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Numerical integration of homogeneous functions on convex and
nonconvex polygons and polyhedra

Eric B. Chin · Jean B. Lasserre · N. Sukumar

Abstract We present a method for exact integration of ho-
mogeneous functions over convex and nonconvex polygons
and polyhedra. On applying Stokes’s theorem and using the
property of homogeneous functions, we show that it suffices
to integrate these functions on the boundary facets of the
polytope. For homogeneous polynomials, this approach is
used to further reduce the integration to just function evalu-
ations at the vertices of the polytope. This results in a cuba-
ture rule for a homogeneous polynomial f , where the inte-
gration points are only the vertices of the polytope and the
function f and its partial derivatives are evaluated at these
vertices. Numerical integration of homogeneous functions
in polar coordinates and on curved domains are also pre-
sented. Along with an efficient algorithm for its implemen-
tation, we showcase several illustrative examples in two and
three dimensions that demonstrate the accuracy of the pro-
posed method.

Keywords numerical integration · cubature rule · Stokes’s
theorem · Euler’s homogeneous function theorem · convex
and nonconvex polytopes · weakly singular integrals

1 Introduction

Integration of polynomial functions over arbitrarily-shaped
polygons or polyhedra is required in computational meth-
ods such as extended finite elements [1], embedded interface
methods [2–4], virtual element method [5], and the weak
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Galerkin method [6] to name a few. In these applications,
accurate and efficient numerical integration techniques are
needed.

For integrating functions over arbitrary polytopes, three
general approaches have been employed: (i) tessellation of
the domain into simplices; (ii) application of generalized
Stokes’s theorem to reduce the volume integral to a surface
integral; and (iii) use of moment fitting methods. Tessel-
lation requires partitioning the domain into smaller subdo-
mains (usually simplices), and then performing numerical
integration over the subdomains. The generalized Stokes’s
theorem (Gauss’s divergence theorem) converts integration
over the domain into integration over the boundary of the
domain, but often requires the integrand to be predefined,
or requires symbolic computations. Moment fitting methods
solve a linear system of equations to build a cubature rule
over the domain to integrate a given set of basis functions.
For further details on these three approaches, the interested
reader can refer to Sudhakar et al. [3].

A technique for integrating arbitrary polynomial func-
tions over convex polytopes was presented by Mousavi and
Sukumar [7]. This method uses the properties of homoge-
neous functions to simplify integration over a d-dimensional
arbitrary polytope to integration over the (d−1)-dimensional
faces of the polytope. In Reference [7], cubature rules for
polygons and polyhedra are constructed. However, these rules
were only applied to convex polytopes, a limitation that was
also noted in Reference [2]. Cubature rules that are applica-
ble to both convex and nonconvex polytopes are desirable,
and in this contribution we extend Lasserre’s approach to
nonconvex polytopes.

In this paper, we demonstrate that the method developed
by Lasserre [8] for integrating homogeneous polynomials is
also valid for nonconvex polytopes, provided a precise defi-
nition of the polytope is given. This definition of the domain
of the polytope in fact broadens the utility of the method,
and we provide examples that illustrate its use to integrate
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homogeneous functions over a range of convex and noncon-
vex polygons and polyhedra. Through recursive application
of Lasserre’s method, we show that exact integration of ho-
mogeneous polynomials over arbitrary polytopes can be re-
duced to evaluation of the polynomial and its partial deriva-
tives at the vertices of the polytope. The methods developed
in this paper can be used to devise cubature rules, such as
the ones constructed in Reference [7] and also elsewhere.

The remainder of this paper is organized as follows. In
the following section, we establish the validity of the method
described in Reference [8] for nonconvex polytopes. In Sec-
tion 3, we discuss three particular extensions of this method.
Specifically, in Section 3.1, we extend the method to reduce
integration to function evaluation at vertices; in Section 3.2,
we consider the integration of homogeneous functions over
domains bounded by polar curves; and in Section 3.3, we
treat the integration of weakly singular integrands and dis-
continuous integrands in polar coordinates over polygons.
In Section 4, we provide an efficient algorithm to imple-
ment the above methods. Several numerical examples that
demonstrate the accuracy and versatility of the new method
are presented in Section 5, and we close with some final re-
marks in Section 6.

2 Integration of polynomials over arbitrary polytopes

Consider a closed polytope P ⊂ IRd on an orientable man-
ifold whose boundary is denoted by ∂P . The boundary ∂P
is defined by m (d − 1)-dimensional boundary facets Fi,
where Fi ⊂ aTi x = bi for some vectors ai and b. This def-
inition is broader than the one used in Reference [8], since
it now includes nonconvex polytopes. In comparison, a con-
vex polytope is defined by Ax ≤ b for a matrix A of di-
mensions m × d, and a vector b of length m. As illustrated
in Figure 1, this definition is no longer valid for nonconvex
polytopes, since it will erroneously include or exclude parts
of the polytope P .

