N

N

GenoM3 Templates: from Middleware Independence to
Formal Models Synthesis
Mohammed Foughali, Félix Ingrand, Anthony Mallet

» To cite this version:

Mohammed Foughali, Félix Ingrand, Anthony Mallet. GenoM3 Templates: from Middleware Inde-
pendence to Formal Models Synthesis . 2017. hal-01457881v1

HAL Id: hal-01457881
https://laas.hal.science/hal-01457881v1

Preprint submitted on 6 Feb 2017 (v1), last revised 22 Mar 2017 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://laas.hal.science/hal-01457881v1
https://hal.archives-ouvertes.fr

G°®" M3 Templates: from Middleware
Independence to Formal Models Synthesis *

Mohammed Foughali, Félix Ingrand and Anthony Mallet
LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

{firstname.lastname}@laas.fr

Abstract

G®%M is an approach to develop robotic software components, which can be
controlled, and assembled to build complex applications. Its latest version G*"oM3,
provides a template mechanism which is versatile enough to deploy components
for different middleware without any change in the specification and user code. But
this same template mechanism also enables us to automatically synthesize formal
models (for two Validation and Verification frameworks) of the final components.
We illustrate our approach on a real deployed example of a drone flight controller
for which we prove offline real-time properties, and an outdoor robot for which we
synthesize a controller to perform runtime verification.

1 Introduction

There is a rising concern in advanced robotic and autonomous systems software
development. Can we improve the dependability of such systems by deploying formal
validation and verification (V&V) techniques applied to their software? Such tech-
niques are widespread in areas such as aeronautic, railway, etc, but are still seldom
used in robotics. Nowadays, robotic software developments use model-based or model-
driven software engineering approaches (e.g. SMARTSOFT [Schlegel et al., 2009],
RobotML [Dhouib et al., 2012], MontiArc [Ringert et al., 2015]]). These approaches
and their associated middleware are numerous and surveyed in a number of pa-
pers [Brugali, 2015, [Elkady and Sobh, 2012, Mohamed et al., 2008]]. Still, most of
theses approaches remain disconnected to formal model analysis and the use of
V&V techniques. Several works proposed to use the formal synchronous lan-
guage ESTEREL [Boussinot and de Simone, 1991]] to model functional components
[Espiau et al., 1996l Sowmya et al., 2002, | Kim and Kang, 2005]. The formal models
were then exploited to verify behavioral and timed properties using model checking
tools. These experiments were nevertheless led on simple examples and specifica-
tions were either hard-coded in ESTEREL or manually translated from robotic com-

*This work was supported in part by the EU CPSE Labs project funded by the H2020 program under
grant agreement No 644400.

ponents. More recently a special issue [Kress-Gazit, 2011]] on this subject presented
a number of interesting works along hybrid automata [Muradore et al., 2011]] and con-
troller synthesis [Kress-Gazit et al., 2011]] and more recently [Jing et al., 2016]. The
formal frameworks proposed are similar to the ones we use, but they are mostly
deployed at decisional level or on rather simple robotic systems. Our approach is
somewhat complementary in choosing to model all the software components which
need to be integrated together at the functional level and then checking and en-
forcing properties on the integrated code. The closest work to our approach is
MAUVE |[Gobillot et al., 2014, |Gobillot et al., 2016, where the code is instrumented
to collect Worst Case Execution Time (WCET), and then temporal formal property
can then be checked on the components. Our approach distinguishes itself by, simul-
taneously, being fully automatic, considering all timing constraints of the model and
tackling rather complex integrated robotic applications.

In this paper we present the G®"oM3 framework to specify and deploy robotic func-
tional components. G®bMS3 relies on a specification language which allows the pro-
grammer to completely define how the component will work when associated to the
user provided code, and how this code will be internally organized along services,
tasks, ports, etc. This specification is done independently of the middleware targeted
and, thanks to its template mechanism, can also be used to synthesize more than just
the final code of the component, but also client libraries, and models for various V&V
frameworks.

The paper first describes, with an example, the specification language used by
G®HMS3. Section [3| presents the template mechanism used to synthesize middleware
specific components, but also to produce the components formal models for two V&V
frameworks. Section [briefly presents two examples (a drone flight controller and an
outdoor robot navigation) which have been completely specified in G®bM3, followed
by a section where we illustrate the type of properties we can formally prove on the
resulting models, as well as how we synthesize a runtime controller to run the com-
ponent. The paper concludes on the ongoing work along these lines and the future
extensions we intend to tackle.

2 G°*bM3 components

G®oM3 [Mallet et al., 2010 is a tool to specify and implement robotic functional
components. In the overall LAAS architecture [Ingrand et al., 2007]], functional com-
ponents act as “servers” in charge of functionalities which may range from simple
low-level driver control (e.g. the velocity control of the propellers of a drone, camera,
etc) to more integrated computations (e.g. Simultaneous Localization And Mapping
(SLAM), navigation, PRM or RRT motion planning, etc).

2.1 Requirements

We consider that a typical component is a program which needs to handle and
manage the following aspects:

Clients

N

Requests Reports

\ /
X,/

Attribute

Control Ta

Function
Services

In

Internal
Data

Structure Out

Execution Tasks

Activity Services Permanent Activities

Figure 1: A generic G®"oM3 component.

