
HAL Id: hal-01461689
https://laas.hal.science/hal-01461689

Submitted on 8 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Penalized Best-Response Algorithm for Non-Linear
Single-Path Routing Problems

Olivier Brun, Balakrishna Prabhu, Josselin Vallet

To cite this version:
Olivier Brun, Balakrishna Prabhu, Josselin Vallet. A Penalized Best-Response Algorithm for Non-
Linear Single-Path Routing Problems. Networks, 2017, Static and Dynamic Optimization Models for
Network Routing Problems 69 (1), pp.52-66. �10.1002/net.21720�. �hal-01461689�

https://laas.hal.science/hal-01461689
https://hal.archives-ouvertes.fr


A Penalized Best-Response Algorithm for Non-Linear

Single-Path Routing Problems∗

O. Brun1,2, B.J. Prabhu1,2, J. Vallet3

1CNRS, LAAS, 7 Av. du Colonel Roche, F-31400 Toulouse, France
2Univ. Toulouse, LAAS, F-31400 Toulouse, France

3Viveris Technologies, 1 Avenue de l’Europe, F-31400 Toulouse, France

Abstract

This paper is devoted to non-linear single-path routing problems, which are known

to be NP-hard even in the simplest cases. For solving these problems, we propose an

algorithm inspired from Game Theory in which individual flows are allowed to inde-

pendently select their path to minimize their own cost function. We design the cost

function of the flows so that the resulting Nash equilibrium of the game provides an

efficient approximation of the optimal solution. We establish the convergence of the

algorithm and show that every optimal solution is a Nash equilibrium of the game.

We also prove that if the objective function is a polynomial of degree d ≥ 1, then

the approximation ratio of the algorithm is
(
21/d − 1

)−d
. Experimental results show

that the algorithm provides single-path routings with modest relative errors with re-

spect to optimal solutions, while being several orders of magnitude faster than existing

techniques.

Keywords: best response; single-path routing; game theory; non-linear programming; ap-

proximation algorithm; Nash equilibrium
∗This is an extended version of the paper "A game-theoretic algorithm for non-linear single-path routing

problems" that appeared in the Proceedings of INOC 2015 [38]. The work of the third author was carried
out while he was a doctoral student at LAAS.
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1 Introduction

The single-path routing problem, also known as the unsplittable or non-bifurcated multicommodity

flow problem, naturally arises in a variety of contexts and, in particular, plays a central role in the

traffic engineering of communication networks. It amounts to routing a given set of fixed traffic

demands in a network, allocating each demand to a single path to minimize the total network cost,

which is usually expressed as the sum of link costs (see [25, 33, 39] and Chapter 8 of [34] for the

related joint routing and congestion control problem). A common assumption is that the cost of a

link is a linear function of the traffic flowing on that link. Under this assumption, the single-path

routing problem [see p. 15] can be formulated as a Mixed-Integer Linear Programming (MILP)

problem with binary variables [4, 6, 7, 8]. Although this assumption might be appropriate in some

contexts, it is no longer viable when the cost of a link is interpreted as the delay incurred by a

packet on that link since this delay depends non-linearly on the amount of traffic flowing over that

link.

This paper is devoted to single-path routing problems with an additive and non-linear objective

function. Our interest in these problems originates from traffic engineering in communication

networks based on the Multi-Protocol Label Switching (MPLS) technology [16]. MPLS changes

the usual hop-by-hop paradigm by enabling network flows to be routed along predetermined paths,

which are called Label Switched Paths (LSPs). In an MPLS network, each flow is routed along

a single path, but two different flows with the same source/destination pair can use two different

paths. Traffic engineering in MPLS networks mainly amounts to optimizing the quality of service

of network flows by tailoring the paths assigned to flows to the prevailing traffic conditions. As

explained above, when the quality of service metric is the network delay, the objective function

depends non-linearly on the traffic flowing on each link and the problem at hand becomes a non-

linear single-path routing problem.

We aim to keep the discussion as general as possible by proposing a solution strategy that is

also applicable in other application areas. We therefore focus on the essence of the non-linear single-

path routing problem and omit on purpose many application-specific details of traffic engineering

in MPLS networks. The problem we consider can be formulated as follows. Given some fixed traffic

demands, the goal is to find a single-path routing strategy that minimizes the sum of link costs.

The cost of a link e depends on the amount of traffic ye flowing on that link (measured in packets/s)
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and has the form ye `e(ye), where the function `e gives the delay per packet on link e as a function

of ye. We specifically assume that the link latency function `e is a non-linear function. A typical

example is the M/M/1 delay function `e(x) = 1/(ce − x), where ce represents the capacity of link

e. Note however that the results established in this paper hold for a broad range of cost functions.