We wish to integrate a polynomial function, g(x), over
a polytope P , i.e.,

I =

∫
P

g(x) dx. (1)

For this purpose, we introduce the generalized Stokes’s the-
orem, which can be stated as (see Reference [9]):∫
P

(∇ ·X) f(x) dx+

∫
P

〈X,∇f(x)〉 dx

=

∫
∂P

〈X,n〉 f(x) dσ. (2)

In (2), 〈·, ·〉 denotes the inner product of vectors and dσ is
the Lebesgue measure on ∂P . Choosing f(x) := 1 and the

A x ≤ b

∂PP

Fig. 1: An example of why Ax ≤ b does not define a
nonconvex polytope. The cross-hatched region is defined by
Ax ≤ b whereas the actual polygon is P (the grey, shaded
area bounded by ∂P ).

vector field X := x, one obtains

d

∫
P

dx =

m∑
i=1

∫
Fi

〈
x,

ai
‖ai‖

〉
dσ

=

m∑
i=1

bi
‖ai‖

∫
Fi

dσ, (3)

where dσ is the Lebesgue measure on the (d−1)-dimensional
affine variety1 that contains the facet Fi. The formula (3),
which first appeared in Reference [10], relates the volume of
a polytope to the (d− 1)-dimensional volume of its bound-
ary, the collection of all boundary facets Fi, i = 1, . . . ,m.
Geometrically, each term of the summation can be thought
of as the volume of a simplex emanating from the origin
to the boundary facet, Fi. In (3), bi and ai are related by
aTi x = bi, the equation of the hyperplane in which Fi lies.
Furthermore, the normal to the hyperplane is: n = ai/‖ai‖.
This is readily verified by normalizing the gradient of aTi x,
which is in the direction that is perpendicular to the isocon-
tours of aTi x.

Let f(x) be a positively homogeneous function of de-
gree q that is continuously differentiable:

f(λx) = λqf(x) (λ > 0), (4)

which satisfies Euler’s homogeneous function theorem:

qf(x) = <∇f(x),x> ∀x ∈ IRd. (5)

Note that for functions with degree of homogeneity q < 0,
the validity of (5) is for x ∈ IRd\{0}. For a homogeneous
function f and X := x, (2) yields

d

∫
P

f(x) dx+

∫
P

〈∇f(x),x〉 dx =

m∑
i=1

bi
‖ai‖

∫
Fi

f(x) dσ. (6)

1 Algebraic varieties are the extension of algebraic curves to higher
dimensions, and are defined to be the set of solutions of a system of
polynomial equations over real or complex numbers.
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On invoking Euler’s theorem given in (5), (6) simplifies to∫
P

f(x) dx =
1

d+ q

m∑
i=1

bi
‖ai‖

∫
Fi

f(x) dσ. (7)

Equation (7) relates integration of a positively homogeneous,
continuously differentiable function f(x) over a polytope in
IRd to integration of the same function over the polytope’s
(d− 1)-dimensional boundary, ∂P . This equation appears
in Reference [8]; however, the proof therein was only valid
for convex polytopes. Here, the equation applies for both
convex and nonconvex polytopes, provided P is defined by
its boundary facets.

The method can be extended to arbitrary polynomial func-
tions by decomposing such a function into a collection of
homogeneous polynomials, then integrating each one. More
formally, consider g(x) to be a polynomial of highest de-
gree q̂, i.e., g(x) :=

∑q̂
j=0 f̂j(x) = f̂0(x) + . . . + f̂q̂(x),

where f̂j(x) is a homogeneous polynomial of degree j. If a
polynomial contains no terms of degree j, we simply have
f̂j(x) = 0. Now, selecting X := x and f(x) := g(x), (2)
becomes∫
P

g(x) dx =

q̂∑
j=0

1

d+ j

m∑
i=1

bi
‖ai‖

∫
Fi

f̂j(x) dσ. (8)

3 Extensions of Lasserre’s method

3.1 Integration on facets of lower dimensions

We further reduce the integration of
∫
Fi
f(x) dσ through ap-

plication of Stokes’s theorem. We define Fij := Fi ∩Fj for
j 6= i. Hij is the (d − 2)-dimensional variety that is the in-
tersection of Hi and Hj , and nij is the d-dimensional unit
vector that lies inHi and is normal to Fij . Now,

x := x0 +

d−1∑
i=1

x′ie
′
i (9)

is a point in IRd that lies in Hi. In (9), x0 ∈ Hi is an arbi-
trary point (serves as the origin) that satisfies aTi x0 = bi,
and {e′i}

d−1
i=1 form an orthonormal basis on the (d − 1)-

dimensional subspaceHi. Note that the divergence of x (re-
stricted to Hi) is d − 1. For a homogeneous function f(x)
and choosing the vector field X := x − x0 =

∑d−1
i=1 x

′
ie
′
i,

(2) becomes

(d− 1)

∫
Fi

f(x) dσ + q

∫
Fi

f(x) dσ =∑
i 6=j

∫
Fij

〈x− x0,nij〉 f(x) dν +
∫
Fi

〈∇f(x),x0〉 dσ.

Let dij := 〈x− x0,nij〉 be the algebraic distance from x0

toHij . Then, the above equation simplifies to∫
Fi

f(x) dσ =
1

d+ q − 1

[∑
i 6=j

∫
Fij

dijf(x) dν

+

∫
Fi

〈∇f(x),x0〉 dσ

]
. (10)

Equation (10) appears in Reference [8]; however, here it
is shown to be valid for both convex and nonconvex poly-
topes. When f(x) is a polynomial, (10) can be applied re-
cursively to reduce integration over the polytope to evalu-
ations of f(x) and its partial derivatives at the vertices. A
simple example demonstrating this reduction is provided in
Section 5.

In (10), the choice of x0 ∈ Hi is arbitrary. However,
careful selection of x0 can reduce the number of function
evaluations that are required. For example, consider the func-
tion f(x) = x100y defined in IR2. If Fi is not parallel to the
y-axis, choosing x0 such that it lies at the intersection ofHi
and x = 0 greatly reduces the number of partial derivatives
that need to be taken.

