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Abstract—In order to address the performance problems that 

many business applications are experiencing, network vendors 
and Network Service Providers are reconsidering the integration 
of some form of application awareness in the way their networks 
forward user traffic. Their ultimate goal is to devise new network 
service models that are dedicated and customized to applications. 
This trend is mainly enabled by the emergence of software-
Defined networking (SDN), which allows for flexible flow-based 
forwarding.  
This paper proposes an SDN-based Application Driven Network 
(ADN) that deploys customized data paths on an application 
basis, that the ADN is able to adapt to meet the, potentially, 
varying Quality of Service (QoS) needs of applications. These 
needs are, either, explicitly expressed and submitted by the 
middleware or by an application agent, or inferred by the 
proposed ADN with DPI (Deep Packet Inspection) based traffic 
classification techniques. This paper presents the general 
architecture of our proposed ADN by describing its main 
components, their requirements as well as their main algorithms. 
The proposed ADN has been implemented, evaluated and applied 
to the OMG Data Distribution Service (DDS) based distributed 
applications in an enterprise network context. 

Keywords—Application Driven Networking; Software Defined 
networking; Quality od Service; Network Virtualization 

I.  INTRODUCTION  
Despite all the advances on network Quality of Service 

(QoS) provisioning that we witnessed during the last decades, 
the performance of business critical applications on an 
enterprise network is still an issue that concerns an increasing 
number of organizations [1]. The study of [1] reveals that most 
organizations do not have any knowledge on the QoS 
requirements of most of their critical applications; Some of the 
reasons are that some QoS parameters are hard to specify 
especially for applications that exhibit some form of 
dynamicity (i.e. data flows exchanged between application 
processes and their associated QoS requirements vary over 
time). Also, they have a poor visibility on the performance that 
applications get from the network. As a consequence, these 
organizations resort to network resource over-provisioning 
coupled with network and QoS planning adjustments based on 
user complaint and feedback.  
One way to address these problems is to introduce some form 
of application awareness into the forwarding behavior of 
computer networks. This means that the network is able to 
provide customized data paths to applications, i.e. data paths 
that are assigned on a per application basis (and not on a 
destination basis) with the required characteristics (in terms of 
assigned network resources) to meet application QoS needs. 
The network must also cope with changing needs. It must be 
able to derive current application needs and then compute and 
mobilize on the fly the required network resources along the 

data path(s). This is what we are proposing in this paper and 
what we have referred to as an Application Driven Network 
(ADN). ADN enables the provision of network services with 
guaranteed dynamic QoS and efficient network utilization. 
One crucial aspect to ADN functioning is how to identify the 
traffic belonging to an application and what are its QoS needs. 
For some applications these needs are explicitly expressed 
either from the middleware on top of which they are built, or 
from an external agent with usually a human in the loop (e.g. 
[2][3]). In both cases, application level QoS requirements are 
mapped to QoS requirements on the network service (here, the 
ADN service). For the applications that do not provide any 
information on their needs, the proposed ADN relies on Deep 
Packet Inspection (DPI) to detect their presence and infer their 
short-term requirements. 
In fact, the general idea of directing network behavior to meet 
application demands with efficient resource utilization is not 
new and has already been considered in the dense literature 
related to QoS provisioning. All these works were applied to 
(and hence constrained by) legacy computer networks with 
distributed control and destination based forwarding 
(potentially, with a complementary priority tag). There have 
been some recent proposals on leveraging SDN to meet the 
above-cited goal. Most were centered on taking benefit from 
the centralized nature of the control and continued to assume a 
destination-based forwarding [4][5][6][7][8]. In contrast to 
previous works, our proposed ADN relies on a flow-based 
forwarding at the SDN substrate that combines layer 2 to layer 
4 packet headers. We argue that this is the condition to provide 
services (data paths) that exactly or closely match a fine-
grained description of applications’ traffic and needs. For 
completeness, some works [9][10] have advocated the use of 
flow-based forwarding, but in contrast to our work, they were 
not focused on providing strict QoS guarantees to applications.  
This paper is organized as follows. Section II describes the 
design principles of our proposal. Next, we present the general 
architecture of our proposed ADN as well as some of its main 
algorithms. Section V presents the ADN prototype that we 
implemented and some experimental results. Finally, section 
VI concludes the paper. 

