative, produced a rather trivial result. Therefore, we will also consider an example over a more complex polar region. Here, we will integrate

I = A f (r, θ) dxdy, f (r, θ) = 1 r (19a)
over the region A (see Figure 3), which is given by

A := {r ∈ [0, 1], θ ∈ [π/4, π/2] : r ≥ cos θ, r ≤ sin θ, θ ≤ π/2}. (19b) 
Direct integration yields I = √ 2 -1. The function 1/r is homogeneous with degree q = -1. As with the previous example, a singularity is present at one of the vertices of the domain. Applying (17) to this example simplifies integration to

A 1 r dxdy = π/2 π/4
(sin θ -cos θ) dθ.

Using a six-point Gauss rule to compute the one-dimensional integral on the right-hand side results in a relative error of 10 -15 . The plot of the relative error as a function of the number of Gauss points is shown in Figure 3.

Integration of homogeneous functions in polar form on polygons

In the previous section, we limited the boundary of polar regions to the equation r = H i (θ). At first glance, this may seem to limit the utility of (17). However, we demonstrate in this section that this representation for the boundary of a polar region can describe any polygon in IR 

where Ĥi (θ) = a i , {cos θ, sin θ} . This polar representation of a line is of the form introduced in Section ??, namely r = H i (θ). Replacing (20) in (17) one obtains

P f (x) dxdy = 1 2 + q m i=1 b 2 i β α f x(θ) Ĥ2 i (θ) dθ, (21) 
where α = tan -1 y1 x1 , β = tan -1 y2 x2 , and (x 1 , y 1 ) and (x 2 , y 2 ) are the vertices that lie in the domain of the boundary facet (in Cartesian coordinates). Note that if we have

f (r) = r q ≡ f (θ) = b i / Ĥi (θ) q (q > -2 in IR 2 ),
then (21) simplifies to

P f (x) dxdy = 1 2 + q m i=1 b q+2 i β α 1 Ĥq+2 i (θ) dθ. ( 22 
)
For this technique, Gauss cubature is tested for three different functions. In the first two cases, the weakly singular integrands f (r) = r -1 and f (r) = r -1/2 are integrated over hexagonal and square domains. In the third 2 . For all cases, results using cubature on the polar transformed integral given in ( 22) are compared to cubature on the untransformed Cartesian integral given in [START_REF] Mousavi | Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons[END_REF] and to tensor-product cubature, where possible.

First, we apply Gauss cubature on (22) to integrate f (r) = r -1 and f (r) = r -1/2 over a regular hexagon inscribed inside a unit circle centered at the origin. These functions are unbounded at the origin, but the integrals are finite and continuous, and are referred to as being weakly singular. Results are compared to those obtained using Gauss cubature on [START_REF] Mousavi | Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons[END_REF]. As presented in Figure 4, Gauss cubature on the polar transformed integral converges more quickly than than cubature performed on [START_REF] Mousavi | Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons[END_REF].

Next, we apply cubature of these integrals to a bi-unit square centered at the origin. In this case, we are able to compare cubature using the techniques in this paper to tensorproduct cubature. For tensor-product cubature, the domain is subdivided into four squares in each quadrant to ensure all sampling points are of finite value. While cubature on the polar integral is able to obtain precision on the order of 10 -14 with about 55 cubature points in both cases, cubature on the Cartesian integral requires up to 75 cubature points to realize the same accuracy. Full tensor-product cubature is carried out with over 10 4 cubature points and is only accurate to 10 -3 for f (r) = 1/r. Results are presented in Figure 5. 2 is demonstrated over the biunit square centered at x, y = (0.5, 0.5). The discontinuity in the function is treated as two additional boundary facets, and therefore, the entire domain is viewed as a nonconvex polygon with seven sides. This decomposition is demonstrated in Figure 6a. Since the tensor-product cubature points do not coincide with the location of the singularity in this case, the domain does not require subdivision. As with the previous two cases, integration of the polar transformed version of the integral provides the best results. A complete set of results for this case are plotted in Figure 6b.