Combining (10) with (7), we can write down an explicit
formula for the volume of a polytope in terms of the loca-
tions of its vertices. In 2D, this formula is:∫
P

f(x) dx =
1

2

m∑
i=1

bi
‖ai‖

∑
j 6=i

dij . (11)

Geometrically,
∑
j 6=i dij is the length of the boundary edge,

Fi, and bi/‖ai‖ is the algebraic distance (can be positive or
negative) from the origin to Hi. Therefore, the summation
can be thought of as a set of triangles, of positive and nega-
tive areas, emanating from the origin to the boundary edges.

In 3D, the volume formula is:∫
P

f(x) dx =
1

3

m∑
i=1

bi
‖ai‖

1

2

∑
j 6=i

dij
∑

k 6=i,k 6=j

dijk, (12)

where ∑
k 6=i,k 6=j

dijk = length of Fij ,

1

2

∑
j 6=i

dij
∑

k 6=i,k 6=j

dijk = area of Fi.

Equation (12) can be viewed as the sum of volumes of tetra-
hedrons, of positive and negative volumes, emanating from
the origin to the boundary facets.

Let α = (α1, α2, . . . , αn) be an n-tuple of nonnegative
integers with absolute value |α| = α1 + . . . + αn. Let D
be the differential operator in multiindex notation. We can
use (10) with (7) to generate a closed-form expression for
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the integral of f(x) over P . For example, we have the fol-
lowing formula in 2D:∫
P

f(x) dx =

m∑
i=1

bi
‖ai‖

∑
j 6=i

dijI(vij), (13a)

where

I(vij) :=

q∑
k=0

k!

(q + 2)!
Qk(vij), (13b)

Qk(vij) :=

d∑
|α|=q−k

D|α|f(vij). (13c)

In (13), vij is the location of the vertex of the polygon
that coincides with Hij . Also, when k = q, the final sum-
mation reduces to just the evaluation of the function f(x)
at vij . Equation (13), which is valid for homogeneous poly-
nomials of degree q, can be used as a cubature formula or
for integrating homogeneous functions of degree q that are
nonpolynomial and are differentiable at least q times. Note
that this cubature is canonical in the sense that it only re-
quires evaluations at vertices of the polygon, whereas cuba-
ture rules for polygons are specific to each particular poly-
gon.

While the method described here provides a simple, and
appealing route to reduce integration to lower-dimensional
facets, it is not the only way to accomplish this task. An
alternative geometric method to reduce integration to point-
evaluations at the vertices of the polytope is presented in the
Appendix.

3.2 Integration of homogeneous functions over domains
bounded by polar curves

In Reference [11], a formula is derived that reduces integra-
tion of a homogeneous function over a d-dimensional region
to an integral over its (d−1)-dimensional boundary surfaces,
where the surfaces are described by homogeneous functions.
Here, we provide a few extensions of this approach for polar
curves and for homogeneous functions in polar form.

Consider a closed region V ∈ IRd bounded bym (d−1)-
dimensional surfaces, Ai, which are described by the func-
tions hi(x) = bi, with hi(x) being a homogeneous function
of degree pi. We wish to integrate f(x), a homogeneous
function of degree q, over V . Applying (2) to the integral
with X := x, we obtain [11]∫
V

f(x) dx =
1

d+ q

m∑
i=1

∫
Ai

〈
∇hi
‖∇hi‖

,x

〉
f(x) dσ. (14)

Using the homogeneity of hi(x), we can simplify this to∫
V

f(x) dx =
1

d+ q

m∑
i=1

pibi

∫
Ai

‖∇hi‖−1f(x) dσ. (15)

This result can be extended to a region bounded by curves,
each of which can be expressed as a linear combination of
homogeneous functions (for example, polynomials). First,
we define ĥi(x) =

∑n
j=1 h

(j)
i (x) = bi, where ĥi(x) is a

linear combination of n homogeneous polynomials, h(j)i (x).
The function h(j)i (x) is homogeneous with degree p(j)i . Now,
the result in (15) can be generalized to∫
V

f(x) dx =

1

d+ q

m∑
i=1

∫
Ai

‖∇ĥi‖−1f(x)
n∑
j=1

p
(j)
i h

(j)
i (x) dσ. (16)

In IR2, it may be the case that f(x) is more conveniently
represented in polar coordinates. An example in fracture me-
chanics is when f(x) represents elastic stresses in the vicin-
ity of a crack-tip – stresses are proportional to 1/

√
r, where

r =
√
x2 + y2 represents the distance from the crack-tip.

Note that the function f(x) is homogeneous with degree
q = − 1

2 . Even though the function is homogeneous, the
method described in Section 3.1 is not exact since the par-
tial derivatives of the function do not eventually vanish. As a
result, we compute the one-dimensional line integrals in (7)
using Gauss quadrature. In this section, we present a method
to convert line integrals of this type to polar coordinates.
After applying this transformation, the convergence rate is
shown to improve for weakly singular integrands when com-
pared to using quadrature on the Cartesian integral.

Consider a region in IR2 that is defined by the polar
curves r = Hi(θ). This curve can be described as the lin-
ear combination of two homogeneous functions:

ĥi(r, θ) = r −Hi(θ) = 0.

The gradient (in polar coordinates) of this function is

∇ĥi(r, θ) =
〈
1,−1

r

dHi(θ)

dθ

〉
.