II. KEY PRINCIPLES OF THE PROPOSED ADN  
One key principle of our proposed ADN is that the service 
provided to applications is typically (but not exclusively) based 
on a fine-grained knowledge of applications’ flows and QoS 
needs (i.e. application communication profile). The rationale is: 
a precise knowledge of applications’ needs allows deploying 
the right service (that meets exactly the needs) with the optimal 
set of network resources. In comparison to existing works, this 
is clearly one key characteristic of our proposal. The 
communication profile can be derived from the explicit 



 

description of the application’s requirements, optionally, 
complemented with some traffic estimations performed by the 
ADN. With the DDS Publish/Subscribe middleware [14] that 
we consider in our implemented prototype, this knowledge 
goes up to identifying the flows of data that are exchanged 
between each data-publisher and its associated data-subscribers 
(and their associated QoS). Also, DPIs fed with relevant traffic 
patterns are deployed at network node edges to classify the 
traffic belonging to the applications that are supposed to use 
the ADN services, and derive their current needs. In case of no 
explicit expression of needs, DPI based statistical traffic 
estimation techniques are used.  
Another principle is that the network service provided to 
applications is expressed as a Virtual NETwork (VNET) 
composed of a set of logical (virtual) end-to-end links (from 
end host to end host). Each virtual link is either point-to-point 
or point-to-multipoint and is characterized by a bandwidth 
requirement and a maximum transfer delay requirement. 
Our proposal assumes an SDN/OpenFlow enabled network 
infrastructure. This latter can be completely or partially 
dedicated to our ADN. In this latter case, some form of 
network virtualization applies and pre-defined slices on 
network elements are exclusively dedicated to our ADN. An 
SDN network control application, that we refer as “ADN 
service provisioning”, implements the ADN logic and is in 
charge of provisioning the ADN services. It is based on a low-
level northbound interface (i.e. OpenFlow like). 

The last key principle is to build an autonomic “ADN 
service provisioning” network function. More precisely, we 
primarily target the self-configuring property and approach the 
self-healing and self-optimizing properties.  

III. REFERENCE ARCHITECTURE OF THE PROPOSED ADN 
Figure 1 depicts the functional architecture of the network 
control function “ADN service provisioning” that implements 
our ADN approach. Its components are presented hereafter.  

A. Request handler 
It acts as a front-end and orchestrates the execution of the 

different components involved in servicing a VNET addition, 
update or deletion request. Upon a VNET addition request, for 
scalability purposes, it triggers the “flow aggregator” 
component to check whether some aggregation applies to the 
virtual links that compose the VNET. Then, it launches the 
“resource allocator” to compute the data paths supporting the 
VNET. Finally, it triggers the “VNET deployer” to install the 
VNET on the SDN substrate.  

B. Flow Aggregator 
The proposed ADN has the advantage of providing services 

with guaranteed QoS while efficiently using network resources/ 
But, it clearly raises scalability issues. One important aspect is 
the number of flow table entries that are installed on OpenFlow 
(OF) switches to support the service. Indeed, current flow-
tables, which are often based on fast TCAMs, have a size 
limited to a few thousands of entries. The “Flow Aggregator” 
component tackles this problem. It is in charge of computing 
the final set of flows that describes the expected service by 
grouping, when feasible, some flows together. The 
aggregations have generally a cost in terms of network resource 
utilization. This component optimizes this tradeoff.  

C. Virtual Network Resource Allocator 
On a virtual network request, it is in charge of computing 

the optimal set of physical paths (with the necessary resources) 

to use in order to support the virtual links with their QoS 
characteristics. Many optimization criteria can be considered. 
Amongst, the ones considered in this work, namely minimizing 
network resource utilization and minimizing network elements’ 
load disparities (which contribute to improve the admissibility 
of subsequent virtual network requests). For the same purpose, 
path splitting (multiple paths support a virtual link) can be 
enabled for some requests. Two types of network resources are 
taken into account: classically, the bandwidth of links but also 
the switching resources of nodes, i.e. the number of OpenFlow 
flow-table entries, group-table entries and meters.  

