
HAL Id: hal-01460289
https://laas.hal.science/hal-01460289v2

Submitted on 20 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Application Driven Networking
Armel Francklin Simo Tegueu, Slim Abdellatif, Thierry Villemur, Pascal

Berthou, Thierry Plesse

To cite this version:
Armel Francklin Simo Tegueu, Slim Abdellatif, Thierry Villemur, Pascal Berthou, Thierry Plesse. To-
wards Application Driven Networking. 2016 IEEE International Symposium on Local and Metropoli-
tan Area Networks (LANMAN), Jun 2016, ROME, Italy. �10.1109/LANMAN.2016.7548865�. �hal-
01460289v2�

https://laas.hal.science/hal-01460289v2
https://hal.archives-ouvertes.fr

Towards Application Driven Networking
Francklin Simo Tegueua, Slim Abdellatif a, Thierry Villemura, Pascal Berthoua, Thierry Plesseb

a LAAS-CNRS, Université de Toulouse, CNRS, INSA, UPS, Toulouse, France
b Directorate General of Armaments (DGA), La Roche Marguerite, 35998 Rennes, France

Abstract—In order to address the performance problems that

many business applications are experiencing, network vendors
and Network Service Providers are reconsidering the integration
of some form of application awareness in the way their networks
forward user traffic. Their ultimate goal is to devise new network
service models that are dedicated and customized to applications.
This trend is mainly enabled by the emergence of software-
Defined networking (SDN), which allows for flexible flow-based
forwarding.
This paper proposes an SDN-based Application Driven Network
(ADN) that deploys customized data paths on an application
basis, that the ADN is able to adapt to meet the, potentially,
varying Quality of Service (QoS) needs of applications. These
needs are, either, explicitly expressed and submitted by the
middleware or by an application agent, or inferred by the
proposed ADN with DPI (Deep Packet Inspection) based traffic
classification techniques. This paper presents the general
architecture of our proposed ADN by describing its main
components, their requirements as well as their main algorithms.
The proposed ADN has been implemented, evaluated and applied
to the OMG Data Distribution Service (DDS) based distributed
applications in an enterprise network context.

Keywords—Application Driven Networking; Software Defined
networking; Quality od Service; Network Virtualization

I. INTRODUCTION
Despite all the advances on network Quality of Service

(QoS) provisioning that we witnessed during the last decades,
the performance of business critical applications on an
enterprise network is still an issue that concerns an increasing
number of organizations [1]. The study of [1] reveals that most
organizations do not have any knowledge on the QoS
requirements of most of their critical applications; Some of the
reasons are that some QoS parameters are hard to specify
especially for applications that exhibit some form of
dynamicity (i.e. data flows exchanged between application
processes and their associated QoS requirements vary over
time). Also, they have a poor visibility on the performance that
applications get from the network. As a consequence, these
organizations resort to network resource over-provisioning
coupled with network and QoS planning adjustments based on
user complaint and feedback.
One way to address these problems is to introduce some form
of application awareness into the forwarding behavior of
computer networks. This means that the network is able to
provide customized data paths to applications, i.e. data paths
that are assigned on a per application basis (and not on a
destination basis) with the required characteristics (in terms of
assigned network resources) to meet application QoS needs.
The network must also cope with changing needs. It must be
able to derive current application needs and then compute and
mobilize on the fly the required network resources along the