On setting h(1)i := r and h(2)i := −H(θ) with p(1)i = 1 and
p
(2)
i = 0, respectively, one can use (16) to obtain∫
V

f(x) dx =
1

2 + q

m∑
i=1

∫
Ai

rf
(
x(θ)

)
‖
〈
r, dHi(θ)

dθ

〉
‖

1
r‖
〈
r,−dHi(θ)

dθ

〉
‖

dθ,

where dσ = ∇ĥi(r, θ)r dθ is the differential of the arclength
in terms of θ. Since r = Hi(θ), the above equation simpli-
fies to∫
V

f(x) dx =
1

2 + q

m∑
i=1

∫ β

α

H2
i (θ)f

(
x(θ)

)
dθ, (17)

where θ ∈ [α, β] defines the polar curve and f
(
x(θ)

)
repre-

sents f(x) parameterized in terms of θ.
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Equation (17) allows very accurate integration over re-
gions whose boundary facets are described by equations of
the form r = Hi(θ) where Hi(θ) can be any function given
in terms of θ. The utility of (17) is demonstrated with the
evaluation of the following integral:

I =

∫
A

f(r, θ) dxdy, f(r, θ) =
1√
r
, (18a)

where the region A (see Figure 2) is given by

A :=
{
r ∈ [0, 1], θ ∈ [0, π/2]

}
. (18b)

Direct integration yields the exact value: I = π
3 . Note that

the function f(r, θ) becomes singular at one of the vertices
of the region A. The integral is also calculated using (17) on
its three boundary facets. Since bi = 0 on the two boundary
facets that intersect the origin, the only nonzero contribu-
tion comes from the boundary facet r = 1. Therefore, on
applying (17) to this problem, we obtain:∫
A

1√
r
dxdy =

2

3

∫ π/2

0

dθ.

Since the integrand only contains a constant, one-point Gauss
quadrature produces a result that is accurate to machine pre-
cision.

Fig. 2: The region A :=
{
r ∈ [0, 1], θ ∈ [0, π/2]

}
.

The previous example, while illustrative, produced a rather
trivial result. Therefore, we will also consider an example
over a more complex polar region. Here, we will integrate

I =

∫
A

f(r, θ) dxdy, f(r, θ) =
1

r
(19a)

over the region A (see Figure 3), which is given by

A := {r ∈ [0, 1], θ ∈ [π/4, π/2] :

r ≥ cos θ, r ≤ sin θ, θ ≤ π/2}. (19b)

Direct integration yields I =
√
2 − 1. The function 1/r is

homogeneous with degree q = −1. As with the previous
example, a singularity is present at one of the vertices of the
domain. Applying (17) to this example simplifies integration
to∫
A

1

r
dxdy =

∫ π/2

π/4

(sin θ − cos θ) dθ.

Using a six-point Gauss rule to compute the one-dimensional
integral on the right-hand side results in a relative error of
10−15. The plot of the relative error as a function of the
number of Gauss points is shown in Figure 3.

3.3 Integration of homogeneous functions in polar form on
polygons

In the previous section, we limited the boundary of polar
regions to the equation r = Hi(θ). At first glance, this may
seem to limit the utility of (17). However, we demonstrate
in this section that this representation for the boundary of a
polar region can describe any polygon in IR2.

The equation aTi x = bi gives the general equation of a
line. Substituting x = r cos θ and y = r sin θ in the general
equation of a line gives

r =
bi

〈ai, {cos θ, sin θ}〉
=

bi

Ĥi(θ)
(20)

where Ĥi(θ) = 〈ai, {cos θ, sin θ}〉. This polar representa-
tion of a line is of the form introduced in Section ??, namely
r = Hi(θ). Replacing (20) in (17) one obtains∫
P

f(x) dxdy =
1

2 + q

m∑
i=1

b2i

∫ β

α

f
(
x(θ)

)
Ĥ2
i (θ)

dθ, (21)

where α = tan−1 y1
x1

, β = tan−1 y2
x2

, and (x1, y1) and
(x2, y2) are the vertices that lie in the domain of the bound-
ary facet (in Cartesian coordinates). Note that if we have
f(r) = rq ≡ f(θ) =

(
bi/Ĥi(θ)

)q
(q > −2 in IR2),

then (21) simplifies to∫
P

f(x) dxdy =
1

2 + q

m∑
i=1

bq+2
i

∫ β

α

1

Ĥq+2
i (θ)

dθ. (22)

For this technique, Gauss cubature is tested for three
different functions. In the first two cases, the weakly sin-
gular integrands f(r) = r−1 and f(r) = r−1/2 are in-
tegrated over hexagonal and square domains. In the third



6 Eric B. Chin et al.
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Fig. 3: Example using (17) to reduce integration to the boundary of a domain. The domain of integration A, which is given
in is shown in (a) and relative error of Gauss cubature is presented in (b).

case, we consider the discontinuous, weakly singular func-
tion f(r, θ) = 1√

r
sin θ

2 . For all cases, results using cubature
on the polar transformed integral

(
given in (22)

)
are com-

pared to cubature on the untransformed Cartesian integral(
given in (7)

)
and to tensor-product cubature, where possi-

ble.

First, we apply Gauss cubature on (22) to integrate f(r) =
r−1 and f(r) = r−1/2 over a regular hexagon inscribed in-
side a unit circle centered at the origin. These functions are
unbounded at the origin, but the integrals are finite and con-
tinuous, and are referred to as being weakly singular. Results
are compared to those obtained using Gauss cubature on (7).
As presented in Figure 4, Gauss cubature on the polar trans-
formed integral converges more quickly than than cubature
performed on (7).

Next, we apply cubature of these integrals to a bi-unit
square centered at the origin. In this case, we are able to
compare cubature using the techniques in this paper to tensor-
product cubature. For tensor-product cubature, the domain
is subdivided into four squares in each quadrant to ensure
all sampling points are of finite value. While cubature on
the polar integral is able to obtain precision on the order of
10−14 with about 55 cubature points in both cases, cubature
on the Cartesian integral requires up to 75 cubature points
to realize the same accuracy. Full tensor-product cubature
is carried out with over 104 cubature points and is only ac-
curate to 10−3 for f(r) = 1/r. Results are presented in
Figure 5.