Inputs and Outputs : a component interacts with external clients and other compo-
nents. For the former, the control flow, it must handle requests from client(s) and
asynchronously send back reports to the client which issued the request, to act
on the result. For the latter, the data flow, it must provide a mechanism to share
data with other components and read data from other components. Data flow
and control flow are semantically different and correspond to two different ways
components can interact.

Algorithms : the core algorithms needed to implement the functionality the compo-
nent is in charge of must be appropriately organized within threads as to preserve
the reactivity of the component and the schedulability of the various possibly
concurrent algorithms. A component may have just one service to provide, but
most of the time, there are a number of such services associated to the consid-

ered robotic functionality. The way algorithms are specified and organized in a
component is a tradeoff. One can let the programmer organize its code the way
it pleases him. But without any particular structure, chances are that little can be
validated or verified. If one provides guidelines and rules as how the code must
be organized, than we stand a much better chance as to prove some properties on
the code.

Internally shared data : the various algorithms, possibly concurrent, running in the

component, may have to share state variables, parameters, etc. which represent
the internal state of the component.

2.2 Implementation

Functional Level

pom maneuver nhfc
Taskf io 1.ms Task: Task: Task: main 1ms
Services: /\ plan ap exec 5ms Services:
perm, add_me Services: Services: g :
state G Init

L/ oto perm .
Task: filter 1ms WayPoint Sto
Services: TakeOff P
perm

desireb cmd
state velocity,
mocap
pose

optitrack mikrokopter
Task: Task: : Task:
publish ap main ms comm ap
Services: IMU\ Services: Services: actual
Init perm perm W
(pos updated ctallrtt)rateflmu connect

stal
100Hz) oo

stop

monitor

Figure 2: The quadcopter functional level. For the sake of simplicity, only a partial list
of services is presented.

To achieve such requirements of a functional component, we propose to organize
each one along the structure shown on Figure Of course, the pros and cons of
these implementation choices can be discussed, and we will attempt to justify them
as we present them. We illustrate the detailed specifications on Listing |1} with the
MANEUVER component of the complete functional layer of a Mikrokopter drone flying
in our lab (Figure2). This component, given a position to hoover or waypoints to pass
by, is in charge of producing intermediate positions to navigate to.

Specifying a component in G®M3 is the programmer design choice. Thus, there
are a number of considerations she/he has to take into account, which may depend on
the hardware constraints, the complexity of the algorithm, the needed external data,
etc. Let us describe these different elements in more details and how they interact,
and how they are specified. Note that at this point, we are not assuming any particular
middleware for interprocess communication or data sharing (control and data flow).

Apart from the control task, each element of the specification results from choices
the developper has to carefully make (how many tasks? periodic or not? if periodic,
which period? which services associated to which task? how to break down long
services in processing steps? etc):

Control Task : A component always has a control task that manages the control flow
by processing requests and sending reports (from/to external clients); activate
and stop services, etc. The control task is implicitly comprised within a compo-
nent and the user does not need to specify it.

Execution Task(s) : Aside from the control task, whose reactivity must remain short,
one may need one or more execution tasks, aperiodic or periodic, in charge of
longer computations.

Services : The core algorithms needed to implement the functionality the component
is in charge of are encapsulated within services. Services are associated to a re-
quest (with the same name), but one may also define permanent activities which
are attached to an execution task.

IDS : A local internal data structure is provided for all the services to share param-
eters, computed values or state variables of the component. It is appropriately
accessed (i.e. with proper locking) by the services when they need to read or
write a field of the IDS (line [T0).

Ports : They specify the shared data, in and out, the component needs or produces
from/for other components (line[3).

Exceptions : One may specify exceptions, which can be returned by services to report
non nominal execution (line [7).

We go in more details and see how these different elements interact and how the
component internally runs.

Services Services hold the specifications of the algorithms handled by the compo-
nent. Services can take arguments (line [33)), and return values (line [29). Services are

1 component maneuver {

2 /* ports declaration: direction type name */

3 port in or_pose_estimator::state state;

4 port out or_pose_estimator::state desired;

5

6 /* exception declaration */

7 exception e_nostate; /*Service can throw this exceptionx/

8

9 /* ids declaration */

10 ids {

11 planner_s planner;

12 struct trajectory_s { ... } trajectory; ... };

13

14 /* tasks declaration */

15 task plan { /* an aperiodic task */

16 codel<start> mv_plan_start(out ::ids) yield ether wcet 26us; /* used to
initialize one */

17 codel<stop> mv_plan_stop(inout ::ids) yield ether wcet 12us; }; /* used to
cleanup once */

18

19 task exec { /* A task with only a permanent activity =*/

20 period 5 ms;

21 codel<start> mv_exec_start(out desired) yield wait wcet 17us;

22 codel<wait> mv_exec_wait(in state, in trajectory) yield pause::wait, main
1165us;

23 codel<main> mv_exec_main(in state, inout trajectory, out desired) yield wait,
pause::main, start wcet 1313us;

24 codel<stop> mv_exec_stop() yield ether wcet 4us; };

25

26 /* atribute services declaration */

27 attribute get_planner(out planner);