Numerical implementation

In this section, we describe an algorithm to implement the methods detailed in Section 2 and 3.1. The assumed inputs of this algorithm are the vertices of a polytope (given in Cartesian coordinates), the connectivity of the vertices in the polytope that define the boundary facets, and the polynomial function to integrate. The output is the integral of the polynomial function over the polytope.

Algorithms 1 and 2 contain pseudocode that implements the methods and equations described in Section 2 and 3.1, respectively. Lines of pseudocode without an explicit assignment operator refer to functions that carry out the calculations described. Since implementation of the majority of these functions is straightforward, for the most part, they are not detailed in this paper. Fig. 4: Error in numerical integration of weakly singular functions over a regular hexagon that is inscribed within the unit circle. (a) f (r) = r -1 ; and (b) f (r) = r -1/2 . In both plots, the dotted line with triangular markers represents cubature error with the Cartesian integral, whereas the solid line with circular markers represents cubature error for the polar integral. 2 over a biunit square centered at x, y = (0.5, 0.5). P , F i , and f (r, θ) (shaded in grey) are plotted in (a) and the error in numerical integration from three different methods is shown in (b) (see Figure 5 for a description). Note in (a) that f (r, θ) is discontinuous at y = 0 ∩ x < 0 and becomes unbounded at the origin.

One function whose implementation is not obvious is the function to calculate a i and b i from the vertices of the hyperplane. These quantities must be calculated such that the normal is oriented outward from the polytope. A simple method to do this is to ensure that the vertices of the polytope are given in counterclockwise orientation when standing outside the polytope. Then, we calculate a i and b i using the equation

det x 1 x 2 . . . x d 1 x 11 x 12 . . . x 1d 1 x 21 x 22 . . . x 2d 1 . . . . . . . . . . . . . . . x d1 x d2 . . . x dd 1 = 0, (23) 
where x ij is the j-th coordinate of the i-th vertex of d linearly independent vertices that lie in the hyperplane of interest. The determinant gives a i1 x 1 + a i2 x 2 • • • + a id x d = b i with the proper orientation.

Results

The implementation described in Section 4 is applied to a wide variety of test problems to demonstrate its versatility and ability to accurately and efficiently integrate polynomial functions. A selection of these test problems are presented in Algorithm 1 Integration of polynomial over arbitrary polytope using method of Section 2

Determine the dimension, d, of the polytope Determine m, the number of hyperplanes for i = 1 to m do Calculate a i and b i for the m hyperplanes end for Break f (x) into q homogeneous polynomials Int ← 0 for j = 1 to q do h ← 0

for i = 1 to m do g ← Call Alg. 2 with a i , b i , d -1 and f j (x) h ← h + b i / a i × g end for h ← h/(d + j) Int ← Int + h end for return Int
this section. First, we will demonstrate the method in Section 3 for a simple convex polygon. Then, we will apply our algorithm to more complicated shapes in Sections 5.3 through 5.5. Results are verified with LattE integrale 1.7.2 [START_REF] Baldoni | A User's Guide for LattE integrale v1.7.2[END_REF], a code capable of generating exact, fractional expressions for integrals of polynomials over convex polytopes [START_REF] Baldoni | How to integrate polynomials over simplices[END_REF][START_REF] De Loera | Software for exact integration of polynomials over polyhedra[END_REF]. Positive and negative areas in (e) and (f) are represented by the (+) and (-) symbols, respectively. (g), (h), and (i) represent polyhedra with (h) and (i) being nonconvex. In cases (a) -(f), the homogeneous polynomial x 2 + xy + y 2 is integrated over the polygon. In cases (g) -(i), the homogeneous polynomial x 2 + xy + y 2 + z 2 is integrated over the polyhedron.

Algorithm 2 Futher reduction of integration using method of Section 3

Require: a i , b i , d and f (x) g ← 0 Determine x 0 from a i and b i Determine x and d, the specific variables and number of variables present in f j (x)

for i = 1 to d do Calculate ∂f (x) ∂ xi g ← g + Call Alg. 2 with a i , b i , d and (x 0 ) i ∂f (x) ∂ xi end for for j = 1 to m do if F i ∩ F j = ∅ then Calculate d ij if F ij = v ij then Determine if F ij is a vertex g ← g + d ij f (v ij ) else g ← g + Call Alg. 2 with a i , b i , d -1 and d ij f (x) end if end if end for return g

Illustrative example

First, we apply our method to the integration of a homogeneous polynomial over a two-dimensional triangle. In this simple case, direct integration is carried out and compared to the result from our approach.