Finally, cubature of the weakly singular, discontinuous
function f(r, θ) = 1√

r
sin θ

2 is demonstrated over the biu-
nit square centered at x, y = (0.5, 0.5). The discontinuity in
the function is treated as two additional boundary facets, and
therefore, the entire domain is viewed as a nonconvex poly-
gon with seven sides. This decomposition is demonstrated
in Figure 6a. Since the tensor-product cubature points do
not coincide with the location of the singularity in this case,
the domain does not require subdivision. As with the previ-
ous two cases, integration of the polar transformed version
of the integral provides the best results. A complete set of
results for this case are plotted in Figure 6b.

4 Numerical implementation

In this section, we describe an algorithm to implement the
methods detailed in Section 2 and 3.1. The assumed inputs
of this algorithm are the vertices of a polytope (given in
Cartesian coordinates), the connectivity of the vertices in the
polytope that define the boundary facets, and the polynomial
function to integrate. The output is the integral of the poly-
nomial function over the polytope.

Algorithms 1 and 2 contain pseudocode that implements
the methods and equations described in Section 2 and 3.1,
respectively. Lines of pseudocode without an explicit as-
signment operator refer to functions that carry out the cal-
culations described. Since implementation of the majority
of these functions is straightforward, for the most part, they
are not detailed in this paper.
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Fig. 4: Error in numerical integration of weakly singular functions over a regular hexagon that is inscribed within the unit
circle. (a) f(r) = r−1; and (b) f(r) = r−1/2. In both plots, the dotted line with triangular markers represents cubature error
with the Cartesian integral, whereas the solid line with circular markers represents cubature error for the polar integral.
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Fig. 5: Error in numerical integration of weakly singular functions over a biunit square centered at the origin. (a) f(r) = r−1;
and (b) f(r) = r−1/2. The polar and Cartesian integrals are displayed as in Figure 4. Tensor-product cubature on the full
square is shown as a thick line.
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Fig. 6: Error in numerical integration of f(r, θ) = 1√
r
sin θ

2 over a biunit square centered at x, y = (0.5, 0.5). P , Fi, and
f(r, θ) (shaded in grey) are plotted in (a) and the error in numerical integration from three different methods is shown in (b)
(see Figure 5 for a description). Note in (a) that f(r, θ) is discontinuous at y = 0 ∩ x < 0 and becomes unbounded at the
origin.

One function whose implementation is not obvious is
the function to calculate ai and bi from the vertices of the
hyperplane. These quantities must be calculated such that
the normal is oriented outward from the polytope. A simple
method to do this is to ensure that the vertices of the poly-
tope are given in counterclockwise orientation when stand-
ing outside the polytope. Then, we calculate ai and bi using
the equation

det

∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 x2 . . . xd 1

x11 x12 . . . x1d 1

x21 x22 . . . x2d 1
...

...
. . .

...
...

xd1 xd2 . . . xdd 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (23)

where xij is the j-th coordinate of the i-th vertex of d lin-
early independent vertices that lie in the hyperplane of inter-
est. The determinant gives ai1x1 + ai2x2 · · · + aidxd = bi
with the proper orientation.

5 Results

The implementation described in Section 4 is applied to a
wide variety of test problems to demonstrate its versatility
and ability to accurately and efficiently integrate polynomial
functions. A selection of these test problems are presented in

Algorithm 1 Integration of polynomial over arbitrary poly-
tope using method of Section 2

Determine the dimension, d, of the polytope
Determine m, the number of hyperplanes
for i = 1 to m do

Calculate ai and bi for the m hyperplanes
end for
Break f(x) into q homogeneous polynomials
Int← 0
for j = 1 to q do

h← 0
for i = 1 to m do

g ← Call Alg. 2 with ai, bi, d− 1 and fj(x)
h← h+ bi/‖ai‖ × g

end for
h← h/(d+ j)
Int← Int+ h

end for
return Int

this section. First, we will demonstrate the method in Sec-
tion 3 for a simple convex polygon. Then, we will apply
our algorithm to more complicated shapes in Sections 5.3
through 5.5. Results are verified with LattE integrale
1.7.2 [12], a code capable of generating exact, fractional
expressions for integrals of polynomials over convex poly-
topes [13, 14].
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Fig. 7: Tests on polygons and polyhedra. (a) and (b) represent convex polygons. (c) and (d) represent simple nonconvex
polygons. (e) and (f) represent non-simple nonconvex polygons. Positive and negative areas in (e) and (f) are represented by
the (+) and (-) symbols, respectively. (g), (h), and (i) represent polyhedra with (h) and (i) being nonconvex. In cases (a) - (f),
the homogeneous polynomial x2 + xy + y2 is integrated over the polygon. In cases (g) - (i), the homogeneous polynomial
x2 + xy + y2 + z2 is integrated over the polyhedron.
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Algorithm 2 Futher reduction of integration using method
of Section 3
Require: ai, bi, d and f(x)
g ← 0
Determine x0 from ai and bi
Determine x̃ and d̃, the specific variables and number of variables
present in fj(x)
for i = 1 to d̃ do

Calculate ∂f(x̃)
∂x̃i

g ← g + Call Alg. 2 with ai, bi, d and (x0)i
∂f(x̃)
∂x̃i

end for
for j = 1 to m do

if Fi ∩ Fj 6= ∅ then
Calculate dij
if Fij = vij then . Determine if Fij is a vertex

g ← g + dijf(vij)
else

g ← g + Call Alg. 2 with ai, bi, d− 1 and dijf(x)
end if

end if
end for
return g

5.1 Illustrative example

First, we apply our method to the integration of a homoge-
neous polynomial over a two-dimensional triangle. In this
simple case, direct integration is carried out and compared
to the result from our approach.