It is worth to note that this component also performs the 
reallocation or de-allocation of resources in case of an update 
or a cancellation request. 

 

D. Virtual Network Deployer 
The ultimate goal of this component is the effective 

deployment of the virtual network on the OpenFlow network 
infrastructure. It takes as input the data paths and the associated 
resources computed by the “VNET Resource allocator”, it 
generates the OpenFlow rules to apply on each OpenFlow 
switch, and it submits them to the OpenFlow controller via the 
northbound interface. The controller is instructed to install the 
rules on the identified switches. 

E. Application Classifier 
The proposed ADN targets, the applications that explicitly 

express their will of using the service by providing their QoS 
needs, as well as those that do not. Through network traffic 
analysis performed by DPIs deployed on the network and 
under its control, this component is in charge of identifying in 
real-time the applications that are allowed to use the ADN 
service, estimating their current needs and then issuing the 
corresponding VNET request.  

F. Autonomic Manager 
The ultimate goal of the “Autonomic manager” is to instill 

some of the autonomic properties to the “ADN service 
provisioning” network function. It manages the components 
described previously by implementing the MAPE (Monitoring, 
Analysis, Planning and Execution) loop (based on the frameself 
framework [11]). 
Without being exhaustive, some of the important identified 
situations that the “Autonomic manager” has to react to are 

Figure 1 ADN’s functional components 



 

 

described below. On a network topology change (detected by 
monitoring the network), it decides whether network resource 
re-allocations must be triggered (self-repairing). According to 
the available network resources and the virtual network 
request, it tunes the resource allocation (e.g. enable/disable 
path splitting) and/or the flow aggregation algorithms. 
Similarly, after virtual network cancellations, it decides to re-
compute the allocated resources in order to better distribute the 
load of network elements (self-optimizing). From its network 
monitoring, it detects that the rate allocated to a virtual link is 
not adequate and decides to enable traffic estimation related to 
the associated application (self-configuring).  

IV. MAIN ALGORITHMS 
In this section, we present the internal algorithms of the 

proposed “ADN service provisioning” network control 
function, more precisely, those of the “Virtual Network 
Deployer” and the “Virtual Network Resource Allocator”. 

The SDN substrate network is modeled as a bidirectional graph = ( , ) where (| |) is the set of SDN nodes and (| |,  × ) the set of physical links which operate in 
full-duplex mode. To each node , is associated a 
switching capacity , which is the maximum number of 
entries (i.e. size limit) of its flow table. The current size of node 
 flow table is denoted by . Similarly,  and  denote 

respectively the maximum and the current size of the group 
table of switch i. Each Link ( , ), ,   is weighted by its 
bandwidth B  and its propagation delay D ij. Links are assumed 
to have the same characteristics in both directions, i.e. B ij=B ji 
and Dij=D ji. The bandwidth that is currently assigned at link 
(i,j) by already admitted virtual links is denoted by . 
A virtual network request is composed of a set of K virtual 
links. Each virtual link k is characterised by: 
 a source node , and a set of destination nodes { } (when | | = 1, the virtual link is point-to-

point, otherwise it is point-to-multipoint); 
 a bandwidth requirement of , a maximum transfer 

delay of  and a maximum packet size of . 
We denote as ( , ) the bandwidth allocated at link ( , ) to 
the packets of virtual link k that are flowing from the source 
node s  to a destination node t. Also, ( , ) refers to the 
amount of bandwidth used on link ( , ) by the virtual link . It 
is set to the maximum of ( , )for all . 

A. The “Virtual Network Deployer” algorithm 
The “ADN service provisioning” function is implemented 

on top of a low-level northbound interface. First, we briefly 
present some prerequisites on the OpenFlow protocol before 
detailing the algorithm. For simplicity, the presented algorithm 
does not address the deployment of point-to-multipoint link 
with path splitting enabled.  