28 /* function services declaration *x/

29 function stop(out double x, out double y, out double z) {

30 doc "Stop a goto and return the current position”;

31 codel get_current_position(out x, out y, out z) wcet 10us;

32 interrupt goto; };

33

34 /* activity services declaration */

35 activity goto(in double x, in double y, in double z, in double yaw) {

36 doc "Reach a given position from current state";

37 task plan; /x goto will execute in the plan task x/

38 validate validate_goto(in z) wcet 3us; /* check z>0 %/

39 codel<start> mv_current_state_start(in state, out start) yield plan wcet 43us;

40 async codel<plan> mv_goto_plan(in planner, in start, in x, in y, in z, in yaw,
out path) yield exec wcet 2487us;

41 codel<exec> mv_plan_exec(in planner, in path, inout trajectory) yield
pause::exec, wait wcet 304us;

42 codel<wait> mv_plan_exec_wait(in trajectory) yield pause::wait, ether wcet 13us;

43 codel<stop> mv_plan_exec_stop(out trajectory) yield ether wcet 10Qus;

44 throw e_nostate; /* No valid state position found */

45 interrupt goto; }; /* will interrupt an active goto */

46

47 activity waypoint(in double x, in double y, in double z, in double yaw) {

48 doc "Push a given position to reach after last one”;

49 task plan; /* waypoint will execute in this task */

50 codel<start> mv_waypoint_start(in state, in trajectory, out start) yield plan
wcet 6us;

51 async codel<plan> mv_goto_plan(in planner, in start,in x, in y, in z, in yaw,
out path) yield exec 2487us;

52 codel<exec> mv_waypoint_add(in plannig, in path, inout trajectory) yield ether

wcet 369us; }; };
Listing 1: Excerpt from the G®oM3 specification of the MANEUVER component.

activated upon receiving the corresponding request. A service may have a validate
codel (line [38). This codel is executed by the control task and checks that the argu-
ments of the request are correct. If they are, the service is then runnable, otherwise, it
is reported with an illegal arguments report. A service may also specify other services
it interrupts (line #3) when it becomes runnable. The interrupted services execute a
stop codel (line 3)) if any and report to their client that they have been interrupted.

Control Services, are only for short execution as to not delay the control task which
executes them. A control service may be an attribute (setter or getter of fields of the
IDS, line [27), or a function (line for quick and simple computations. A G®oM3
component offers four predefined function services, namely: Kill (stop the component),
Abort (stop an activity service), Connect Port to connect a local in port to a distant out
port and Connect Service to connect a service of another component.

Activity services (activities for short), see line|35/and |47} are executed in the exe-
cution task specified in their declaration (line[37). They all have a start codel which
is the entry point of their codels finite-state machine (FSM) and as many states/codels,
as the programmer wants, to specify the decomposition of the long computation they
are performing (e.g., the FSM defined from line[39]to[43] also drawn on Figure). The
execution of a codel always returns the next state to which the execution must transition
to in the service FSM. If the returned state is prefixed with pause (line 1)), the control
of the execution task is passed to the next service to execute in this task, if any, or back
to the scheduler as to wait until the next task period. ether is a special state to which a
terminating service can transition. An activity may be permanent (from line 21]to [24).
It is not requested by a client and is run by its execution task when the component
starts.

Codels specify the C or C++ function they will call, with the arguments (taken from
the service arguments, the IDS and/or the ports of the component) they need (in and
out). Codels are restricted to use these arguments only. Codels are also restricted to
return a state/codel specified in the FSM definition of their service. Each codel may
specify a WCET, which measures the worst case execution time of the codel alone (i.e.,
executing independently of any other execution). The organisation of activity services
along FSM and codels may be seen as an unnecessary burden on the robot programmer,
but nothing prevent the programmer to have one start codel which does it all. Yet,
breaking code along a FSM brings a number of advantages when it comes to better
code integration and V&V. It improves schedulability and code execution interleaving.
It provides a finer model of data sharing and code interlocking.

Control Task As seen before, the control task manages the requests and reports of
the component, as well as starting, terminanting services. It runs the validate codels
for services which specify one. If there exist activities that are incompatible with the
requested service, the control task instructs the execution tasks in charge of such ac-
tivities to interrupt them. If the request concerns a control service (attribute, line
or function, line @I) the control task executes it directly. Otherwise, the requested
activity service is then put on hold until all the incompatible instances are correctly
interrupted and terminated. Then the control task advises the execution task declared
by the service to run it, and sends an intermediate reply to the client to inform it that

processing has started. Upon completion of services, the control task sends reports to
the corresponding client (service ended nominally, service interrupted, etc.).

Execution Tasks Execution tasks are periodic (with a specified period, line 20) or
aperiodic (line[T5). With each period signal (if periodic) or event occurrence (if spo-
radic), the execution task runs its permanent activity (if any) and then all the active
instances of its associated activities. An active instance of a given activity is an in-
stance that has been requested by a client and whose execution has not yet ended.

Internal Data Structure Access to the IDS is mutually exclusive. One can see that
the proper specifications (enforced by G®bM3) of the codel arguments allows for a
very fine grain locking of the IDS field. In other words, we know at any time which
codels access what. Only the needed field(s) by a codel are locked in order to ensure
maximal parallelism.