Consider the evaluation of the following two-dimensional
integral:

I =

∫
P

xy dxdy (24a)

over the triangle described by

P :=
{
(x, y) ∈ IR2 | x+ y ≤ 2, x ≥ y, x ≥ 0

}
. (24b)

Direct integration gives the exact result: I = 1/3.
On setting F1 := P ∩ {x+ y ≤ 2}, we have

b1
‖a1‖

∫
F1

xy dµ =
√
2

∫
F1

xy dµ.

Selecting x0 = (2, 0) and using (10), the integration over
F1 reduces to
√
2

∫
F1

xy dµ =

√
2

2 + 2− 1

(√
2 + 2

∫
Fi

y dµ

)
.

On reapplying (10), we obtain

√
2

∫
F1

xy dµ =

√
2

3

(√
2 +

2

2 + 2− 2

(√
2
))

=
4

3
.

Now, set F2 := P ∩ {x ≥ y} and F3 := P ∩ {x ≥ 0}.
For both of these hyperplanes, bi/‖ai‖ = 0. Therefore, on
applying (7), we get

I =
1

2 + 2

(
4

3

)
=

1

3
,

which matches the exact value of the integral.

5.2 Application to convex polygons

Table 1: Vertices of polygons used as test cases.

Polygon in Fig. 7 Vertex x y

(a)

1 1.220 −0.827
2 −1.490 −4.503
3 −3.766 −1.622
4 −4.240 −0.091
5 −3.160 4.000

6 −0.981 4.447

7 0.132 4.027

(b)

1 4.561 2.317

2 1.491 −1.315
3 −3.310 −3.164
4 −4.845 −3.110
5 −4.569 1.867

(c)

1 −2.740 −1.888
2 −3.292 4.233

3 −2.723 −0.697
4 −0.643 −3.151

(d)

1 0.211 −4.622
2 −2.684 3.851

3 0.468 4.879

4 4.630 −1.325
5 −0.411 −1.044

(e)

1 −4.165 −0.832
2 −3.668 1.568

3 −3.266 1.279

4 −1.090 −2.080
5 3.313 −0.683
6 3.033 −4.845
7 −4.395 4.840

8 −1.007 −3.328

(f)

1 −3.018 −4.473
2 −0.103 2.378

3 −1.605 −2.308
4 4.516 −0.771
5 4.203 0.478

We apply our algorithm to a variety of convex poly-
gons, and compare our numerical results to exact results
from LattE. Random 2D polygons are constructed using
a random number generator. The number of facets is first
decided by generating a random integer between 3 and 10.
Then random points are selected within (−5, 5)×(−5, 5) ⊂
IR2. These random points are truncated at the thousands



Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra 11

Table 2: Vertices of polyhedra used as test cases.

Polyhedron in Fig. 7 Vertex x y z

(g)

1 0 0 0

2 5 0 0

3 5 5 0

4 0 5 0

5 0 0 5

6 5 0 5

7 5 5 5

8 0 5 5

(h)

1 0 0 0

2 5 0 0

3 5 4 0

4 3 2 0

5 3 5 0

6 0 5 0

7 0 0 5

8 5 0 5

9 5 4 5

10 3 2 5

11 3 5 5

12 0 5 5

(i)

1 0 0 0

2 1 0 0

3 0 1 0

4 0 0 1

5 0.25 0.25 0.25

place to allow for fractional representation in LattE. The
points are verified to form a convex polygon, then Algo-
rithms 1 and 2 are executed for the homogeneous polyno-
mial x2 + xy + y2. Here, we provide results for two differ-
ent polygons, which are shown in Figures 7a and 7b. The
vertices of the polygons are listed in Table 1.

To verify the accuracy of our method, we invoke the
Symbolic Math Toolbox as part of MATLAB R2014aTM,
which allows for exact calculation of these integrals using
our algorithm. Results from integrating these polygons are
listed in Table 3, along with exact results from LattE. For
both test cases, our results exactly match those obtained us-
ing LattE.

5.3 Application to simple nonconvex polygons

Next, we apply our algorithm to a variety of simple (non-
intersecting) nonconvex polygons, and compare our numer-
ical results to exact results from LattE. Random 2D, sim-
ple, nonconvex polygons are generated similarly to those in

Section 5.2, then Algorithms 1 and 2 are executed for the
homogeneous polynomial x2+xy+y2. Results are demon-
strated for two different polygons, illustrated in Figures 7a
and 7b. The vertices of the polygons are listed in Table 1.

Results from integration using the MATLAB Symbolic
Math Toolbox and exact integration from LattE are listed
in Table 3. Since LattE is only capable of integration on
convex polytopes, our nonconvex polygons are integrated
in LattE by decomposing the nonconvex polygon into an
identical collection of convex polygons, performing integra-
tion on these polygons, then summing the results. No error is
introduced by this decomposition since results from LattE
are exact. For both test cases, our results exactly match those
obtained using LattE.

5.4 Application to nonsimple nonconvex polygons

Our approach is also able to handle integration of nonconvex
polygons where the boundary facets are intersecting, pro-
vided we define positive and negative areas of the polygon.
Negative areas of the polygon are defined by a region of the
polygon which has been intersected by boundary facets an
odd number of times. Positive areas are defined by the ar-
eas which have not been intersected and areas which have
been intersected an even number of times. In this section,
we provide two examples that demonstrate this capability.