The routing problem as defined above belongs to the class of non-linear mathematical programs

involving integer variables (actually, binary variables). These mathematical programs are known to

be extremely hard to solve, both from a theoretical and from a practical point of view (see Chapter

15 of [27] for a survey as well as [9] and references therein for a thorough literature review). Even

in the simplest case with binary variables, quadratic function and equality constraints, they are

known to be NP-hard [14]. Several general approaches have been proposed to solve non-linear

integer programming problems. Some transform the discrete problem into a continuous one (see for

example [32]). Despite their qualities, those techniques do not scale very well with the size of the

problems. A recent alternative is the so-calledGlobal Smoothing Algorithm [30], which seems to scale

better while providing fairly good approximations (see Section 5.1 for details). Heuristics and meta-

heuristics have also been used to find an approximate solution to non-linear integer programming

problems. Among others, ant-inspired optimization techniques are known to be efficient for solving

various routing problems [24, 36]. In this paper, we use the heuristic method proposed in [24] for

comparison purposes, as well as exact NLP-based branch-and-bound algorithms [12, 26].

We propose an approximation algorithm, inspired from Game Theory [23], for solving non-

linear single-path routing problems. We shall assume that individual demands are allowed to

independently select their path to minimize their own cost function. We design the cost function of

the demands so that the resulting Nash equilibrium of the game provides an efficient approximation

of the optimal solution. We note that a similar algorithm was proposed in [1] for scheduling of

strictly periodic tasks. We establish the convergence of the algorithm and show that every optimal

solution is a Nash equilibrium of the game. We also prove that if the link latency functions `e are

polynomial of degree d ≥ 0, then the approximation ratio of the algorithm is
(
21/(d+1) − 1

)−(d+1)
.

As will be shown numerically, the main merit of this algorithm is that it is several orders of

magnitude quicker than the method discussed above while providing good optimization results.

The rest of this paper is organized as follows. We introduce our notation and formally state the

problem in Section 2. We then describe the proposed algorithm in Section 3. In Section 4, we show

the convergence of the algorithm and obtain worst-case guarantees on the quality of the solutions
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it produces. Section 5 is devoted to the empirical performance evaluation of the algorithm. Finally,

some conclusions are drawn in Section 6.

2 Problem Statement

Consider a network represented by a directed graph G = (V,E). To each edge e ∈ E is associated

a non-decreasing latency function `e : IR+ → IR+. For any set π ⊂ E, we define the constant δeπ as

1 if e ∈ π, and 0 otherwise.

We are given a set K = {1, 2, . . . ,K} of Origin-Destination (OD) pairs. Let sk and tk be the

origin and destination of OD pair k, and let λk ∈ IN be its traffic demand. Each traffic demand has

to be routed in the network over a single path. We let Πk be the set of all paths available for routing

traffic between sk and tk. This set can contain all simple paths from sk to tk, or only a subset of

those paths satisfying some constraints. We define a routing strategy as a vector π = (πk)k∈K ∈ Π,

where πk is the path assigned to traffic demand k and Π = Π1 × Π2 × · · · × ΠK . The goal is

to find a routing strategy that minimizes the cost of the network F (π) =
∑
e∈E ye(π)`e(ye(π)),

where ye(π) =
∑
k∈K δ

e
πk
λk is the total traffic flowing on link e in routing strategy π. Formally,

the problem is as follows:

minimize F (π) =
∑
e∈E

ye(π) `e(ye(π)) (OPT)

subject to

πk ∈ Πk k ∈ K. (1)

We note that the problem can be formulated as a 0-1 mathematical programming problem by

introducing the binary variables

xk,π =

1 if demand k is routed on path π

0 otherwise.
(2)

Indeed, we can rewrite problem (OPT) as follows:
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minimize
∑
e∈E

ye`e(ye)

subject to

ye =
∑
k∈K

∑
π∈Πk

λkδ
e
πxk,π e ∈ E, (3)

∑
π∈Πk

xk,π = 1 k ∈ K, (4)

xk,π ∈ {0, 1} π ∈ Πk, k ∈ K. (5)

When the objective function F is non-linear function of the variables ye, the above problem

belongs to the class of non-linear mathematical programs involving integer variables (actually,

binary variables in our case). These mathematical programs are known to be extremely hard to

solve, thus motivating the development of efficient methods for finding approximate solutions.

3 Best-response algorithm

The best-response algorithm we propose takes its inspiration from an algorithm of the same name in

Game Theory. In a game, the best-response of a player is defined as its optimal strategy conditioned

on the strategies of the other players. It is, as the name suggests, the best response that the player

can give for a given strategy of the others. The best-response algorithm then consists of players

taking turns in some order to adapt their strategy based on the most recent known strategy of the

others until an equilibrium point is reached.