1) Some prerequisites on Openflow 
An OpenFlow switch embeds at least one flow table, a 

group table and a meter table. The OpenFlow controller relies 
on OpenFlow modification messages to fill these tables. Three 
types of messages are distinguished by the OpenFlow protocol. 
They are described hereafter. 
OpenFlow Flow Modification Messages (ofp_flow_mod) are 
used by the controller to insert, delete or update one flow entry 

into a flow table of a switch. Each flow entry contains a match 
field and a set of instructions that are executed when a packet 
matches the entry. These instructions result in changes to the 
packet action set. There are multiple types of instructions, 
among which, the "write-actions" and "meter", which are used 
in the proposed algorithm. “Write-Actions” instruction gathers 
a list of actions to add to the current “Action-Set” of the 
matching packet. The Meter instruction directs the matching 
packet to the specified meter.  
OpenFlow Group Modification Messages (ofp_group_mod) 
are sent by the controller to insert, delete or update a group 
entry into the group table of a switch. Each group entry has a 
group id; it is typically used by a flow table entry as a reference 
to the group. A group entry has a list of action buckets. 
Depending on the group type, the actions in one or more action 
buckets are applied to packets sent to the group. Two types are 
of interest to this work:  
 “Select”: Each bucket has a weight, which is used to 

choose the bucket that applies to an arriving packet.  
 “All”: used to perform multicast or broadcast forwarding. 

The packet is effectively cloned for each bucket. 

OpenFlow Meter Modification Messages (ofp_meter_mod) 
are sent by the controller to insert, delete or update a meter 
entry into the meter table of a switch. A meter entry is 
identified by a meter id and composed of one or more meter 
bands. Each meter band specifies a target rate for that band and 
the way packets are treated when that rate is exceeded: it is 
either dropped (for a meter band of type “Drop”) or remarked 
(for a meter band of type “DSCP remark”). 
A last point concerns the order with which OpenFlow Flow 
Modification Messages are sent to a switch. Obviously, when 
referring from a flow table entry to a meter or group, these 
must have been already created. This means that the processing 
of the OpenFlow meter (or group) modification message at the 
switch must precede the OpenFlow flow modification message. 
As described below, our algorithm schedules the transmission 
of modification messages to meet this constraint. 

2) The proposed algorithm 
The goal of the algorithm is to build the list of OpenFlow 

Modification Messages to deliver to each network node 
involved in the support of the virtual links that compose the 
Virtual Network. In fact, three lists of messages are computed 
for each node: 1) the list of OF Meter Modification Messages, 
2) the list of OF Group Modification Messages and 3) the list 
of OF Flow Modification Messages. Once computed, the 
algorithm informs the controller to convey them to node in the 
order specified above. Our algorithm uses (without being a 
necessity) the bundle mechanism introduced in OF version 1.4, 
for message grouping and ordering as well as, to store and pre-
validate them on each node before a global confirmation across 
multiple nodes. The main steps of the algorithm are:  
For each node i crossed by the virtual network [line 2], and for 
each virtual link k [line 3]: 

 If the node i is the source node of virtual link k, then it 
inserts an OpenFlow meter into meterModMessageList 
and keeps the meterID for later use (when building the 
flow modification message of the flow table entry that 
refers to the meter). [line 4 – line 8]  

 If the virtual link k is split at node i, then it inserts a group 
into groupModMessageList and it inserts a flow rule into 



 

 

flowModMessageList with that group as action of  “Write-
Actions” instruction. If the node i is the source of virtual 
link k, a meter instruction is also added [line 20 – line 34]. 
If k is not split at node i, then it inserts a flow into 
flowModMessageList with a simple output port action in 
the “Write-Actions” instruction, and eventually, a meter 
instruction if the node is the source of virtual link k [line 
10 – line 19]. 

 It transmits successively the meterModMessageList, 
groupModMessageList, flowModMessageList to node i’s 
bundle. This latter is configured with the ordered flag set, 
to request that the messages of the bundle are processed in 
the order of arrivals. [line 37-End]. 