data path(s). This is what we are proposing in this paper and
what we have referred to as an Application Driven Network
(ADN). ADN enables the provision of network services with
guaranteed dynamic QoS and efficient network utilization.
One crucial aspect to ADN functioning is how to identify the
traffic belonging to an application and what are its QoS needs.
For some applications these needs are explicitly expressed
either from the middleware on top of which they are built, or
from an external agent with usually a human in the loop (e.g.
[2][3]). In both cases, application level QoS requirements are
mapped to QoS requirements on the network service (here, the
ADN service). For the applications that do not provide any
information on their needs, the proposed ADN relies on Deep
Packet Inspection (DPI) to detect their presence and infer their
short-term requirements.
In fact, the general idea of directing network behavior to meet
application demands with efficient resource utilization is not
new and has already been considered in the dense literature
related to QoS provisioning. All these works were applied to
(and hence constrained by) legacy computer networks with
distributed control and destination based forwarding
(potentially, with a complementary priority tag). There have
been some recent proposals on leveraging SDN to meet the
above-cited goal. Most were centered on taking benefit from
the centralized nature of the control and continued to assume a
destination-based forwarding [4][5][6][7][8]. In contrast to
previous works, our proposed ADN relies on a flow-based
forwarding at the SDN substrate that combines layer 2 to layer
4 packet headers. We argue that this is the condition to provide
services (data paths) that exactly or closely match a fine-
grained description of applications’ traffic and needs. For
completeness, some works [9][10] have advocated the use of
flow-based forwarding, but in contrast to our work, they were
not focused on providing strict QoS guarantees to applications.
This paper is organized as follows. Section II describes the
design principles of our proposal. Next, we present the general
architecture of our proposed ADN as well as some of its main
algorithms. Section V presents the ADN prototype that we
implemented and some experimental results. Finally, section
VI concludes the paper.

II. KEY PRINCIPLES OF THE PROPOSED ADN
One key principle of our proposed ADN is that the service
provided to applications is typically (but not exclusively) based
on a fine-grained knowledge of applications’ flows and QoS
needs (i.e. application communication profile). The rationale is:
a precise knowledge of applications’ needs allows deploying
the right service (that meets exactly the needs) with the optimal
set of network resources. In comparison to existing works, this
is clearly one key characteristic of our proposal. The
communication profile can be derived from the explicit

description of the application’s requirements, optionally,
complemented with some traffic estimations performed by the
ADN. With the DDS Publish/Subscribe middleware [14] that
we consider in our implemented prototype, this knowledge
goes up to identifying the flows of data that are exchanged
between each data-publisher and its associated data-subscribers
(and their associated QoS). Also, DPIs fed with relevant traffic
patterns are deployed at network node edges to classify the
traffic belonging to the applications that are supposed to use
the ADN services, and derive their current needs. In case of no
explicit expression of needs, DPI based statistical traffic
estimation techniques are used.
Another principle is that the network service provided to
applications is expressed as a Virtual NETwork (VNET)
composed of a set of logical (virtual) end-to-end links (from
end host to end host). Each virtual link is either point-to-point
or point-to-multipoint and is characterized by a bandwidth
requirement and a maximum transfer delay requirement.
Our proposal assumes an SDN/OpenFlow enabled network
infrastructure. This latter can be completely or partially
dedicated to our ADN. In this latter case, some form of
network virtualization applies and pre-defined slices on
network elements are exclusively dedicated to our ADN. An
SDN network control application, that we refer as “ADN
service provisioning”, implements the ADN logic and is in
charge of provisioning the ADN services. It is based on a low-
level northbound interface (i.e. OpenFlow like).

The last key principle is to build an autonomic “ADN
service provisioning” network function. More precisely, we
primarily target the self-configuring property and approach the
self-healing and self-optimizing properties.

III. REFERENCE ARCHITECTURE OF THE PROPOSED ADN
Figure 1 depicts the functional architecture of the network
control function “ADN service provisioning” that implements
our ADN approach. Its components are presented hereafter.

A. Request handler
It acts as a front-end and orchestrates the execution of the

different components involved in servicing a VNET addition,
update or deletion request. Upon a VNET addition request, for
scalability purposes, it triggers the “flow aggregator”
component to check whether some aggregation applies to the
virtual links that compose the VNET. Then, it launches the
“resource allocator” to compute the data paths supporting the
VNET. Finally, it triggers the “VNET deployer” to install the
VNET on the SDN substrate.