In this section, we design the game so that the Nash equilibrium of the game provides an

efficient approximation to problem (OPT). We follow the approach proposed in [15]. Let us think

of the traffic demands as the players of the game. The strategy of player k is the path πk it chooses

in the set Πk, and a strategy profile of the game is a vector π ∈ Π. In other words, a strategy

profile corresponds to a feasible solution of problem (OPT). Given the strategy of the other players

π−i = (π1, π2, . . . , πi−1, πi+1, . . . , πK), the value fi(π,π−i) associated to path π ∈ Πi by player i

reflects the cost of this path, i.e.,
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fi(π,π−i) =
∑
e∈π

λi`e(ye(π,π−i)), ∀π ∈ Πi. (6)

We note that

F (π) =
∑
e

(∑
k

δeπk
λk

)
`e(ye(π)) =

∑
k

λk
∑
e∈πk

`e(ye(π)) =
∑
k

fk(π). (7)

When player i minimizes the cost given in (6), this game is called a weighted congestion game

(see [10] and references therein). For these games, several authors, including [10] and [2], have

investigated what is called the Price of Anarchy which is the ratio of the social cost (the function

F in our case) at the worst-case Nash equilibrium and the social cost at the global optimum. For

polynomial cost functions of degree d, it was shown in [2] that the Price of Anarchy for mixed

equilibrium is Φd+1
d , where Φd is the solution of (Φd + 1)d = Φd+1

d .

Although one could design a best-response algorithm based on (6), that algorithm will have two

drawbacks: (i) a global optimum of F need not be a Nash equilibrium of the weighted congestion

game as is shown in Example 1; and (ii) the convergence of the best-response algorithm for the

weighted congestion game is known only in some special cases (linear latency functions or when the

demands are the same).

Example 1. Consider a network with two parallel links as shown in Figure 1. There are two flows,

each of size 1, which wish to go from O to D. There are two possible routes: (i) the top-route with

a latency function of l(x) = x; and (ii) the bottom-route with a latency function of l(x) = 0.4x.

1

1 O

x

0.4 · x

D

Figure 1: Example to show that the Nash equilibrium of a weighted congestion game need
not be a global optimum.

It can be verified that at the global optimum one of the flows will be routed through the top-route

and the other will be routed through the bottom-route. The cost for the flow on the top-route at
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the optimal routing is 1 while for the one on the bottom-route it is 0.4. In order to check that the

optimum is not a Nash equilibrium for cost defined in (6), we look at the best-response of the flow

on the top-route. If this flow moves to the bottom-route its cost will be 0.4(1 + 1) = 0.8 which is less

than its current cost of 1. Thus, at the global optimum the flow on the top-route has an incentive

to move to the bottom-route.

In order to drive the players towards a local minimum of F (π), we add a penalty term pi(π,π−i)

to the cost of player i. The role of the penalty term is that of an incentive for players to take into

account the impact of their actions on other players. When player i routes its traffic on path π, the

increase in the cost of each player j 6= i using link e ∈ π is

λj
[
`e
(
y−ie + λi

)
− `e

(
y−ie
)]
, (8)

where y−ie =
∑
k 6=i δ

e
πk
λk represents the total traffic flowing on link e due to all players other than

i. As a consequence, we define the penalty term as follows:

pi(π,π−i) =
∑
e∈π

∑
j 6=i

λjδ
e
πj

[
`e
(
y−ie + λi

)
− `e

(
y−ie
)]
,

=
∑
e∈π

y−ie
[
`e
(
y−ie + λi

)
− `e

(
y−ie
)]
. (9)

In summary, player i computes its path to minimize its own cost, that is, player i solves the

following problem:

minimizeπ∈Πi
ci(π,π−i) = fi(π,π−i) + pi(π,π−i). (OPT-i)

In (OPT-i), the path π minimizing ci(π,π−i) is known as the best response of player i to the

strategy π−i of the other players. The game is in a Nash equilibrium if and only if the current

strategy of each player is its best response to the strategy of the others, implying that no player

has an incentive to unilaterally deviate from its current strategy. Formally, π is a Nash equilibrium

if and only if

ci(π) ≤ ci(π,π−i),∀π ∈ Πi,∀i ∈ K.
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As we will show briefly, the best-response algorithm that we propose as an approximation to

problem (OPT) computes a Nash equilibrium. The algorithm starts from an initial feasible solution

π(0). At each iteration, the players update their strategies in a given order by computing the optimal

solution of problem (OPT-i) using any shortest path algorithm (e.g., Dijkstra’s algorithm). Note

that a player i deviates from its strategy π
(n)
i at iteration n to a new strategy π′ if and only if

ci

(
π′,π

(n)
−i

)
< ci

(
π(n)

)
. The algorithm stops when no player can decrease its cost by unilaterally

deviating from its strategy, that is, π(n+1) = π(n). The pseudocode for the heuristic is given in

Algorithm 1.

Algorithm 1 Penalized best-response

Require: π(0)

1: n← 0
2: repeat
3: for i = 1, . . . ,K do
4: π

(n+1)
i ← argmin (OPT-i)

5: end for
6: n← n+ 1
7: until π(n+1) 6= π(n).
8: return ~π(n)

In the following, we shall use the term penalized best-response to refer to Algorithm 1. The

term standard best-response algorithm will refer to the case when each player i directly optimizes

fi(π,π−i) instead of the penalized cost function ci(π,π−i) = fi(π,π−i) + pi(π,π−i).