The three polygons are developed analogously to those
in Section 5.3 and run with the same homogeneous poly-
nomial. These polygons, along with definitions of positive
and negative areas on them, are shown in Figures 7c and 7d.
The vertices of these polygons are listed in Table 1. As with
the convex polygons and the simple nonconvex polygons,
the results (listed in Table 3) exactly match those obtained
using LattE.

5.5 Application to nonconvex polyhedra

Finally, our algorithm was applied to a range of different
convex and nonconvex polyhedra. The test cases presented
here include a cube, a concave polyhedron consisting of a
cube with a notch removed from it, and a tetrahedron with a
tetrahedron carved from a face to make the polyhedron non-
convex. Rather than selecting random vertices and bound-
ary facets as was done in Sections 5.3 and 5.4, we chose to
manually select the vertices of this polyhedron. The vertices
of these polyhedra are listed in Table 2 and illustrations are
provided in Figures 7g, 7h, and 7i. The homogeneous poly-
nomial x2 + xy + y2 + z2 is integrated over the polyhedra.
As demonstrated in Table 3, present results matched exactly
those produced in LattE.
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Table 3: Results of integrating a homogeneous polynomial
over the polytopes shown in Figure 7 using LattE [12] and
the present method.

Polytope in Fig. 7 Exact Result [12] Present Method

(a) 2031627344735367
8000000000000

2031627344735367
8000000000000

(b) 517091313866043
1600000000000

517091313866043
1600000000000

(c) 147449361647041
8000000000000

147449361647041
8000000000000

(d) 180742845225803
1000000000000

180742845225803
1000000000000

(e) 1633405224899363
24000000000000

1633405224899363
24000000000000

(f) 88161333955921
3000000000000

88161333955921
3000000000000

(g) 15625
4

15625
4

(h) 33835
12

33835
12

(i) 37
960

37
960

5.6 Integration of arbitrary polynomials

While the methods introduced in the previous sections are
of great utility when the integrand is known explicitly, often
times the integrand is not known, and can only be evalu-
ated at points within the domain. To handle this situation,
Mousavi and Sukumar [7] developed a method to integrate
arbitrary, unknown polynomials up to degree q by taking
advantage of the properties of homogeneous functions and
solving a small system of linear equations. Here, we demon-
strate the method is equally valid for both convex and non-
convex polytopes.

Integrating a polynomial using (8) requires the polyno-
mial to be known a priori. However, simple manipulation
of (8) leads to

q̂∑
j=0

(d+ j)

∫
P

f̂j(x) dx =

m∑
i=1

bi
‖ai‖

∫
Fi

q̂∑
j=0

f̂j(x) dσ. (25)

Note that∫
P

g(x) dx =

q̂∑
j=0

∫
P

f̂j(x) dx (26)

gives the quantity of interest. The integral
∫
Fi

∑q̂
j=0 f̂j(x) dσ

can also be computed using Gauss quadrature by sampling
points within the domain Fi, i.e., without knowing the inte-
grand explicitly. Thus, the right side of (25) can be evaluated
for any arbitrary polynomial, provided sufficient number of
quadrature points are used. Noting that homogeneous func-
tions of degree q have the property f(λx) = λqf(x), we

can manipulate (25) to obtain

q̂∑
j=0

λj(d+ j)Ij = Q(λ), (27a)

where

Ij :=

∫
P

f̂j(x) dx, (27b)

Q(λ) :=

m∑
i=1

bi
‖ai‖

∫
Fi

q̂∑
j=0

f̂j(λx) dσ. (27c)

This provides an arbitrary number of equations that are formed
by varying the value of λ. As before, the right side of the
equation can be evaluated through sampling points within
Fi. Choosing q̂+1 values of λ results in a (q̂+1)× (q̂+1)

system of equations that can be used to solve each term
of (26), without explicitly knowing each term, f̂j(x). On
choosing q̂ + 1 distinct values for λ, we can write (27) as

q̂∑
j=0

λjk(d+ j)Ij = Q(λk) (28)

for k = 1, . . . , q̂ + 1.
This approach is used to integrate the polynomial f(x) =

x3+xy2+y2+x over the polygons shown in Figure 7a and
Figure 7c. The polynomial f(x) contains monomials up to
degree three. Therefore, the integral of each monomial can
be determined through the solution of a 4× 4 linear system,
defined by (28). We choose λ = (0.25, 0.5, 0.75, 1) to com-
pute the 4 × 4 system matrix and to determine the location
of the quadrature points within the domain of the boundary
facets.

With this choice of λ for the polygon shown in Figure 7a,
(28) becomes
2 3

4
1
4

5
64

2 3
2 1 5

8

2 9
4

9
4

135
64

2 3 4 5



I1

I2

I3

I4

 =


− 11550135635909446173

256000000000000000

− 9080398944401774173
32000000000000000

− 251474206771886854671
256000000000000000

− 9628722192185938173
4000000000000000

 .

Solving for I1, . . . , I4, we obtain
I1

I2

I3

I4

 =


0

− 99066199641
2000000000

582878710330541
4000000000000

− 11365839835662102173
20000000000000000

 .

Using (26), we calculate
∫
P
g(x) dx ≈ −472.105. This re-

sult matches integration of the monomials using (8).
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For the polygon in Figure 7c, the linear system that is
obtained from (28) is:
2 3

4
1
4

5
64

2 3
2 1 5

8

2 9
4

9
4

135
64

2 3 4 5



I1

I2

I3

I4

 =


− 1005647136056845793

256000000000000000

− 659018727981237793
32000000000000000

− 16790442429180948411
256000000000000000

− 617991551841433793
4000000000000000

 .
Again, solving for I1, . . . , I4 gives
I1

I2

I3

I4

 =


0

− 22047837983
6000000000

22814962939549
4000000000000

− 665155727633629793
20000000000000000

 .