B. Flow Aggregator
The proposed ADN has the advantage of providing services

with guaranteed QoS while efficiently using network resources/
But, it clearly raises scalability issues. One important aspect is
the number of flow table entries that are installed on OpenFlow
(OF) switches to support the service. Indeed, current flow-
tables, which are often based on fast TCAMs, have a size
limited to a few thousands of entries. The “Flow Aggregator”
component tackles this problem. It is in charge of computing
the final set of flows that describes the expected service by
grouping, when feasible, some flows together. The
aggregations have generally a cost in terms of network resource
utilization. This component optimizes this tradeoff.

C. Virtual Network Resource Allocator
On a virtual network request, it is in charge of computing

the optimal set of physical paths (with the necessary resources)

to use in order to support the virtual links with their QoS
characteristics. Many optimization criteria can be considered.
Amongst, the ones considered in this work, namely minimizing
network resource utilization and minimizing network elements’
load disparities (which contribute to improve the admissibility
of subsequent virtual network requests). For the same purpose,
path splitting (multiple paths support a virtual link) can be
enabled for some requests. Two types of network resources are
taken into account: classically, the bandwidth of links but also
the switching resources of nodes, i.e. the number of OpenFlow
flow-table entries, group-table entries and meters.

It is worth to note that this component also performs the
reallocation or de-allocation of resources in case of an update
or a cancellation request.

D. Virtual Network Deployer
The ultimate goal of this component is the effective

deployment of the virtual network on the OpenFlow network
infrastructure. It takes as input the data paths and the associated
resources computed by the “VNET Resource allocator”, it
generates the OpenFlow rules to apply on each OpenFlow
switch, and it submits them to the OpenFlow controller via the
northbound interface. The controller is instructed to install the
rules on the identified switches.

E. Application Classifier
The proposed ADN targets, the applications that explicitly

express their will of using the service by providing their QoS
needs, as well as those that do not. Through network traffic
analysis performed by DPIs deployed on the network and
under its control, this component is in charge of identifying in
real-time the applications that are allowed to use the ADN
service, estimating their current needs and then issuing the
corresponding VNET request.

F. Autonomic Manager
The ultimate goal of the “Autonomic manager” is to instill

some of the autonomic properties to the “ADN service
provisioning” network function. It manages the components
described previously by implementing the MAPE (Monitoring,
Analysis, Planning and Execution) loop (based on the frameself
framework [11]).
Without being exhaustive, some of the important identified
situations that the “Autonomic manager” has to react to are

Figure 1 ADN’s functional components

described below. On a network topology change (detected by
monitoring the network), it decides whether network resource
re-allocations must be triggered (self-repairing). According to
the available network resources and the virtual network
request, it tunes the resource allocation (e.g. enable/disable
path splitting) and/or the flow aggregation algorithms.
Similarly, after virtual network cancellations, it decides to re-
compute the allocated resources in order to better distribute the
load of network elements (self-optimizing). From its network
monitoring, it detects that the rate allocated to a virtual link is
not adequate and decides to enable traffic estimation related to
the associated application (self-configuring).

IV. MAIN ALGORITHMS
In this section, we present the internal algorithms of the

proposed “ADN service provisioning” network control
function, more precisely, those of the “Virtual Network
Deployer” and the “Virtual Network Resource Allocator”.