VNET Deployer Algorithm 
Inputs: V,E,K,  f , f (i,j), V’: the set of nodes crossed by at least one virtual link. 
Variables : match: ofp_match; group_mod: ofp_group_mod; nextHops : set of nodes; 
flowModMessageList: ofp_flow_mod[];  groupModMessageList: ofp_group_mod[]; 
meterModMessageList: ofp_meter_mod[]; groupID, meterID, bundleID : integer; 
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begin 
for each i in V’ do 
 for each unicast link k in K 
 if(i = sk) then  
 meterID get_meter_id(i,k) 
 insert_into (meterModMessageList, {id =meterID, bands [0] ={rate = 

bk, type = drop}})  
 end if 
 nextHops computeNextHops(i, k,V’, E, f)  
 if (|nextHops| = 1) then 
 for each j in nextHops do  
  if(i = sk) then  
 insert_into (flowModMessageList, { match=create_match(), 
 instructions ={meter: meterID, write-actions: output.port=Pij}) 
 else 
 insert_into (flowModMessageList, { match=create_match(), 
 instructions ={write-actions: output.port =Pij}}) 
 end if 
 end for 
 else 
 groupID get_group_id(i,k) 
 group_mod.id groupID; group_mod.type select 
 for each j in nextHops do  
 group_mod.buckets[j]  {weight =f (i,j), actions ={ouput.port=Pij} } 
 end for 
 insert_into (groupModList, group_mod) 
 if (i = sk) then  
 insert_into (flowModMessageList, {match=create_match(), 
 instructions = {meter: meterID, write-actions: group.id=groupID}}) 
 else 
  insert_into (flowModMessageList, match =create_match(), 
  instructions ={write-actions: group.id =groupID}}) 
 end if 
 end if 
 end for 
 bundleID get_bundle_id(i)  
 OFPBCT_OPEN_REQUEST {id =bundleID, flags =ordered} 
 for each msg in meterModMessageList do  
 OFPT_BUNDLE_ADD_MESSAGE {id = bundleID, message = msg} 
 end for 
 for each msg in groupModMessageList do  
 OFPT_BUNDLE_ADD_MESSAGE {id = bundleID, message = msg} 
 end for 
 for each message in flowModMessageList do  
 OFPT_BUNDLE_ADD_MESSAGE {id =bundleID, message = msg} 
 end for 
 reset (meterModMessageList); reset (groupModMessageList); reset 
 (flowModMessageList) 
end for 
for each i in V’ do  
 OFPBCT_CLOSE_REQUEST {id = get_bundle_id(i)} 
 OFPBCT_COMMIT_REQUEST {id =get_bundle_id(i)} 
end for 
end  

B. VNET Resource Allocator 
This section describes the Integer Linear Programming 

(ILP) formulation that we propose to solve the resource 
allocations for the virtual network. Virtual network Requests 
arrive and are processed in sequence with no information on 
future requests. For each request, the output is the set of routes 
(with the bandwidth allocations at each supporting physical 
link and the number of flow table, meter table and group table 
entries at each crossed node) that support each of the virtual 
links composing the request. This algorithm extends our 
previous work [8] by considering meter tables and group tables 
(in addition to the flow tables) as network resources to assign. 
For meter tables, things are quite simple since OpenFlow 
meters are only activated on the source nodes of the virtual 
links. The algorithm simply checks that meter table entries are 
still available at source nodes. If so, the algorithm assigns a 
meter table entry on each of these nodes and proceeds with the 
other resources as describes below. If not, the VNET request 
cannot be accepted. 

1) Resource-related assignment variables 
In addition to ( , ) and ( , ), our model considers the 
following variables: 
 ( ):  is a boolean variable that specifies the number of 

entries that are installed in node  flow table to support 
virtual link  with the assumption that all entries consume 
the same amount of resources regardless of the complexity 
of the match operation and the related instructions to 
perform. A flow table entry is added if at least one node  
port is supporting traffic from  (equations 1). , ( , )  ( , ) ( )                     ( 1. ) ( ) ( , )

( , )
                  ( 1. ) 

where  ( , ) is an intermediate boolean variable that 
indicates whether some bandwidth from link ( , ) is 
assigned to virtual link k. It is derived from another set of 
more focused intermediate variables ( , ) that reflects 
whether the flow of packets of virtual link k destined to t is 
supported by the physical link ( , ) (i.e. ( , ) =0  if ( , ) = 0   and ( , ) = 1 otherwise). 