Summing each Ik, we obtain
∫
P
g(x) dx ≈ −31.229. As

with the convex polygon, the result matches integration of
the monomials using (8).

6 Concluding remarks

In this paper, we applied Euler’s homogeneous function the-
orem and Stokes’s theorem to devise a method for reducing
integration of homogeneous polynomials over arbitrary con-
vex and nonconvex polytopes to integration over the bound-
ary facets of the polytope. Additionally, we also demon-
strated that the same tools could be used to further reduce the
integration if partial derivatives of the homogeneous func-
tion exist. For homogeneous polynomials, integration can
ultimately be reduced to function evaluation at the vertices
of the polytope.

We implemented our method and presented several nu-
merical examples that showcased its capabilities. In addition
to integrating homogeneous polynomials over irregular con-
vex and nonconvex polytopes, we also demonstrated how
the method could be applied to nonsimple nonconvex poly-
topes. Furthermore, we also successfully tested the approach
for the integration of weakly singular functions in two di-
mensions over polygons with straight and curved facets. For
all cases involving homogeneous polynomials that were tested,
our results exactly matched the results obtained using the
code LattE [12]. As part of future work, we plan to as-
sess the proposed integration scheme in applications of the
extended and embedded finite element methods, as well as
Galerkin methods on polygons and polyhedra.

A Appendix

In this appendix, we describe an alternative method for reducing inte-
gration of homogeneous polynomials over polygons and polyhedra to
lower-dimensional facets. Rather than using partial derivatives, as was
done in Section 3, this method uses rotations to simplify integration

over lower-dimensional facets. As with the method in Section 3, this
method can be used to reduce integration to function evaluation at the
vertices of the polytope.

To integrate the expression f(x) in (7) (or f̂j(x) in (8)) over the
boundary facets, Fi, the integral over IRd must first be transformed to
an integral over Hi, the hyperplane in which Fi lies. This can be ac-
complished through applying an affine transformation of the boundary
facet such that it lies normal to one of the orthonormal coordinate axes
in IRd. In IR2 and IR3, this transformation is completed with a simple
rotation matrix applied to both the vertices of the boundary facet and to
the variables in the expression f(x). Calculation of this rotation matrix
in IR3 is expedited by using Rodrigues’s finite rotation formula [15]:

R = I + ω̂ sin θ + ω̂2(1− cos θ), (29)

where θ is the desired angle of rotation, I is the 3× 3 identity matrix,
and ω̂ is the skew-symmetric matrix whose components are:

ω̂ =

 0 −ωz ωy

ωz 0 −ωz

−ωy ωx 0

 , (30)

where ωi (i = x, y, z) give the components of the unit vector ω about
which the rotation occurs. This vector can be constructed for each Fi

by the vector cross product

ω = ai/‖ai‖ × ez , (31)

where ez is a unit vector in the z-direction. When the transformation
is applied to the expression f(x), it is likely that the resulting equation
will no longer be a homogeneous function. Instead, it will become a
polynomial that can be integrated using (8). Applying this procedure d
times to a d-dimensional polytope reduces integration to simple evalua-
tion at the vertices of the polytope. Algorithm 3 describes an algorithm
to implement this method. The examples in Section 5 were calculated
using this method, and were shown to exactly match results using the
method of Section 3. An example that illustrates this method follows.

Algorithm 3 Integration of polynomial over arbitrary poly-
tope

Determine the dimension, d, of the polytope
Determine m, the number of hyperplanes
Break f(x) into q homogeneous polynomials
Int← 0
for j = 1 to q do

Determine the order, j, of fj(x)
if d > 1 then

h← 0
for i = 1 to m do

Calculate ai and bi for the hyperplane
Build d-dimensional rotation matrix, R
v′
i ← Rvi . vi: vertices of i-th facet

x← RTx′

g ←Call Algorithm 3 with f(RTx′) and v′
m

h← h+ bi/‖ai‖ × g
end for
h← h/(d+ j)
Int← Int+ h

else
Int← Int+ 1/(1 + j) [b1f(x1)/a1 + b2f(x2)/a2]

end if
end for
return Int
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A.1 Numerical example

We demonstrate the geometric method of degree-reduction using the
example considered in Section 5.1: we evaluate the two-dimensional
integral I =

∫
P
xy dxdy, where P is the triangle defined in (24b).

Direct integration gives I = 1/3.
On setting F1 := P ∩ {x+ y ≤ 2}, we have

b1

‖a1‖

∫
F1

xy dµ =
√
2

∫
F1

xy dµ.

Next, we apply the rotation matrix

R =
1
√
2

[
1 −1
1 1

]
,

which aligns the hyperplane parallel to the x-axis (see Algorithm 1).
The resulting transformed integral is:

√
2

∫
F1

xy dµ =
√
2

∫ √
2

0

(
1−

(x′)2

2

)
dx′.

Applying (8) yields

√
2

∫ √
2

0

(
1−

(x′)2

2

)
dx′ =

√
2

[√
2−
√
2

3

]
=

4

3
.

Now, set F2 := P ∩ {x ≥ y} and F3 := P ∩ {x ≥ 0}. For both
these hyperplanes, bi/‖ai‖ = 0. Therefore, on applying (7), we get

I =
1

2 + 2

(
4

3

)
=

1

3
,

which exactly matches the result from direct integration.
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How to integrate polynomials over simplices. Math. Comp.,
80:297–325, 2011.

14. J. A. De Loera, B. Dutra, M. Köppe, S. Moreinis, G. Pinto, and
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