Consider the evaluation of the following two-dimensional integral:

I = P xy dxdy (24a)
over the triangle described by

P := (x, y) ∈ IR 2 | x + y ≤ 2, x ≥ y, x ≥ 0 . ( 24b 
)
Direct integration gives the exact result: I = 1/3. On setting

F 1 := P ∩ {x + y ≤ 2}, we have b 1 a 1 F1 xy dµ = √ 2 F1 xy dµ.
Selecting x 0 = (2, 0) and using [START_REF] Lasserre | An analytical expression and an algorithm for the volume of a convex polyhedron in IR n[END_REF], the integration over

F 1 reduces to √ 2 F1 xy dµ = √ 2 2 + 2 -1 √ 2 + 2 Fi y dµ .
On reapplying [START_REF] Lasserre | An analytical expression and an algorithm for the volume of a convex polyhedron in IR n[END_REF], we obtain

√ 2 F1 xy dµ = √ 2 3 √ 2 + 2 2 + 2 -2 √ 2 = 4 3 .
Now, set F 2 := P ∩ {x ≥ y} and F 3 := P ∩ {x ≥ 0}. For both of these hyperplanes, b i / a i = 0. Therefore, on applying [START_REF] Mousavi | Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons[END_REF], we get

I = 1 2 + 2 4 3 = 1 3 ,
which matches the exact value of the integral. We apply our algorithm to a variety of convex polygons, and compare our numerical results to exact results from LattE. Random 2D polygons are constructed using a random number generator. The number of facets is first decided by generating a random integer between 3 and 10. Then random points are selected within (-5, 5) × (-5, 5) ⊂ IR 2 . These random points are truncated at the thousands place to allow for fractional representation in LattE. The points are verified to form a convex polygon, then Algorithms 1 and 2 are executed for the homogeneous polynomial x 2 + xy + y 2 . Here, we provide results for two different polygons, which are shown in Figures 7a and7b. The vertices of the polygons are listed in Table 1.

Application to convex polygons

To verify the accuracy of our method, we invoke the Symbolic Math Toolbox as part of MATLAB R2014a TM , which allows for exact calculation of these integrals using our algorithm. Results from integrating these polygons are listed in Table 3, along with exact results from LattE. For both test cases, our results exactly match those obtained using LattE.

Application to simple nonconvex polygons

Next, we apply our algorithm to a variety of simple (nonintersecting) nonconvex polygons, and compare our numerical results to exact results from LattE. Random 2D, simple, nonconvex polygons are generated similarly to those in Section 5.2, then Algorithms 1 and 2 are executed for the homogeneous polynomial x 2 + xy + y 2 . Results are demonstrated for two different polygons, illustrated in Figures 7a and7b. The vertices of the polygons are listed in Table 1.

Results from integration using the MATLAB Symbolic Math Toolbox and exact integration from LattE are listed in Table 3. Since LattE is only capable of integration on convex polytopes, our nonconvex polygons are integrated in LattE by decomposing the nonconvex polygon into an identical collection of convex polygons, performing integration on these polygons, then summing the results. No error is introduced by this decomposition since results from LattE are exact. For both test cases, our results exactly match those obtained using LattE.

Application to nonsimple nonconvex polygons

Our approach is also able to handle integration of nonconvex polygons where the boundary facets are intersecting, provided we define positive and negative areas of the polygon. Negative areas of the polygon are defined by a region of the polygon which has been intersected by boundary facets an odd number of times. Positive areas are defined by the areas which have not been intersected and areas which have been intersected an even number of times. In this section, we provide two examples that demonstrate this capability.

The three polygons are developed analogously to those in Section 5.3 and run with the same homogeneous polynomial. These polygons, along with definitions of positive and negative areas on them, are shown in Figures 7c and7d. The vertices of these polygons are listed in Table 1. As with the convex polygons and the simple nonconvex polygons, the results (listed in Table 3) exactly match those obtained using LattE.