4 Properties of the penalized best-response algorithm

In this section, we establish several properties of the penalized best-response algorithm. Notably, we

will show that (i) it has guaranteed convergence; and (ii) the global optimum of F is an equilibrium

of the algorithm. These two properities are not known to be true for the standard best-response

algorithm.

We first show in Section 4.1 that the penalized best-response algorithm converges in a finite

number of steps to a Nash equilibrium. In contrast, the convergence of the standard best-response

algorithm in routing games is still largely an open issue. For the unsplittable routing games consid-

ered in the present paper, it has been proven only (a) for linear latency functions [22], and (b) when
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all flows have the same traffic demands (that is, when λk = λ, ∀k), in which case the game is a

congestion game [35]. It is also worth mentioning that for splittable routing games, the convergence

of the standard best-response algorithm has been proven only in some special cases for networks of

parallel links [3, 13, 29, 31].

In Section 4.2, we obtain performance guarantees for the solutions provided by the penalized

best-response algorithm in the special case of polynomial link latency functions. In this special

case, the algorithm is therefore an approximation algorithm since it returns a solution that is

provably close to optimal (in contrast to other cases where it is only a heuristic that may or may

not find a good solution). Our performance guarantees take the form of worst-case bounds on the

approximation ratio of our algorithm, that is, bounds on the ratio between the result obtained

by the algorithm and the optimal cost. We use techniques similar to those used in [5], where the

authors obtain bounds on the approximation ratio of the standard best-response algorithm for affine

and polynomial cost functions with non-negative coefficients. The idea of the proof is similar in that

it uses the Hölder inequality to bound the difference between the Nash equilibrium and deviations

from it. Since our problem is different from the one in [5], we get a tight upper bound.

4.1 Convergence of the penalized best-response algorithm

As proven in [15], the convergence of the penalized best-response algorithm directly follows from

the fact that F is a potential function of the game. We briefly describe the proof below. The crucial

argument of this proof is stated in Lemma 1 below.

Lemma 1. The objective function of player i can be written as

ci(π) = F (π)− h(π−i), (10)

where

h(π−i) =
∑
e∈E

y−ie `e(y
−i
e ), (11)

does not depend on the path πi chosen by player i.

Proof. Note that ye(π) = y−ie for e 6∈ πi, while ye(π) = y−ie + λi for e ∈ πi. Hence
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ci(π) = fi(πi,π−i) + pi(πi,π−i),

=
∑
e∈πi

λi`e(y
−i
e + λi) +

∑
e∈πi

y−ie
[
`e
(
y−ie + λi

)
− `e

(
y−ie
)]
,

=
∑
e∈πi

(y−ie + λi) `e(y
−i
e + λi)−

∑
e∈πi

y−ie `e
(
y−ie
)
,

=

∑
e∈πi

ye(π) `e(ye(π)) +
∑
e 6∈πi

ye(π) `e(ye(π))

−
∑
e∈πi

y−ie `e
(
y−ie
)

+
∑
e 6∈πi

y−ie `e
(
y−ie
) ,

= F (π)− h(π−i).

Proposition 1. The penalized best-response algorithm converges in a finite number of steps to a

Nash equilibrium.

Proof. A direct consequence of Lemma 1 is that the function F is a potential function of the game,

i.e.,

ci(π)− ci(π,π−i) = F (π)− F (π,π−i), ∀π ∈ Πi,∀i ∈ K,

implying that any best-response move results in a decrease of the global cost F (π). Since F (π)

can accept a finite number of values, the sequence will reach a local minimum in a finite number of

steps.

Another consequence of Lemma 1 is that any global optimum is a Nash equilibrium, so that

the penalized best-response algorithm stops in an optimal point if it ever reaches it.

Proposition 2. Any global optimum is a Nash equilibrium of the routing game.

Proof. Consider a global optimum π∗, i.e., a point such that F (π∗) ≤ F (π) for all π ∈ ×iΠi Assume

to the contrary that π∗ is not a Nash equilibrium. It follows that there exists a player i and a

strategy πi ∈ Πi such that ci(πi,π∗−i) < ci(π
∗). With Lemma 1, it yields F (πi,π

∗
−i) − h(π∗−i) <

F (π∗)− h(π∗−i), from which we conclude that F (πi,π
∗
−i) < F (π∗). This is clearly a contradiction

to the global optimality of π∗. Hence π∗ is a Nash equilibrium.
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Remark 1. The worst-case computational complexity of finding a pure Nash equilibrium in a

potenial game can be exponential in the number of players (the number of flows in our problem)[20].

However, in [19] it is shown that on average the complexity is linear in the number of players. Thus,

on random instances, the best-response algorithm can be expected to converge much faster than exact

algorithms.