Ports Information exchange with other components is made through ports (line [3).
As seen above, ports usage (in, out or in/out) is also declared in codels arguments. As
such, over a large set of components composing a robotic functional layer, we have a
clear model of which codels use a particular port and at what time.

3 Templates Approach

As seen above, G®6MS3 provides a rich language to specify functional components
and how they should be organized. Still, producing the real component code to run
on the robot, out of this specification, requires additional steps. This is where G¢"oM3
template mechanism is critical. G®M3 without template just analyzes the specifica-
tion file (extension .gen) and checks it for inconsistencies. The real power of G®oM3
is to call it on a specification file, along with a template, as to automatically synthesize
the target of the template.

A template when called by G®"oMS3 on a given component specification has ac-
cess to all the information contained in the specification file such as services names
and types, ports and IDS fields needed by each codel, execution tasks periods, etc.
Based on all these specifications, G®"oM3 can also compute information such as which
codels can execute at the same time (considering their respective arguments), or which
port must be locked by which codel. etc. Through the template interpreter (Tcl), one
specifies what they need the template to synthesize. Since the interpreter relies on a
complete scripting language, there is virtually no restriction on what a template can
generate. For instance, Listing [2] shows an excerpt of a template function and List-
ing 3| the C code it produces when called together with the MANEUVER specification.
The interpreter evaluates anything enclosed in markers <’ > without output, while
on the code between <” 7>, variables and commands substitution is performed and
the result is output in the destination file, together with the text outside of the mark-
ers. For example, <'foreach s [$component services] {'>... <'}'> iterates
over the list of services of the component, contained in the $component variable; while

<"[$s name]”> is replaced by the name of the service contained in the $s variable
bound by the foreach statement.

void
genom_<"$comp">_activity_report(
struct genom_component_data *self,
struct genom_activity *a)
{
switch(a->sid) {
case -1: return; /* permanent activity reports nothing x/
<’foreach s [$component services] {’>
case <"$COMP">_<"[$s name]”>_RQSTID:
genom_<"$comp">_<"[$s name]"”>_activity_report(

self,
(struct genom_<"$comp”>_<"[$s name]">_activity *)a);
return;
<>
3
Listing 2: A simple template code snippet.
void

genom_maneuver_activity_report(
struct genom_component_data *self,
struct genom_activity *a)
{
switch(a->sid) {
case -1: return; /* permanent activity reports nothing x/
case MANEUVER_connect_port_RQSTID:
genom_maneuver_connect_port_activity_report(
self,
(struct genom_maneuver_connect_port_activity *)a);
return;

case MANEUVER_goto_RQSTID:
genom_maneuver_goto_activity_report(
self,
(struct genom_maneuver_goto_activity *)a);
return;
case MANEUVER_waypoint_RQSTID:
genom_maneuver_waypoint_activity_report(
self,
(struct genom_maneuver_waypoint_activity *)a);
return;

Listing 3: Excerpt of the synthesized C code for the PocoLibs MANEUVER component
corresponding to the template in Listing 2] (note how the C code is synthesized for all
the services of the component).

There are a number of templates already defined, to synthesize the component code

for a given middleware (e.g., PocoLibs!, ROS [Quigley et al., 2009])), C client libraries,
OpenPRS client procedures and code, a JSON client, etc. For example, the template
skeleton generates the files containing the codel stubs with their proper function proto-
types. The user can then specify the algorithmic core of their codels without worrying
about the middleware.

3.1 Middleware Independence

The middleware “server” templates are used to synthesize the component itself to
be run on the robot. They output the glue code in charge of making calls to the targeted
middleware. The synthesized glue code manages message passing (requests/reports) as
well as ports connection, and handles all the internal algorithms to manage the different
tasks, services FSMs, proper locking of shared resources, etc. This is a viable solution
to the problem of middleware dependency as neither the specification nor the codels
rely on a specific middleware. Indeed, codel execution can only rely on the objects
declared in their arg list (i.e. IDS fields, their service arguments and ports) and do not
make calls to the middleware. Figure 3| shows an overview of G®"oM3 workflow for
middleware independence.

So far, G®"oMS offers several middleware templates, notably ROS-Com and PocoL-
ibs. The former heavily uses ROS topics, ROS services and ROS actions (actionLib) in
the synthesized code, while the latter uses PocoLibs primitives, such as MBox, CSM-
Box, posters, etc. But from an external behavior point of view, the two resulting com-
ponents (ROS and PocoLibs) behave exactly the same (apart from performance issues
specific to the middleware implementation).