The SDN substrate network is modeled as a bidirectional graph = (,) where (| |) is the set of SDN nodes and (| |, ×) the set of physical links which operate in
full-duplex mode. To each node , is associated a
switching capacity , which is the maximum number of
entries (i.e. size limit) of its flow table. The current size of node
 flow table is denoted by . Similarly, and denote

respectively the maximum and the current size of the group
table of switch i. Each Link (,), , is weighted by its
bandwidth B and its propagation delay D ij. Links are assumed
to have the same characteristics in both directions, i.e. B ij=B ji
and Dij=D ji. The bandwidth that is currently assigned at link
(i,j) by already admitted virtual links is denoted by .
A virtual network request is composed of a set of K virtual
links. Each virtual link k is characterised by:
 a source node , and a set of destination nodes { } (when | | = 1, the virtual link is point-to-

point, otherwise it is point-to-multipoint);
 a bandwidth requirement of , a maximum transfer

delay of and a maximum packet size of .
We denote as (,) the bandwidth allocated at link (,) to
the packets of virtual link k that are flowing from the source
node s to a destination node t. Also, (,) refers to the
amount of bandwidth used on link (,) by the virtual link . It
is set to the maximum of (,)for all .

A. The “Virtual Network Deployer” algorithm
The “ADN service provisioning” function is implemented

on top of a low-level northbound interface. First, we briefly
present some prerequisites on the OpenFlow protocol before
detailing the algorithm. For simplicity, the presented algorithm
does not address the deployment of point-to-multipoint link
with path splitting enabled.

1) Some prerequisites on Openflow
An OpenFlow switch embeds at least one flow table, a

group table and a meter table. The OpenFlow controller relies
on OpenFlow modification messages to fill these tables. Three
types of messages are distinguished by the OpenFlow protocol.
They are described hereafter.
OpenFlow Flow Modification Messages (ofp_flow_mod) are
used by the controller to insert, delete or update one flow entry

into a flow table of a switch. Each flow entry contains a match
field and a set of instructions that are executed when a packet
matches the entry. These instructions result in changes to the
packet action set. There are multiple types of instructions,
among which, the "write-actions" and "meter", which are used
in the proposed algorithm. “Write-Actions” instruction gathers
a list of actions to add to the current “Action-Set” of the
matching packet. The Meter instruction directs the matching
packet to the specified meter.
OpenFlow Group Modification Messages (ofp_group_mod)
are sent by the controller to insert, delete or update a group
entry into the group table of a switch. Each group entry has a
group id; it is typically used by a flow table entry as a reference
to the group. A group entry has a list of action buckets.
Depending on the group type, the actions in one or more action
buckets are applied to packets sent to the group. Two types are
of interest to this work:
 “Select”: Each bucket has a weight, which is used to

choose the bucket that applies to an arriving packet.
 “All”: used to perform multicast or broadcast forwarding.

The packet is effectively cloned for each bucket.

OpenFlow Meter Modification Messages (ofp_meter_mod)
are sent by the controller to insert, delete or update a meter
entry into the meter table of a switch. A meter entry is
identified by a meter id and composed of one or more meter
bands. Each meter band specifies a target rate for that band and
the way packets are treated when that rate is exceeded: it is
either dropped (for a meter band of type “Drop”) or remarked
(for a meter band of type “DSCP remark”).
A last point concerns the order with which OpenFlow Flow
Modification Messages are sent to a switch. Obviously, when
referring from a flow table entry to a meter or group, these
must have been already created. This means that the processing
of the OpenFlow meter (or group) modification message at the
switch must precede the OpenFlow flow modification message.
As described below, our algorithm schedules the transmission
of modification messages to meet this constraint.

2) The proposed algorithm
The goal of the algorithm is to build the list of OpenFlow

Modification Messages to deliver to each network node
involved in the support of the virtual links that compose the
Virtual Network. In fact, three lists of messages are computed
for each node: 1) the list of OF Meter Modification Messages,
2) the list of OF Group Modification Messages and 3) the list
of OF Flow Modification Messages. Once computed, the
algorithm informs the controller to convey them to node in the
order specified above. Our algorithm uses (without being a
necessity) the bundle mechanism introduced in OF version 1.4,
for message grouping and ordering as well as, to store and pre-
validate them on each node before a global confirmation across
multiple nodes. The main steps of the algorithm are:
For each node i crossed by the virtual network [line 2], and for
each virtual link k [line 3]:

 If the node i is the source node of virtual link k, then it
inserts an OpenFlow meter into meterModMessageList
and keeps the meterID for later use (when building the
flow modification message of the flow table entry that
refers to the meter). [line 4 – line 8]

 If the virtual link k is split at node i, then it inserts a group
into groupModMessageList and it inserts a flow rule into

flowModMessageList with that group as action of “Write-
Actions” instruction. If the node i is the source of virtual
link k, a meter instruction is also added [line 20 – line 34].
If k is not split at node i, then it inserts a flow into
flowModMessageList with a simple output port action in
the “Write-Actions” instruction, and eventually, a meter
instruction if the node is the source of virtual link k [line
10 – line 19].

 It transmits successively the meterModMessageList,
groupModMessageList, flowModMessageList to node i’s
bundle. This latter is configured with the ordered flag set,
to request that the messages of the bundle are processed in
the order of arrivals. [line 37-End].

VNET Deployer Algorithm
Inputs: V,E,K, f , f (i,j), V’: the set of nodes crossed by at least one virtual link.
Variables : match: ofp_match; group_mod: ofp_group_mod; nextHops : set of nodes;
flowModMessageList: ofp_flow_mod[]; groupModMessageList: ofp_group_mod[];
meterModMessageList: ofp_meter_mod[]; groupID, meterID, bundleID : integer;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

begin
for each i in V’ do
 for each unicast link k in K
 if(i = sk) then
 meterID get_meter_id(i,k)
 insert_into (meterModMessageList, {id =meterID, bands [0] ={rate =

bk, type = drop}})
 end if
 nextHops computeNextHops(i, k,V’, E, f)
 if (|nextHops| = 1) then
 for each j in nextHops do
 if(i = sk) then
 insert_into (flowModMessageList, { match=create_match(),
 instructions ={meter: meterID, write-actions: output.port=Pij})
 else
 insert_into (flowModMessageList, { match=create_match(),
 instructions ={write-actions: output.port =Pij}})
 end if
 end for
 else
 groupID get_group_id(i,k)
 group_mod.id groupID; group_mod.type select
 for each j in nextHops do
 group_mod.buckets[j] {weight =f (i,j), actions ={ouput.port=Pij} }
 end for
 insert_into (groupModList, group_mod)
 if (i = sk) then
 insert_into (flowModMessageList, {match=create_match(),
 instructions = {meter: meterID, write-actions: group.id=groupID}})
 else
 insert_into (flowModMessageList, match =create_match(),
 instructions ={write-actions: group.id =groupID}})
 end if
 end if
 end for
 bundleID get_bundle_id(i)
 OFPBCT_OPEN_REQUEST {id =bundleID, flags =ordered}
 for each msg in meterModMessageList do
 OFPT_BUNDLE_ADD_MESSAGE {id = bundleID, message = msg}
 end for
 for each msg in groupModMessageList do
 OFPT_BUNDLE_ADD_MESSAGE {id = bundleID, message = msg}
 end for
 for each message in flowModMessageList do
 OFPT_BUNDLE_ADD_MESSAGE {id =bundleID, message = msg}
 end for
 reset (meterModMessageList); reset (groupModMessageList); reset
 (flowModMessageList)
end for
for each i in V’ do
 OFPBCT_CLOSE_REQUEST {id = get_bundle_id(i)}
 OFPBCT_COMMIT_REQUEST {id =get_bundle_id(i)}
end for
end

B. VNET Resource Allocator
This section describes the Integer Linear Programming

(ILP) formulation that we propose to solve the resource
allocations for the virtual network. Virtual network Requests
arrive and are processed in sequence with no information on
future requests. For each request, the output is the set of routes
(with the bandwidth allocations at each supporting physical
link and the number of flow table, meter table and group table
entries at each crossed node) that support each of the virtual
links composing the request. This algorithm extends our
previous work [8] by considering meter tables and group tables
(in addition to the flow tables) as network resources to assign.
For meter tables, things are quite simple since OpenFlow
meters are only activated on the source nodes of the virtual
links. The algorithm simply checks that meter table entries are
still available at source nodes. If so, the algorithm assigns a
meter table entry on each of these nodes and proceeds with the
other resources as describes below. If not, the VNET request
cannot be accepted.