Application to nonconvex polyhedra

Finally, our algorithm was applied to a range of different convex and nonconvex polyhedra. The test cases presented here include a cube, a concave polyhedron consisting of a cube with a notch removed from it, and a tetrahedron with a tetrahedron carved from a face to make the polyhedron nonconvex. Rather than selecting random vertices and boundary facets as was done in Sections 5.3 and 5.4, we chose to manually select the vertices of this polyhedron. The vertices of these polyhedra are listed in Table 2 and illustrations are provided in Figures 7g,7h, and 7i. The homogeneous polynomial x 2 + xy + y 2 + z 2 is integrated over the polyhedra. As demonstrated in Table 3, present results matched exactly those produced in LattE.

Table 3: Results of integrating a homogeneous polynomial over the polytopes shown in Figure 7 using LattE [START_REF] Baldoni | A User's Guide for LattE integrale v1.7.2[END_REF] and the present method.

Polytope in Fig. 7 Exact Result [START_REF] Baldoni | A User's Guide for LattE integrale v1.7.2[END_REF] Present Method (i) 37 960 37 960

Integration of arbitrary polynomials

While the methods introduced in the previous sections are of great utility when the integrand is known explicitly, often times the integrand is not known, and can only be evaluated at points within the domain. To handle this situation, Mousavi and Sukumar [START_REF] Mousavi | Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons[END_REF] developed a method to integrate arbitrary, unknown polynomials up to degree q by taking advantage of the properties of homogeneous functions and solving a small system of linear equations. Here, we demonstrate the method is equally valid for both convex and nonconvex polytopes. Integrating a polynomial using [START_REF] Lasserre | Integration on a convex polytope[END_REF] requires the polynomial to be known a priori. However, simple manipulation of (8) leads to q j=0 (d + j)

P fj (x) dx = m i=1 b i a i Fi q j=0 fj (x) dσ. (25) Note that P g(x) dx = q j=0 P fj (x) dx (26)
gives the quantity of interest. The integral Fi q j=0 fj (x) dσ can also be computed using Gauss quadrature by sampling points within the domain F i , i.e., without knowing the integrand explicitly. Thus, the right side of (25) can be evaluated for any arbitrary polynomial, provided sufficient number of quadrature points are used. Noting that homogeneous functions of degree q have the property f (λx) = λ q f (x), we can manipulate (25) to obtain

q j=0 λ j (d + j)I j = Q(λ), (27a) 
where

I j := P fj (x) dx, (27b) 
Q(λ) := m i=1 b i a i Fi q j=0 fj (λx) dσ. (27c) 
This provides an arbitrary number of equations that are formed by varying the value of λ. As before, the right side of the equation can be evaluated through sampling points within F i . Choosing q + 1 values of λ results in a (q + 1) × (q + 1) system of equations that can be used to solve each term of (26), without explicitly knowing each term, fj (x). On choosing q + 1 distinct values for λ, we can write (27) as

q j=0 λ j k (d + j)I j = Q(λ k ) (28) 
for k = 1, . . . , q + 1. This approach is used to integrate the polynomial f (x) = x 3 + xy 2 + y 2 + x over the polygons shown in Figure 7a and Figure 7c. The polynomial f (x) contains monomials up to degree three. Therefore, the integral of each monomial can be determined through the solution of a 4 × 4 linear system, defined by (28). We choose λ = (0.25, 0.5, 0.75, 1) to compute the 4 × 4 system matrix and to determine the location of the quadrature points within the domain of the boundary facets.

With this choice of λ for the polygon shown in Figure 7a Using (26), we calculate P g(x) dx ≈ -472.105. This result matches integration of the monomials using [START_REF] Lasserre | Integration on a convex polytope[END_REF].

            I 1 I 2 I 3 I 4       =       - 11550135635909446173 
For the polygon in Figure 7c, the linear system that is obtained from (28) is: 

      2 3
I 2 I 3 I 4       =       0 -22047837983 6000000000 22814962939549 4000000000000 -665155727633629793 20000000000000000       .
Summing each I k , we obtain P g(x) dx ≈ -31.229. As with the convex polygon, the result matches integration of the monomials using (8).