3.2 Formal Verification

GPBM started as a robotic software development tool and methodology in the mid
90’s [Fleury et al., 1997]]. Quickly, it appeared that the component specification could
be used for more than components code synthesis. An earlier study, using G*"oM2,
did an ad hoc job at synthesizing a BIP [Basu et al., 2006]] model and went as far
as running the synthesized model of 14 components along with the BIP Engine on
a real robot [Bensalem et al., 2011]]. G®bM3 has a semantically cleaner specifica-
tion model (arbitrarily complex user-defined FSMs, codels WCETs, etc) and thanks
to its versatile template mechanism can now be used to synthesize formal models
for different frameworks (Fiacre [Berthomieu et al., 2008|]] and Real-Time BIP (RT-
BIP) [[Abdellatif et al., 2010]]). But one should keep in mind that we want to synthesize
the model which is semantically equivalent to the resulting component. So the syn-
thesized model goes beyond what is in the component specification file. As a result,
the Fiacre or RT-BIP templates synthesize models relative to a targeted specific mid-
dleware. Moreover, unlike the previous work presented in [Bensalem et al., 2011]], the
current G®M3 component specifications include some temporal information: WCET
on codels, as well as the period of execution tasks. WCET can be obtained empiri-
cally, or with more advanced techniques [Wilhelm et al., 2008||, for now, we get them

Ihttps://git.openrobots.org/projects/pocolibs

10

https://git.openrobots.org/projects/pocolibs

Independent Component Template for middleware X

-_———

Specification
(-gen)

N e e e = —

o Component for
External LIDraries |- Build - | Middleware X

Figure 3: Generating a G*"oM3 component for a middleware X.

by running the components and collecting data. Yet, these temporal information were
not taken into account in [Bensalem et al., 2011]] but are now part of the formal models
we synthesize.

In [Foughali et al., 2016]], a template is presented which automatically synthesizes
models in Fiacre [Berthomieu et al., 2008]], a formal language for specifying concur-
rent and real-time systems based on automata (behavior) and time Petri nets (timing
aspects). The synthesized models are exploited in order to verify important real-time
properties using TINA [Berthomieu et al., 2004] model checkers.

G®oM3 also provides a template to automatically generate RT-
BIP models. RT-BIP is a formal framework based on in-
teracting components encapsulating timed automata with urgencies. It is asso-
ciated to an execution engine and an offline deductive verification tool: RTD-
finder [Ben Rayana et al., 2016]]. The latest release of the RT-BIP engine (RT-BIPE)
implements external transitions guarded with external, non controllable events. This
allowed us to run the generated models with the RT-BIPE checking for client requests
while properly handling the execution of sporadic tasks, particularly the control task,
and monitor our components online.

11

4 Deployed Examples

There are already a number of experiments deployed with G®"oM3. We illustrate
our approach with the functional level of (i) a MikroKopter quadcopter flying in our
lab and (ii) our outdoor robot Mana.

4.1

Quadcopter Flying Example

Figure [2] presents the 5 components involved in our quadcopter functional layer.
Each box corresponds to a component, and each octagon is a port. Ports are written
(out) by the components they are attached to, and read (in) through the arrow pointing
to the reading component. Inside each box, we list the execution tasks (their period or
“ap” if they are aperiodic), and a partial list of the services provided by this component.
Note that this figure does not present the “supervisor” in charge of sending requests and
analyzing reports, which is out of scope of this paper.

MIKROKOPTER is the component in charge of the quadcopter low-level hard-
ware. The quadcopter is controlled by applying a velocity to each propeller, and
produces the current velocities, as well as its current IMU (Inertia Measurement
Unit) values. It has two tasks i) comm, aperiodic, which keeps polling and pars-
ing data from the hardware (to get the current propellers velocity and IMU) and
storing them in the IDS. ii) main, periodic at 1ms, which reads the cmd velocity
port, manages the servo control and writes the two ports IMU and the propellers
actual velocity.

OPTITRACK is the component handling the current position of the quadcopter as
perceived by our “OptiTrack” motion capture system. It has one task publish
which is aperiodic, but the data are produced by the motion capture at 100KHz.
It provides the current position of the quadcopter in the mocap pose port.

POM merges the mocap pose position produced by OPTITRACK and the IMU
from MIKROKOPTER and produces an Unscented Kalman filtered position in
port state. It has two tasks i0 and filter both periodic at 1KHz.

MANEUVER is the navigation component, it has two tasks exec with a period of
5ms and plan aperiodic. Given a position or waypoints to navigate to, it reads
the state, and computes a trajectory to reach it, producing intermediate positions
to fly to in desired state.

NHFC (Near Hovering Flight Controller) is the core of the flight controller. Run-
ning one task main at 1KHz, it reads the actual velocity port of the propellers,
the current position in the state port of POM, and the desired position (port de-
sired state) of MANEUVER and produces the proper cmd velocity port contain-
ing the desired velocity of the propellers (which is then read by MIKROKOPTER)
to reach and hover near this position.

The complexity of our quadcopter functional level is such that with 5 components,
12 tasks running potentially in parallel, over 40 services and more than 65 codels,

12

Control task

Start
mv_curr
ent_sate
_start

exec
mv_plan_
exec

pause

wait
mv_plan_
exec_wait
interrupt

Sy

Stop
mv_plan_exec
_stop

Execution task: plan

@ initial state —— > end of execution cycle

interruption signal

Figure 4: FSM of the goto activity of the MANEUVER component (See Listing |1}

line @-@

checking by hand any temporal property is impossible. Note that for the sake of sim-
plicity, only a partial list of services is presented in this paper, we refer the reader to
the source repository for the complete specifications https://git.openrobots.org/
projects/telekyb3(in the corresponding sub-projects).

4.2 QOutdoor Navigation Example

This navigation stack is inspired from the real navigation running on our Segway

RMP 400 robot, Mana.