1) Resource-related assignment variables
In addition to (,) and (,), our model considers the
following variables:
 (): is a boolean variable that specifies the number of

entries that are installed in node flow table to support
virtual link with the assumption that all entries consume
the same amount of resources regardless of the complexity
of the match operation and the related instructions to
perform. A flow table entry is added if at least one node
port is supporting traffic from (equations 1). , (,) (,) () (1.) () (,)

(,)
 (1.)

where (,) is an intermediate boolean variable that
indicates whether some bandwidth from link (,) is
assigned to virtual link k. It is derived from another set of
more focused intermediate variables (,) that reflects
whether the flow of packets of virtual link k destined to t is
supported by the physical link (,) (i.e. (,) =0 if (,) = 0 and (,) = 1 otherwise).

 (): is an integer variable that counts the number of
group table entries assigned to k at node . As described in
section V.A, a group table entry is added when splitting or
when duplicating packets (for point-to-multipoint links).

 : is the maximum link utilization (when considering all
network links) after request acceptance.

 : is the maximum flow table utilization (when
considering all network nodes) after VNET acceptance.

2) Problem Constraints
The constraints on bandwidth allocations are described in
equations 2 to 8. Equation 2 reflects the linearization of the
Max operator applied to variables (,) to get (,).
Equations 3 and 4 have a similar purpose and focus
respectively on and , which are minimized by the
objective function (as explained below).
 , (,) , : (,) (,) (2)

(,) : 1 + (,) (3)

: 1 + () (4)

Equation 5 ensures that the bandwidth assigned to each virtual
link at link (,) does not exceed the remaining bandwidth.
Equation 6 represents the usual flow conservation constraints.
 (,) : (,) (5) , ,

((,) (,)) = = = 0 (6)

Equation 7 is a channeling constraint between integer and
boolean variables: (,) and (,). It also constrains the
virtual link k’s bandwidth assignment at a physical link to the
requested bandwidth b . Equation 8 constrains the bandwidth
that is assigned to the flow of packets destined to a specific
virtual link’s end-point. The inequality on the right side
ensures that the bandwidth requirement of the virtual link is
never exceeded. The inequality on the left side directs path-
splitting and avoids the multiplication of splits with low
bandwidth allocations. Indeed, if active, path splitting is
feasible only if the bandwidth allocated to the splits respects a
minimum threshold . In practice, b is a ratio of , = , with [0, 1].
 , (,)
 (,) (,) (,) (,) (7)
 , (,) (,) (,) (,) (,) (8)

The constraints related to switching resource allocations are
described in equations 9 and 10. Equation 9 simply ensures
that with the addition of flow table entries needed by the
virtual links composing the VNET, the size of network nodes’
flow tables remains below their maximum size.

 : () (9)
Equations 10 constrain the allocations of group table entries.
Equation 10.b applies when no group entries are needed for
the virtual link k at node (it neither crosses nor requires a
flow split or packet duplication). Equation 10.c applies when a
group entry is needed. Finally, equation 10.d simply ensures
that the addition of group entries that are needed by the virtual
links respect the maximum size of all the group tables.
 , 0 () 1 (10.)

 , (,) : () (,)
(,)

(,) (10.)

 , (,), (,) ,
 () (,) + (,) 1 (10.)

 () (10.)

3) Objective function

The objective function aims at minimizing link and node
resource consumption but also at distributing the consumed
resources among nodes and links in order to reduce the creation
of bottlenecks. Both contribute to improve the admissibility of
forth coming requests. As shown in expression 11, it consists
of four components, each weighted with a parameter that
controls the impact of the component on the resolution process.
The first two concern bandwidth allocations and the last two
are their analogues for flow table entries allocations.