 ( ): is an integer variable that counts the number of 
group table entries assigned to k at node . As described in 
section V.A, a group table entry is added when splitting or 
when duplicating packets (for point-to-multipoint links). 

 : is the maximum link utilization (when considering all 
network links) after request acceptance. 

 : is the maximum flow table utilization (when 
considering all network nodes) after VNET acceptance. 

2) Problem Constraints 
The constraints on bandwidth allocations are described in 
equations 2 to 8. Equation 2 reflects the linearization of the 
Max operator applied to variables ( , ) to get ( , ). 
Equations 3 and 4 have a similar purpose and focus 
respectively on  and , which are minimized by the 
objective function (as explained below). 
 , ( , ) , :    ( , )  ( , )     (2) 



 

 

( , ) :    1  + ( , )          (3) 

:   1   + ( )                     (4) 

 
Equation 5 ensures that the bandwidth assigned to each virtual 
link  at link ( , ) does not exceed the remaining bandwidth. 
Equation 6 represents the usual flow conservation constraints. 
 ( , ) :   ( , )                              (5)  , ,                                                           

( ( , )  ( , ) )  =             =                           =                     0                                    (6) 

Equation 7 is a channeling constraint between integer and 
boolean variables: ( , ) and ( , ). It also constrains the 
virtual link k’s bandwidth assignment at a physical link to the 
requested bandwidth b . Equation 8 constrains the bandwidth 
that is assigned to the flow of packets destined to a specific 
virtual link’s end-point. The inequality on the right side 
ensures that the bandwidth requirement of the virtual link is 
never exceeded. The inequality on the left side directs path-
splitting and avoids the multiplication of splits with low 
bandwidth allocations. Indeed, if active, path splitting is 
feasible only if the bandwidth allocated to the splits respects a 
minimum threshold . In practice, b  is a ratio of , = , with [0, 1]. 
 , ( , )   
 ( , ) ( , )  ( , )   ( , )             (7) 
 , ( , )   ( , ) ( , )    ( , )   ( , )   (8) 

The constraints related to switching resource allocations are 
described in equations 9 and 10. Equation 9 simply ensures 
that with the addition of flow table entries needed by the 
virtual links composing the VNET, the size of network nodes’ 
flow tables remains below their maximum size. 

 : ( )                                     (9)   
Equations 10 constrain the allocations of group table entries. 
Equation 10.b applies when no group entries are needed for 
the virtual link k at node  (it neither crosses  nor requires a 
flow split or packet duplication). Equation 10.c applies when a 
group entry is needed. Finally, equation 10.d simply ensures 
that the addition of group entries that are needed by the virtual 
links respect the maximum size of all the group tables. 
   ,  0 ( ) 1                          (10. ) 

      , ( , ) :                                                                ( )  ( , )
( , )

( , )          (10. ) 

   ,  ( , ), ( , ) ,                                  
 ( ) ( , ) + ( , ) 1                (10. ) 

       ( )                    (10. ) 

 
3) Objective function 

The objective function aims at minimizing link and node 
resource consumption but also at distributing the consumed 
resources among nodes and links in order to reduce the creation 
of bottlenecks. Both contribute to improve the admissibility of 
forth coming requests. As shown in expression 11, it consists 
of four components, each weighted with a parameter that 
controls the impact of the component on the resolution process. 
The first two concern bandwidth allocations and the last two 
are their analogues for flow table entries allocations.  