Figure 5| presents the four components in charge of the navigation:

* ROBLOCO is in charge of the robot low-level controller. It has a track task (period
50 ms) associated to the activity 7SStart (TrackSpeedStart, interruptible by the
function 7SStop) that reads data from the speed port and sends it to the motor
controller. In parallel, one of the 0do task (period 50 ms) associated activities,
namely OdoStart (interruptible by the function OdoStop), reads the encoders on
the wheels and produces a current position on the pos port.

* ROBLASER is in charge of the laser. It has a scan task (period 50 ms) which
runs the StartScan activity (interruptible by the function StopScan). StartScan

13

https://git.openrobots.org/projects/telekyb3
https://git.openrobots.org/projects/telekyb3

Functional Level

robmap robmotion
Task: Task:
map 50ms plan 500ms
Services: HE® > Services:
Init Init
FuseMap u . GotoPosition
StopFuse Stop

@ﬁ
Gas /
robloco

roblaser Task: Task:
Task: odo 50ms track 50ms
scan 50ms Services:
SEiEEs: O\ nit TSStart

: ’ < pos | SetPos TSStop

Init _/ OdoStart ...
StartScan OdoStop
StopScan

Figure 5: An outdoor robot functional level

produces, on the port scan, the free space in the laser’s range tagged with the
position where the scan has been made (read on pos).

ROBMAP aggregates the successive scan data in the map port. A fuse task (pe-
riod 50 ms) and FuseMap, one of its activities, perform the computation. The
function FuseStop interrupts the activity FuseMap.

ROBMOTION has one task plan (period 500 ms) which, given a goal position (via
the activity GotoPosition), computes the appropriate speed to reach it and writes
it on speed, using the current position (from pos), and avoiding obstacles (from
map). GotoPosition interrupts itself, so a new request will cancel the currently
running one (if it exists) and force the execution of its stop state. Similarly, The
Stop service (function) interrupts GotoPosition.

14

5 Offline and Runtime Verification

Templates are used to generate our quadcopter and outdoor robot components for
various middleware. We use these components today routinely on PocoLibs and ROS-
Com middleware. In this section, we focus on verification of the PocoLibs implemen-
tation as it is more adapted for real-time applications such as flight control running at
1KHz.

5.1 Offline Real-time Properties with Fiacre

When it comes to prove real-time properties on concurrent real-time systems, one
has to take into account the hardware on which it runs, and the scheduling policy used.
The latest release of the Fiacre template allows the user to provide the number of cores
provided by the platform. The template consequently generates a Fiacre model of
the components including a cooperative (non-preemptive) FIFO scheduler in charge
of allocating the cores to the different tasks present in the components model>. We
give hereafter two examples of real-time properties that we successfully prove on our,
respectively, quadcopter and outdoor components. These properties are of a capital
importance to robotic programmers. Note that we automatically synthesize the Fiacre
models of the components and the external clients considering their behavior as they
produce the requests as needed for both applications.

Schedulability (Quadcopter) We refer to a periodic execution task as schedulable
if it always executes the requested services before its deadline (next period signal).
Schedulability is very often a hard real-time requirement in quadcopter applications.
The problem of verifying the schedulability of tasks is inherently complex in G*"oM3
because of the mutual exclusion between codels. For instance, in MIKROKOPTER,
while the task main is executing a given service, it may have to wait when it reaches
one of its codels since such a codel needs a resource (a field of the IDS or a port) already
in use by a codel being executed by the control task or the task comm or even a task
of another component since ports are shared among components. Hence, verifying the
schedulability is more complicated than just summing the WCETs of the codels and
comparing the result to the task period. Furthermore, the lack of cores may cause a
delay between the period signal and the actual start of task execution, raising the risk
to miss the deadline. To verify schedulability properties, we generate an external client
to ensure continuous navigation.

The modeling choices in [Foughali et al., 2016]] permit an easy expression of
schedulability properties for all tasks e.g. for main:

property schedulability_main is
always (microkopter/main/state executing =-not (main_period_signal))

Which translates to: for all execution paths, when main is at its state executing, the
boolean main_period_signal (which is set to true in the model when main period is
reached) evaluates to false. The same modeling choices ease also the verification of
schedulability properties. Indeed, they are expressed as invariants which allows the

%In other words, the tasks are not preempted, and relesease their core/CPU at the end of each cycle.

15

use of the TINA coarser reachability graph construction that does not preserve firing
sequences (smaller state spaces). The results, obtained in a few seconds, show that
all tasks are schedulable, considering the octa-core hardware constraints. We note that
in case of using a less powerful hardware, e.g. the quad-core ODROID-CO board, the
model checker produces a counterexample as the schedulability property holds no more
for io (POM). Considering the aforementioned scheduler characteristics, we prove that
in order to satisfy schedulability properties, a hardware with seven cores minimum is
indispensable.

Bounded Stop (Outdoor Robot) As soon as a Stop request is sent to ROBMOTION,
thestop codel of ROBMOTION’s GotoPosition is executed (because the specification
of the Stop service is to interrupt the GotoPosition service). This execution includes
writing a null speed to speed port that will be sent to the motor controller via executing
the codel update of TSStart (ROBLOCO). For the robot programmer, it is naturally
important to determine the maximum amount of time 7 between sending a Stop request
and applying a null speed to the wheels. Due to mutual exclusion among cores and
ports, manually calculating 7 would be as tedious as error-prone.