Minimize | | + (,)(,) + (11) + 1| | 1 + () +

V. IMPLEMENTATION & PERFORMANCE ANALYSIS
A proof-of-concept prototype of the proposed ADN was
implemented and applied to provide ADN services to DDS-
based distributed interactive simulation applications for
vehicle driver training. These latters involve networked
driving simulators that evolve in a shared virtual world. The
mobility of the simulators (in the virtual world) brings
dynamicity in the data flows that are delivered/consumed by
each simulator and on their associated QoS. The topology of a
real campus network with 31 nodes and 55 links (with
100Mbps and 1Gbps) was considered as the SDN substrate.
Apart the “autonomic manager” which was partially
implemented, all the components of section III were
implemented. The “VNET Resource allocator” implements
the algorithm presented in section IV.B using concert
technologies C++ as the modeling layer and IBM CPLEX
12.6 as solver. The “Virtual Network Deployer” implements
the algorithm of section IV.A on top of the Floodlight SDN
controller platform. The SDN substrate is emulated with
mininet with OFSoftSwitch13 network nodes. One of the
interesting features of Floodlight V.1.0 and OFSoftSwitch13 is
their full support for OpenFlow (OF) 1.3. This allows the use
of meters, and groups of type "all" and "select". Moreover,
they offer an experimental support for OF 1.4, including
bundles with atomic modification features. An online
“application classifier” was also implemented for DDS; it
inspects for ”DDS subscription request” packets (or QoS

change or cancellation) to identify the new application flows
and their QoS needs.
Evaluations of the resource allocation algorithm were also
realized to assess its general performance and benefits in
comparison to some Shortest Path (SP) heuristics. The results
presented below were based on the hierarchical real campus
network topology cited above with the flow table and group
table sizes respectively set to 2000 and 512 entries. VNET
requests are assumed to arrive following a Poisson process
with an arrival rate that is varied from 4 requests to 10
requests per 100 Unit of Time (UT). Each VNET request is
made of a number of virtual links that is randomly chosen
from 1 to 4. Each virtual link has a number of destinations that
is randomly chosen from 1 to 4 and has a bandwidth
requirement randomly chosen from 1 to 3 Mbps. Once a
VNET request is accepted it lasts till the end of the
experiment, which is set to 10000 UT. Path Splitting (PS) is
activated with a set to 0,3.
The considered SP heuristic is defined as follows. A cost
function assigns a cost to each physical link that is inversely
proportional to its current available capacity. For each couple
of end-points that belong to a virtual link, the physical path
with the minimum cost is chosen. If the bandwidth available
on the chosen path is below the bandwidth required by the
virtual link, the corresponding request is not admitted.

Figure 2 – Requests Acceptance Rate

Figure 2 describes the requests acceptance rate as a function of
the requests arrival rate. Under this high load, it clearly shows
that our algorithm achieves an acceptance rate significantly
greater than the heuristic. Our experiments show that with our
algorithm the average link utilization is between 60 and 80%
at some backbone links, we observe, at the end of the
experiments, that more than 95% of their capacity has been
allocated. They are the main reason for VNET request
rejection.

Figure 3 – Convergence times

Figure 3 presents the average time needed by our algorithm
and the SP heuristic to compute the optimal allocations
associated to a VNET request. For our algorithm, the
convergence times remain at acceptable levels: on average
below 60ms and a longest convergence time of 400ms.