4.2 Performance guarantees for polynomial link latency functions

An instance I of our problem is defined by the graph G = (V,E), by the set of traffic demands K

(including the demand value λk and the set of candidate paths Πk for routing each demand k) and

by the link latency functions `e : R+ → R+. Our goal in this section is to establish bounds on the

approximation ratio of the penalized best-response algorithm that hold uniformly over all instances

of the problem. More precisely, given an instance I of the problem, let π be any Nash equilibrium

and let π∗ be an optimal routing strategy for that instance. We look for an upper bound on the

ratio F (π)/F (π∗) that holds for all instances I of the problem. In the following, we establish such

a bound when the link latency functions are polynomial functions of the form `e(x) =
∑d
j=0 ae,jx

j ,

where d ≥ 0 and the ae are non-negative coefficients. Our main result is stated in Theorem 3.

Theorem 3. If `e(x) =
∑d
j=0 ae,jx

j, then the approximation ratio of the penalized best-response

algorithm is bounded above by
(
21/(d+1) − 1

)−(d+1)
.

Proof. See Appendix A.

We can furthermore prove that the upper bound of Theorem 3 is tight, in the sense that there

exists an instance of the single-path routing problem for which it is reached. The lower bound on

the approximation ratio is stated in Proposition 4, whose proof is based on an adaptation of the

instance given in [10] (see Lower Bound 2 and Lemma 4.5 in that paper).

Proposition 4. If `e(x) =
∑d
j=0 ae,jx

j, then the approximation ratio of the penalized best-response

algorithm is bounded below by
(
21/(d+1) − 1

)−(d+1)
.

Proof. We consider a problem instance with a monomial cost function, that is, `e(x) = aex
d, and

N origin-destination pairs. In addition to these nodes, there are two other nodes R0 and R1 which

act as routers. Origin Oi is connected to nodes Oi−1 and Oi+1, except O1 which is connected to
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R0 and O2, and ON which is connected to ON−1 and R1. Destination Di is connected to Oi−1 and

Oi+1, except D1 which is connected to R0 and O2, and DN which is connected to ON−1 and R1. In

the following, we shall assume that links are numbered in such a way that link 0 is link R0O1, link

i is link OiOi+1 for i = 1, . . . , N − 1 and link N is link ONR1. For i = 0, . . . , N , link i has a cost of

aiy
d+1 when it carries a traffic of y, whereas for all other links we have ae = 0. The instance has a

total of 3N + 1 links of which 2N links have a cost of 0 and the N + 1 other links have a non-zero

cost. Figure 2 shows an instance with N = 4 pairs.

R0

φ(d+1)0

O1

D1

φ(d+1)1

O2

D2

φ(d+1)2

O3

D3

φ(d+1)3

O4

D4

φ(d+1)3

R1

Figure 2: Problem instance with N = 4 origin-destination pairs for the lower bound on the
approximation ratio.

Let λi be the amount of traffic sent from origin Oi to destination Di. Each origin has two

choices: either send the traffic to the left or to the right. In the global optimum (OPT) each origin

will send its traffic to the right provided that

ai+1 ≤ ai and aN = aN1
. (12)

Indeed, in that case, each flow is routed over the link with the smaller ae, and over another link

of cost `e(x) = 0. Similarly, we shall establish the conditions under which routing the traffic to the

left corresponds to a Nash equilibrium (NE). It is enough, according to Lemma 1, to show that we

cannot decrease the network cost by deviating a single flow from its equilibrium route onto another

route. Provided that aN = aN−1, the cost does not change when flow N is routed to the right on

link ONR1 instead of being routed to the left on link ON−1ON . If flow i = 1, . . . , N1 is routed to

the right on link i instead of being routed to the left on link i − 1, the traffic on link i increases

from λi+1 to λi + λi+1, whereas the traffic on link i becomes 0. We deduce that the cost variation

is

12



ai(λi + λi+1)d+1 + 0−
[
ai−1λ

d+1
i + aiλ

d+1
i+1

]
,

so that routing to the left corresponds to a Nash equilibrium provided that

ai−1λ
d+1
i + aiλ

d+1
i+1 ≤ ai(λi + λi+1)d+1, i = 1, . . . , N − 1, (13)

and aN = aN−1. Let us now assume that ai = φ(d+1)i for 0 ≤ i < N and that aN = φ(d+1)(N−1)yd+1,

where φ = 21/(d+1) − 1. Note that the links ON−1ON and ONR1 have the same cost. In Figure

2, for the links with a non-zero cost, the corresponding ae is shown close to the mid-point of the

link. We further assume that λi = φN−i. Since φ < 1, aN = aN−1 and ai+1 = φ(d+1)ai for

i = 1, . . . , N − 1 implies that the conditions (12) are satisfied, so that routing to the right is indeed

an optimal strategy. To see that routing to the left corresponds to a Nash equilibrium, observe that

for i < N ,

ai−1λ
d+1
i + aiλ

d+1
i+1 = 2φ(d+1)(N−1)

= (1 + φ)d+1 φ(d+1)(N−1)

= ai(λi + λi+1)d+1,

which proves that the network cost cannot be decreased by deviating unilaterally any flow. It is

interesting to note that this instance has been designed in such a way that the corresponding Nash

equilibrium is a weak equilibrium, that is, for each flow i, there exists a path π different from its

equilibrium path πi such that ci(π,π−i) = ci(π).