Concluding remarks

In this paper, we applied Euler's homogeneous function theorem and Stokes's theorem to devise a method for reducing integration of homogeneous polynomials over arbitrary convex and nonconvex polytopes to integration over the boundary facets of the polytope. Additionally, we also demonstrated that the same tools could be used to further reduce the integration if partial derivatives of the homogeneous function exist. For homogeneous polynomials, integration can ultimately be reduced to function evaluation at the vertices of the polytope.

We implemented our method and presented several numerical examples that showcased its capabilities. In addition to integrating homogeneous polynomials over irregular convex and nonconvex polytopes, we also demonstrated how the method could be applied to nonsimple nonconvex polytopes. Furthermore, we also successfully tested the approach for the integration of weakly singular functions in two dimensions over polygons with straight and curved facets. For all cases involving homogeneous polynomials that were tested, our results exactly matched the results obtained using the code LattE [START_REF] Baldoni | A User's Guide for LattE integrale v1.7.2[END_REF]. As part of future work, we plan to assess the proposed integration scheme in applications of the extended and embedded finite element methods, as well as Galerkin methods on polygons and polyhedra.

A Appendix

In this appendix, we describe an alternative method for reducing integration of homogeneous polynomials over polygons and polyhedra to lower-dimensional facets. Rather than using partial derivatives, as was done in Section 3, this method uses rotations to simplify integration over lower-dimensional facets. As with the method in Section 3, this method can be used to reduce integration to function evaluation at the vertices of the polytope.

To integrate the expression f (x) in (7) (or fj (x) in ( 8)) over the boundary facets, F i , the integral over IR d must first be transformed to an integral over H i , the hyperplane in which F i lies. This can be accomplished through applying an affine transformation of the boundary facet such that it lies normal to one of the orthonormal coordinate axes in IR d . In IR 2 and IR 3 , this transformation is completed with a simple rotation matrix applied to both the vertices of the boundary facet and to the variables in the expression f (x). Calculation of this rotation matrix in IR 3 is expedited by using Rodrigues's finite rotation formula [START_REF] Beatty | Vector analysis of finite rigid rotations[END_REF]:

R = I + ω sin θ + ω2 (1 -cos θ), ( 29 
)
where θ is the desired angle of rotation, I is the 3 × 3 identity matrix, and ω is the skew-symmetric matrix whose components are:

ω =    0 -ωz ωy ωz 0 -ωz -ωy ωx 0    , (30) 
where ω i (i = x, y, z) give the components of the unit vector ω about which the rotation occurs. This vector can be constructed for each F i by the vector cross product

ω = a i / a i × ez, ( 31 
)
where ez is a unit vector in the z-direction. When the transformation is applied to the expression f (x), it is likely that the resulting equation will no longer be a homogeneous function. Instead, it will become a polynomial that can be integrated using [START_REF] Lasserre | Integration on a convex polytope[END_REF]. Applying this procedure d times to a d-dimensional polytope reduces integration to simple evaluation at the vertices of the polytope. Algorithm 3 describes an algorithm to implement this method. The examples in Section 5 were calculated using this method, and were shown to exactly match results using the method of Section 3. An example that illustrates this method follows.

Algorithm 3 Integration of polynomial over arbitrary polytope

Determine the dimension, d, of the polytope Determine m, the number of hyperplanes Break f (x) into q homogeneous polynomials Int ← 0 for j = 1 to q do Determine the order, j, of f j (x) 

if

Fig. 1 :

 1 Fig. 1: An example of why Ax ≤ b does not define a nonconvex polytope. The cross-hatched region is defined by Ax ≤ b whereas the actual polygon is P (the grey, shaded area bounded by ∂P ).

Fi

  

Fig. 2 :

 2 Fig. 2: The region A := r ∈ [0, 1], θ ∈ [0, π/2] .

2 .

 2 The equation a T i x = b i gives the general equation of a line. Substituting x = r cos θ and y = r sin θ in the general equation of a line gives r = b i a i , {cos θ, sin θ} = b i Ĥi (θ)

Fig. 3 :

 3 Fig. 3: Example using (17) to reduce integration to the boundary of a domain. The domain of integration A, which is given in is shown in (a) and relative error of Gauss cubature is presented in (b).