VI. CONCLUSION AND FUTURE WORK
This works proposes an SDN Based Application Driven
Network that is able to provide QoS enabled data-paths on an
application flow basis. This allows providing tailored network
services to applications while using efficiently network
resources (even when application requirements are dynamic).
This detailed consideration of applications’ communication
profile has a cost in terms of scalability. Clearly, the intention
is not to apply the proposed ADN to any application and in
any context. It rather targets real-time or business critical
applications in an enterprise or campus networks, where
scalability is not the primary concern. The proposed ADN was
implemented and applied to prove its feasibility.
Perspectives to this work mainly concern pursuing the
evaluation of our proposal by considering other types of
applications and other contexts. Extending the “application
classifier” to other applications and evaluating its accuracy
and reaction time.

ACKNOWLEDGMENT
This work is partially funded by the French National Research
Agency (ANR), the French Defense Agency (DGA) under the
project ANR DGA ADN (ANR-13-ASTR-0024) and by
European Union’s Horizon 2020 research and innovation
programme under the ENDEAVOUR project (grant agreement
644960).

REFERENCES
[1] Justin Fielder and Thierry Grenot, “Killer Apps 2012” research study, Easynet

Global services and Ipanema Technologies, 2012.

[2] S. Gorlatch, T. Humernbrum, and F. Glinka, “Improving QoS in real-time internet
applications: from best-effort to Software-Defined Networks,” in International
Conference on Computing, Networking and Communications, 2014.

[3] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “OpenQoS: An
OpenFlow controller design for multimedia delivery with end-to-end Quality of
Service over Software-Defined Networks,” in APSIPA ASC, 2012.

[4] I. Bueno, J. I. Aznar, E. Escalona, J. Ferrer, and J. Antoni Garcia-Espin, “An
opennaas based sdn framework for dynamic qos control,” in IEEE SDN for Future
Networks and Services, 2013

[5] P. Sharma, S. Banerjee, S. Tandel, R. Aguiar, R. Amorim, and D. Pinheiro,
“Enhancing network management frameworks with SDN-like control,” in
IFIP/IEEE International Symposium on Integrated Network Management, 2013.

[6] S. Tomovic, N. Prasad, and I. Radusinovic, “SDN control framework for QoS
provisioning,” in 22nd Telecommunications Forum Telfor, 2014.

[7] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “PolicyCop: an
autonomic QoS policy enforcement framework for software defined networks,” in
IEEE SDN for Future Networks and Services, 2013

[8] T. Zinner, M. Jarschel, A. Blenk, F. Wamser, and W. Kellerer, “Dynamic
application-aware resource management using Software-Defined Networking:
implementation prospects and challenges,” in IEEE Network Operations and
Management Symposium, 2014

[9] A. Georgi, R. G. Budich, Y. Meeres, R. Sperber, and H. Hérenger, “An integrated
SDN architecture for application driven networking,” International Journal on
Advances in Systems and Measurements, vol. 7, pp. 103–114, 2014.

[10] MRV, “Application-Aware Networking at A Glance.” white paper, 2013

[11] Open Networking Foundation, “OpenFlow Notification Framework”, ONF TS
014, Version 1.0, October 2013.

[12] M. Capelle, S. Abdellatif, M.J. Huguet, P. Berthou, “Online Virtual Links
Resource Allocation in Software-Defined Networks”, IFIP Networking , 2015.

[13] Ben Alaya, M.; Monteil, T., "FRAMESELF: A Generic Context-Aware
Autonomic Framework for Self-Management of Distributed Systems," in 21st
IEEE WETICE, 2012.

[14] Object Management Group, “Data-Distributed Service for Real-Time Systems,
“OMG, version 1.4. Sept. 2014.

0

0,2

0,4

0,6

0,8

1

0,04 0,05 0,06 0,07 0,08 0,09 0,1

Ac
ce

pt
an

ce
 R

at
e

Requests Arrival Rate

Our proposed Algorithm

Shortest Path Heuristic

0

10

20

30

40

50

60

70

0,04 0,05 0,06 0,07 0,08 0,09 0,1

Av
er

ag
e

Co
nv

er
ge

nc
e

Ti
m

e

(m
s)

Requests Arrival Rate

 Our Proposed Method

 Shortest Path Heuristic