For the instance with N = 4, in Table 1, we give the traffic on each link and the associated cost

for each of the two solutions (for the clarity of the presentation, only links e such that `e(x) 6= 0

are presented). Summing the costs of the links in Table 1, we observe that the optimal cost is

F4(π∗) = 3φ4(d+1) + φ3(d+1), whereas the cost at the Nash equilibrium is F4(π) = 4φ3(d+1).

In general, it can be seen that FN (π∗) = (N − 1)φ(d+1)N + φ(d+1)(N−1) and that FN (π) =
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Table 1: Traffic on the links and associated cost in the optimal solution and at the Nash
equilibrium for the instance shown in Figure 2.

NE OPT

Links Flow Traffic Cost Flow Traffic Cost

R0O1 1 φ3 φ3(d+1) − 0 0

O1O2 2 φ2 φ3(d+1) 1 φ3 φ4(d+1)

O2O3 3 φ1 φ3(d+1) 2 φ2 φ4(d+1)

O3O4 4 φ0 φ3(d+1) 3 φ1 φ4(d+1)

O4R1 − 0 0 4 φ0 φ3(d+1)

Nφ(d+1)(N−1). As a consequence, the approximation ratio is

gN (φ) =
N

(N − 1)φd+1 + 1
. (14)

By taking N →∞, we obtain an approximation ratio of φ−(d+1) = (21/(d+1)− 1)−(d+1) as claimed.

Remark 2. For the sake of clarity, we have shown the lower bound on an undirected graph. By

adding links and intermediate nodes, this instance can be modified to make the graph directed as

well. However, this will make the figure and the notation cumbersome.

As an immediate consequence of Theorem 3 and Proposition 4, we obtain the following corollary.

Corollary 5. For large d, the approximation ratio is roughly
(
d+1

log(2)

)d+1

.

In Table 2, we give the approximation ratios for different values of d for the penalized best-

response algorithm and compare it with that of the non-penalized version, as established in [5] and

[10]. We emphasize that it is not proven that the non-penalized version converges for polynomial

latency functions, so that its approximation ratio provides only a guarantee on the quality of the

solution when it converges.

Interestingly, in the case d = 0, that is, when the latency function `e(x) of each link e is a

constant ae ≥ 0, our algorithm is guaranteed to provide an optimal solution. This is a direct

consequence of Theorem 3, but can also be easily understood by noting that in this case
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Table 2: Approximation ratio for the penalized best-response (BR) as well as for the stan-
dard best-response as a function of the degree of the polynomial. The values have been
rounded-off at two decimal places.

degree (d) Penalized BR Standard BR [2, 10]

0 1 1
1 5.83 2.62
2 56.95 9.91
3 780.28 47.82

asymptotic Θ

((
d+1
log(2)

)d+1
)

Θ

((
d

log(d)

)d+1
)

F (π) =
∑
e∈E

aeye(π) =
∑
e∈E

ae
∑
k∈K

δeπk
λk =

∑
k∈K

λk

(∑
e∈πk

ae

)
,

so that it is optimal to route each flow k on the path πk ∈ Πk minimizing
∑
e∈πk

ae, which can be

seen as the length of the path. However, in that case (9) yields pi(π) = 0, from which it follows

that ci(π,π−i) = fi(π,π−i) = λi
(∑

e∈πi
ae
)
, so that our algorithm routes each flow on a shortest

path, exactly as does the optimal solution.

When d ≥ 1, the approximation ratio of the penalized best-response algorithm is significantly

worse than that of the non-penalized best-response algorithm. Asymptotically, the non-penalized

version is a factor (log(d))d+1 better than the penalized version. On the downside, the non-penalized

version does not have a guaranteed convergence whereas the penalized one is guaranteed to converge.

It is however important to keep in mind that the above performance guarantees are obtained

for worst-case scenarios that are not necessarily representative of instances met in practice. We

conjecture that the worst-case performance of the algorithm occurs in very asymmetric scenarios in

terms of link latency functions and in terms of traffic demands. Consider for example the instance

used in Proposition 4 to obtain a lower bound on the approximation ratio. Assume that the link

latency functions are monomials of degree d such that aN = aN−1 and 1 ≤ ai
ai+1

≤ x for some fixed

x such that

1 ≤ x ≤ min
i

(λi + λi+1)(d+1) − λ(d+1)
i+1

λd+1
i

.