Finally, cubature

  of the weakly singular, discontinuous function f (r, θ) = 1 √ r sin θ

  q = -1 2

Fig. 5 :

 5 Fig.5: Error in numerical integration of weakly singular functions over a biunit square centered at the origin. (a) f (r) = r -1 ; and (b) f (r) = r -1/2 . The polar and Cartesian integrals are displayed as in Figure4. Tensor-product cubature on the full square is shown as a thick line.
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 23456716 Fig. 6: Error in numerical integration of f (r, θ) = 1 √ r sin θ2 over a biunit square centered at x, y = (0.5, 0.5). P , F i , and f (r, θ) (shaded in grey) are plotted in (a) and the error in numerical integration from three different methods is shown in (b) (see Figure5for a description). Note in (a) that f (r, θ) is discontinuous at y = 0 ∩ x < 0 and becomes unbounded at the origin.

Fig. 7 :

 7 Fig. 7: Tests on polygons and polyhedra. (a) and (b) represent convex polygons. (c) and (d) represent simple nonconvex polygons. (e) and (f) represent non-simple nonconvex polygons.Positive and negative areas in (e) and (f) are represented by the (+) and (-) symbols, respectively. (g), (h), and (i) represent polyhedra with (h) and (i) being nonconvex. In cases (a) -(f), the homogeneous polynomial x 2 + xy + y 2 is integrated over the polygon. In cases (g) -(i), the homogeneous polynomial x 2 + xy + y 2 + z 2 is integrated over the polyhedron.

Table 1 :

 1 Vertices of polygons used as test cases.

	Polygon in Fig. 7 Vertex	x	y
		1	1.220 -0.827
		2	-1.490 -4.503
		3	-3.766 -1.622
	(a)	4	-4.240 -0.091
		5	-3.160	4.000
		6	-0.981	4.447
		7	0.132	4.027
		1	4.561	2.317
		2	1.491 -1.315
	(b)	3	-3.310 -3.164
		4	-4.845 -3.110
		5	-4.569	1.867
		1	-2.740 -1.888
	(c)	2 3	-3.292 -2.723 -0.697 4.233
		4	-0.643 -3.151
		1	0.211 -4.622
		2	-2.684	3.851
	(d)	3	0.468	4.879
		4	4.630 -1.325
		5	-0.411 -1.044
		1	-4.165 -0.832
		2	-3.668	1.568
		3	-3.266	1.279
	(e)	4 5	-1.090 -2.080 3.313 -0.683
		6	3.033 -4.845
		7	-4.395	4.840
		8	-1.007 -3.328
		1	-3.018 -4.473
		2	-0.103	2.378
	(f)	3	-1.605 -2.308
		4	4.516 -0.771
		5	4.203	0.478

Table 2 :

 2 Vertices of polyhedra used as test cases.

  d > 1 then h ← 0 for i = 1 to m do Calculate a i and b i for the hyperplane Build d-dimensional rotation matrix, R v i ← Rv i v i : vertices of i-th facet x ← R T x g ←Call Algorithm 3 with f (R T x ) and v m h ← h + b i / a i × g end for h ← h/(d + j) Int ← Int + h else Int ← Int + 1/(1 + j) [b1f (x 1 )/a 1 + b 2 f (x 2 )/a 2] end if end for return Int

Algebraic varieties are the extension of algebraic curves to higher dimensions, and are defined to be the set of solutions of a system of polynomial equations over real or complex numbers.
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A.1 Numerical example

We demonstrate the geometric method of degree-reduction using the example considered in Section 5.1: we evaluate the two-dimensional integral I = P xy dxdy, where P is the triangle defined in (24b). Direct integration gives I = 1/3.

On setting

Next, we apply the rotation matrix

, which aligns the hyperplane parallel to the x-axis (see Algorithm 1).

The resulting transformed integral is:

Applying (8) yields

. Now, set F 2 := P ∩ {x ≥ y} and F 3 := P ∩ {x ≥ 0}. For both these hyperplanes, b i / a i = 0. Therefore, on applying (7), we get

, which exactly matches the result from direct integration.