We make use of the Fiacre patterns [[Abid et al., 2012]] leadsto within and leave
to compute the worst-case value of 7 considering the actual quad-core platform on
Mana.
property bounded_stop_1 is (robmotion/control_task/state Stop_req) leadsto

(robmotion/GotoPosition/state stop) within [0,0.5]

property bounded_stop_2 is (robmotion/GotoPosition/state stop) leads to leave
(robloco/TSStart/state update) within [0,0.06]

The pattern leadsto encodes the Linear Temporal Logic (LTL) combined operator
O ¢ (always eventually). The scope modifier within extends the pattern leadsto
in order to express a timed property. The pattern leave expresses leaving a given
state. Indeed, it is important in this context to compute the bound up to the end of
update execution to make sure the null speed is sent to the wheels controller. We
sum the bounds separating (1) sending the Stop request and reaching the codel stop
of GotoPosition (ROBMOTION) and (2) reaching the codel stop of GotoPosition and
leaving the codel update of TSStart (ROBLOCO) to prove the sought bound 7 to be
560 ms.

5.2 Online Real-time Controller with RT-BIP

RT-BIP models are automatically generated out of G®6M3 specifications. The
GPBbM3-to-RT-BIP template synthesizes readily executable models (linked with the
codels) for the multi-threaded RT-BIPE. This latest release of RT-BIPE, allows the def-
inition of asynchronous external transitions, which permits us to run the component on
the RT-BIPE while communicating directly with external clients. We use these models
to conduct runtime monitoring on the outdoor robot navigation components ROBMO-
TION and ROBLOCO while evolving with the other components implemented in PocoL-
ibs. For instance, the RT-BIPE enforces the timed constraints of the model (respect of
task period and WCET) and is able to catch when those constraints are violated, and

16

take appropriate measures. The multithreaded RT-BIP engine is still currently under
development toward a version that will allow us to run all the components together on
the engine and perform runtime verification and online enforcement of properties. As
for offline verification of the model with RTD-Finder, it is still being investigated as the
tool does not yet readily support urgencies and variables. RTD-Finder, being a deduc-
tive verification tool on invariants automatically extracted from the model (behavior
invariants, interaction invariants and history clock invariants), may be a legitimate re-
sort when models do not scale with model checking. The outcome of the ongoing work
on integrating urgencies and/or variables in the verification process will certainly open
a new horizon in verifying more complex systems in the future.

6 Conclusion

G®oM3 defines a functional component specification language and offers a tem-
plate mechanism which allows the programmer to synthesize the component code
ready to be built, linked to the user written algorithms, and to deploy it on the tar-
geted platform. There exist a number of templates, for example to synthesize the com-
ponents for various middleware. Thus the middleware choice can be done later with
respect to performance issues, development platform or other independently deployed
components and legacy software. Similarly, one can now automatically synthesize the
formal models, for two frameworks widely used by the V&V community for embed-
ded and concurrent real-time systems (Fiacre and RT-BIP). These formal models can
then be used with their respective toolboxes, to formally check offline properties, using
complementary approaches: model checking for Fiacre; and invariants extraction and
satisfiability for RT-BIP. RT-BIP, together with its Engine can also run the formal mod-
els linked to the user code, in place of the regular component, and enforce real-time
properties at runtime. From the roboticist point of view, being able to formally check
functional components alone, but also integrated with other components, with two dif-
ferent V&V paradigms is a win-win situation, as one can choose the most adapted tech-
nique to the particular behavioral and timed properties they want to prove. Moreover,
with the rising complexity of autonomous systems (autonomous cars, drones, cobots,
etc), formal analysis and proof of correct behavior is becoming a rather critical issue
and can lead to new ways of certifying the software of these systems. For example, we
are now starting a new project to apply this methodology to an autonomous driverless
bus, and expect this approach to ease the certification of such a vehicle, with respect to
regulation agency.

As for future work, we plan to take advantage of the upcoming versions of the RT-
BIP Engine to be able to run all the components of a functional layer. We also plan to
improve how to have roboticist (not V&V expert) to express the properties they want
to prove and how to easily interpret the results.

17

References

[Abdellatif et al., 2010] Abdellatif, T., Combaz, J., and Sifakis, J. (2010). Model-
Based Implementation of Real-Time Applications. In EMSOFT.

[Abid et al., 2012] Abid, N., Dal Zilio, S., and Le Botlan, D. (2012). Real-Time Spec-
ification Patterns and Tools. In FMICS.

[Basu et al., 2006] Basu, A., Bozga, M., and Sifakis, J. (2006). Modeling Heteroge-
neous Real-Time Components in BIP. In SEFM.

[Ben Rayana et al., 2016] Ben Rayana, S., Bozga, M., Bensalem, S., and Combaz,
J. (2016). RTD-Finder - A Tool for Compositional Verification of Real-Time
Component-Based Systems. In TACAS.

[Bensalem et al., 2011] Bensalem, S., de Silva, L., Ingrand, F., and Yan, R. (2011).
A Verifiable and Correct-by-Construction Controller for Robot Functional Levels.
JOSER.