15



The above conditions impose a certain homogeneity between the coefficients ai. It is readily

verified that equations (12) and (13) are satisfied under these conditions, so that routing to the

right is an optimal strategy, and routing to the left is a Nash equilibrium. Observe now that

F (π)

F (π∗)
=

∑N−1
i=0 aiλ

(d+1)
i+1∑N

i=1 aiλ
(d+1)
i

≤ x
∑N−1
i=0 ai+1λ

(d+1)
i+1∑N

i=1 aiλ
(d+1)
i

= x,

so that in this example we can obtain a solution as close as we want to an optimal solution by

imposing a condition on the ratio ai
ai+1

. Unfortunately, we were not able to explicitly characterize

the conditions under which the approximation ratio will be lower than a given x in the general

case. Nevertheless, the numerical experiments presented in Section 5 reveal that the penalized

best-response algorithm often provides good quality solutions, contrary to what is suggested by

the approximation ratio
(
21/(d+1) − 1

)−(d+1)
. These experiments also show that the results of the

penalized best-response algorithm are quite similar to those of its non-penalized counterpart.

5 Empirical Performance Evaluation

This section is devoted to the empirical performance evaluation of the best-response algorithm. We

first describe the benchmark experiments that were performed, as well as our empirical algorithm

comparison methodology in Section 5.1. Section 5.2 reports the numerical results obtained.

5.1 Benchmark Experiments

In our benchmark experiments, we have used 800 randomly generated instances obtained using 8

standard network topologies (see Table 3) collected from the IEEE literature and from the Rock-

etfuel project [37]. For each network topology, we consider 100 random traffic matrices generated

with uniform distributions in such a way that there is positive traffic demand associated to each

origin/destination pair. The traffic matrices are computed so that there exists a minimum-hop

routing strategy in which the network congestion rate (that is, the maximum utilization rate of the

network links) is equal to γ, where γ > 0 is a given parameter.

The empirical evaluation of the best-response algorithm is done for two different types of ob-

jective functions, as described below.
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Table 3: Topologies : number of nodes and links.

Topology # nodes # links

ABOVENET 19 68
ARPANET 24 100
BHVAC 19 46
EON 19 74
METRO 11 84
NSF 8 20
PACBELL 15 42
VNSL 9 22

5.1.1 Piece-wise Linear Objective Function

The main motivation for considering a piece-wise linear objective function is that in that case we

can compare the algorithm with the optimal solutions obtained from a MILP solver. Specifically,

we consider the following increasing latency function proposed in [21]:

`e(y) =



1 if 0 ≤ y
ce
< 1

3 ,

3− 2
3
ce
y if 1

3 ≤
y
ce
< 2

3 ,

10− 16
3
ce
y if 2

3 ≤
y
ce
< 9

10 ,

70− 178
3

ce
y if 9

10 ≤
y
ce
< 1,

500− 1468
3

ce
y if 1 ≤ y

ce
< 11

10 ,

5000− 16318
3

ce
y if 11

10 ≤
y
ce
,

where ce represents the capacity of link e. This function expresses that it is cheap to send flow over a

link with a small utilization rate, whereas, as the load approaches 100%, it becomes more expensive.

Note that the utilization rate can be greater than 1, in which case we get heavily penalized. For

the above latency function, we assume that the set Πk contains all the possible path between sk

and tk for all flows k. Problem (OPT) can then be formulated as a Mixed-Integer Linear Problem:
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minimize
∑
e∈E

Φe (OPT-PWL)

subject to

∑
e∈In(n)

xk,e −
∑

e∈Out(n)

xk,e =


−1 if n = s,

1 if n = t,

0 otherwise.

n ∈ V, k ∈ K, (15)

ye =
∑
k∈K

λkxk,e e ∈ E, (16)

Φe ≥ aye − bce (a, b) ∈ C, e ∈ E, (17)

xk,e ∈ {0, 1}, ye ≥ 0,Φe ≥ 0 e ∈ E, k ∈ K, (18)

where C =
{

(1, 0), (3, 2
3 ), (10, 16

3 ), (70, 178
3 ), (500, 1468

3 ), (5000, 16318
3 )

}
and In(n) (resp. Out(n)) rep-

resents the set of all ingoing (resp. outgoing) links at node n. In the above node/link formulation,

the decision variable xk,e is 1 if flow k is routed over link e, and 0 otherwise.

For each of the 800 instances, we have computed the relative error of the best-response algorithm

with respect to the optimal solution of (OPT-PWL), which was computed using Gurobi 6.0 as the

MILP solver [26]. We have limited the total time expended by the solver to 15 minutes per problem

instance. The traffic matrices were computed with γ = 1.2 as threshold parameter, so that we can

guarantee that there exists a feasible solution in which the utilization rate of the links is at most

120%.