Minimize | |   +  ( , )( , )            +             (11)          +  1| |  1  +  ( )          +   

V. IMPLEMENTATION & PERFORMANCE ANALYSIS 
A proof-of-concept prototype of the proposed ADN was 
implemented and applied to provide ADN services to DDS-
based distributed interactive simulation applications for 
vehicle driver training. These latters involve networked 
driving simulators that evolve in a shared virtual world. The 
mobility of the simulators (in the virtual world) brings 
dynamicity in the data flows that are delivered/consumed by 
each simulator and on their associated QoS. The topology of a 
real campus network with 31 nodes and 55 links (with 
100Mbps and 1Gbps) was considered as the SDN substrate. 
Apart the “autonomic manager” which was partially 
implemented, all the components of section III were 
implemented.  The “VNET Resource allocator” implements 
the algorithm presented in section IV.B using concert 
technologies C++ as the modeling layer and IBM CPLEX 
12.6 as solver. The “Virtual Network Deployer” implements 
the algorithm of section IV.A on top of the Floodlight SDN 
controller platform. The SDN substrate is emulated with 
mininet with OFSoftSwitch13 network nodes. One of the 
interesting features of Floodlight V.1.0 and OFSoftSwitch13 is 
their full support for OpenFlow (OF) 1.3. This allows the use 
of meters, and groups of type "all" and "select". Moreover, 
they offer an experimental support for OF 1.4, including 
bundles with atomic modification features. An online 
“application classifier” was also implemented for DDS; it 
inspects for ”DDS subscription request” packets (or QoS 



 

change or cancellation) to identify the new application flows 
and their QoS needs.  
Evaluations of the resource allocation algorithm were also 
realized to assess its general performance and benefits in 
comparison to some Shortest Path (SP) heuristics. The results 
presented below were based on the hierarchical real campus 
network topology cited above with the flow table and group 
table sizes respectively set to 2000 and 512 entries. VNET 
requests are assumed to arrive following a Poisson process 
with an arrival rate that is varied from 4 requests to 10 
requests per 100 Unit of Time (UT). Each VNET request is 
made of a number of virtual links that is randomly chosen 
from 1 to 4. Each virtual link has a number of destinations that 
is randomly chosen from 1 to 4 and has a bandwidth 
requirement randomly chosen from 1 to 3 Mbps. Once a 
VNET request is accepted it lasts till the end of the 
experiment, which is set to 10000 UT. Path Splitting (PS) is 
activated with a  set to 0,3. 
The considered SP heuristic is defined as follows. A cost 
function assigns a cost to each physical link that is inversely 
proportional to its current available capacity. For each couple 
of end-points that belong to a virtual link, the physical path 
with the minimum cost is chosen. If the bandwidth available 
on the chosen path is below the bandwidth required by the 
virtual link, the corresponding request is not admitted. 

Figure 2 – Requests Acceptance Rate 

Figure 2 describes the requests acceptance rate as a function of 
the requests arrival rate. Under this high load, it clearly shows 
that our algorithm achieves an acceptance rate significantly 
greater than the heuristic. Our experiments show that with our 
algorithm the average link utilization is between 60 and 80% 
at some backbone links, we observe, at the end of the 
experiments, that more than 95% of their capacity has been 
allocated. They are the main reason for VNET request 
rejection.  

Figure 3 – Convergence times 

Figure 3 presents the average time needed by our algorithm 
and the SP heuristic to compute the optimal allocations 
associated to a VNET request. For our algorithm, the 
convergence times remain at acceptable levels: on average 
below 60ms and a longest convergence time of 400ms.  

VI. CONCLUSION AND FUTURE  WORK 
This works proposes an SDN Based Application Driven 
Network that is able to provide QoS enabled data-paths on an 
application flow basis. This allows providing tailored network 
services to applications while using efficiently network 
resources (even when application requirements are dynamic). 
This detailed consideration of applications’ communication 
profile has a cost in terms of scalability. Clearly, the intention 
is not to apply the proposed ADN to any application and in 
any context. It rather targets real-time or business critical 
applications in an enterprise or campus networks, where 
scalability is not the primary concern. The proposed ADN was 
implemented and applied to prove its feasibility.  
Perspectives to this work mainly concern pursuing the 
evaluation of our proposal by considering other types of 
applications and other contexts. Extending the “application 
classifier” to other applications and evaluating its accuracy 
and reaction time. 
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