[Berthomieu et al., 2008] Berthomieu, B., Bodeveix, J.-P., Farail, P., Filali, M., Gar-
avel, H., Gaufillet, P., Lang, F., and Vernadat, F. (2008). Fiacre: an Intermediate
Language for Model Verification in the Topcased Environment. In ERTSS.

[Berthomieu et al., 2004] Berthomieu, B., Ribet, P. O., and Vernadat, F. (2004). The
tool TINA - Construction of abstract state spaces for Petri nets and Time Petri. In-
ternational Journal of Production Research.

[Boussinot and de Simone, 1991] Boussinot, F. and de Simone, R. (1991). The ES-
TEREL Language. In Proceeding of the IEEE.

[Brugali, 2015] Brugali, D. (2015). Model-Driven Software Engineering in Robotics.
IEEE RAM.

[Dhouib et al., 2012] Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., and Ziane, M.
(2012). RobotML, a Domain-Specific Language to Design, Simulate and Deploy
Robotic Applications. In SIMPAR.

[Elkady and Sobh, 2012] Elkady, A. and Sobh, T. (2012). Robotics Middleware: A
Comprehensive Literature Survey and Attribute-Based Bibliography. Journal of
Robotics.

[Espiau et al., 1996] Espiau, B., Kapellos, K., and Jourdan, M. (1996). Formal verifi-
cation in robotics: Why and how? In ISRR.

[Fleury et al., 1997] Fleury, S., Herrb, M., and Chatilla, R. (1997). GenoM: A Tool
for the Specification and the Implementation of Operating Modules in a Distributed
Robot Architecture. In IROS.

[Foughali et al., 2016] Foughali, M., Berthomieu, B., Dal Zilio, S., Ingrand, F., and
Mallet, A. (2016). Model Checking Real-Time Properties on the Functional Layer
of Autonomous Robots. In ICFEM.

18

[Gobillot et al., 2016] Gobillot, N., Guet, F., Doose, D., Grand, C., Lesire, C., and
Santinelli, L. (2016). Measurement-based real-time analysis of robotic software
architectures. In IROS.

[Gobillot et al., 2014] Gobillot, N., Lesire, C., and Doose, D. (2014). A Modeling
Framework for Software Architecture Specification and Validation. In SIMPAR.

[Ingrand et al., 2007] Ingrand, F., Lacroix, S., Lemai-Chenevier, S., and Py, F. (2007).
Decisional autonomy of planetary rovers. JFR.

[Jing et al., 2016] Jing, G., Tosun, T., Yim, M., and Kress-Gazit, H. (2016). An End-
To-End System for Accomplishing Tasks with Modular Robots. In RSS.

[Kim and Kang, 2005] Kim, M. and Kang, K. C. (2005). Formal Construction and
Verification of Home Service Robots: A Case Study. In Automated Technology for
Verification and Analysis.

[Kress-Gazit, 2011] Kress-Gazit, H. (2011). Robot challenges: Toward development
of verification and synthesis techniques [from the Guest Editors]. IEEE RAM.

[Kress-Gazit et al., 2011] Kress-Gazit, H., Wongpiromsarn, T., and Topcu, U. (2011).
Correct, Reactive, High-Level Robot Control. /[EEE RAM.

[Mallet et al., 2010] Mallet, A., Pasteur, C., Herrb, M., Lemaignan, S., and Ingrand, F.
(2010). GenoM3: Building middleware-independent robotic components. In ICRA.

[Mohamed et al., 2008] Mohamed, N., Al-Jaroodi, J., and Jawhar, 1. (2008). Middle-
ware for Robotics: A Survey. In RAMECH.

[Muradore et al., 2011] Muradore, R., Bresolin, D., Geretti, L., Fiorini, P., and Villa,
T. (2011). Robotic Surgery. IEEE RAM.

[Quigley et al., 2009] Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs,
J., Berger, E., Wheeler, R., and Ng, A. Y. (2009). ROS: an open-source Robot
Operating System. In /CRA.

[Ringert et al., 2015] Ringert, J. O., Roth, A., and Rumpe, B. (2015). Language and
code generator composition for model-driven engineering of robotics component &
connector systems. JOSER.

[Schlegel et al., 2009] Schlegel, C., Hassler, T., Lotz, A., and Steck, A. (2009).
Robotic software systems: From code-driven to model-driven designs. In /CAR.

[Sowmya et al., 2002] Sowmya, A., Tsz-Wang So, D., and Hung Tang, W. (2002).
Design of a Mobile Robot Controller using Esterel Tools. Electronic Notes in The-
oretical Computer Science.

[Wilhelm et al., 2008] Wilhelm, R., Mitra, T., Mueller, F., Puaut, 1., Puschner, P,
Staschulat, J., Stenstrom, P., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S.,
Whalley, D., Bernat, G., Ferdinand, C., and Heckmann, R. (2008). The worst-case
execution-time problem—overview of methods and survey of tools. TECS.

19

	Introduction
	G0Tto0enoM3 components
	Requirements
	Implementation

	Templates Approach
	Middleware Independence
	Formal Verification

	Deployed Examples
	Quadcopter Flying Example
	Outdoor Navigation Example

	Offline and Runtime Verification
	Offline Real-time Properties with Fiacre
	Online Real-time Controller with RT-BIP

	Conclusion