5.1.2 Non-linear Objective Function

We consider two different link latency functions, each one yielding a non-linear network cost func-

tion. The first one is a linear latency function, `e(y) = y
(ce)2 , where ce represents the capacity of

link e, yielding the following quadratic objective function

F (π) =
∑
e∈E

(
ye(π)

ce

)2

. (19)

The second link latency function corresponds to the well-known M/M/1 delay function (a.k.a.
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Kleinrock function) [28], that is `e(y) = 1
ce−y , so that

F (π) =
∑
e∈E

ye(π)

ce − ye(π)
. (20)

This cost function is often used when one wants to minimize the mean packet delay in the

network. For the above two objective functions, it becomes extremely hard to find an optimal

solution to problem (OPT). We therefore compare our penalized best-response algorithm with a

lower bound on the optimal cost obtained by relaxing the 0-1 constraints in problem (OPT), thereby

solving the following multi-path routing problem

minimize
∑
e∈E

ye`e(ye) (OPT-NL-MP)

subject to

ye =
∑
k∈K

∑
π∈Πk

λkδ
e
πxk,π e ∈ E, (21)

∑
π∈Πk

xk,π = 1 k ∈ K, (22)

0 ≤ xk,π ≤ 1 π ∈ Πk, k ∈ K, (23)

which can easily be done with a projected gradient algorithm.

In addition to the comparison with the optimal multi-path solution, we compare our algorithm

with four other algorithms:

• Global Smoothing Algorithm (GSA): This algorithm was introduced in [30] for solving

non-linear optimization problems with binary variables. Its original approach is to solve a

sequence of non-linear optimization problems without integer variables. In each problem of

the sequence, the goal is to minimize the sum of the original objective function plus two

penalty terms: a logarithmic barrier penalty (designed to smooth the function and keep the

current point away from the integer grid) and an “exact" penalty (describing how far the

current point is from the integer grid). Both terms are weighted by one parameter, which

is updated at each iteration in order to gradually bring the current point onto the integer

grid. At each step, a continuous optimization problem is solved using a gradient algorithm
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(we have used the modified conjugate gradient algorithm presented in [11]). The sequence of

penalized problems should form a trajectory leading to a good approximation of the solution.

We refer to [30] for further details.

• Ant Colony Optimization (ACO): This heuristic algorithm was proposed in [24]. It

belongs to the family of ant colony algorithms , which are known to be efficient for searching

an optimal path in a graph [17, 18, 36]. The algorithm iteratively improves an initial solution

to the problem through a random exploration of the solution space by agents called (artificial)

ants. During one iteration of the algorithm, each ant builds a solution to the problem by

randomly taking decisions, that is by randomly assigning paths to flows. A weight, called

pheromone trail, is assigned to each decision taken by ants and is updated based on the

experience acquired by ants during problem solving. These weights, which represent the

learned desirability of the decisions, are used to guide the random exploration of the solution

space.

• Gurobi quadratic-programming based branch-and-bound algorithm: The Gurobi

MIP solver can solve models with a quadratic objective and/or quadratic constraints using

a branch-and-bound algorithm [26]. This exact algorithm was used to compute the optimal

solution of the single-path routing problem when the objective function is given by (19). As

for the piece-wise linear objective function, we have limited the total time expended by the

solver to 15 minutes per problem instance.

• Bonmin NLP-based branch-and-bound algorithm: Bonmin is an open-source software

for solving general MINLP (Mixed-Integer Non-Linear Programming) problems [12]. Bonmin

features several exact algorithms, including a NLP-based branch-and-bound algorithm and an

outer-approximation decomposition algorithm. The former was used to compute the optimal

solution of the single-path routing problem when the objective function is given by (20). As

with Gurobi, we have limited the total time expended by Bonmin to 15 minutes per problem

instance.

Given the size and complexity of the problem instances, and in order to keep the running times

of these algorithms below a reasonable amount, we restrict ourselves to two possible paths for each

OD flow (that is, |Πk| = 2 for all k ∈ K). These paths are obtained by solving a 2-shortest-path

problem in which the link weights are equal to 1 [40]. The traffic matrices were computed with
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γ = 1.0 as threshold parameter, so that we can guarantee that there exists a feasible solution in

which the capacity of no link is exceeded, which is particularly important for the M/M/1 latency

function.

The GSA and ACO algorithms have been implemented in Matlab 2013b. For GSA, two different

initial multi-path solutions are considered: the first one is randomly generated, whereas the second

one is obtained by adding a small random perturbation to the single-path solution obtained with

the best-response algorithm (so as to obtain a multi-path initial solution). The results presented in

the following for the GSA algorithms correspond to the best solution obtained from these two initial

points. Regarding ACO, we consider at most 50 iterations and 5 ants since our experiments revealed

that increasing these values does not improve significantly the obtained results while negatively

impacting computing times.

5.2 Numerical Results

5.2.1 Piece-wise Linear network cost function

The numerical results obtained for this cost function are reported in Table 4. Interestingly, the worst

results are obtained for the smallest topologies, NSF and METRO. Except for these topologies, the

penalized BR algorithm performs quite well. Its average error over the 800 instances is only 3.31%,

and it would be as low as 1.77% without the instances generated with the NSF topology. The

average execution time of the algorithm is 0.51 seconds, and it never exceeds 3.2 seconds. This is

to be compared to the average execution time of 82.6 seconds of the MILP solver (the time limit of

15 minutes was reached for 46 out of the 100 instances generated with the EON topology).

5.2.2 Quadratic network cost function

We first start by comparing the penalized BR algorithm with GSA and ACO for this cost function.

Our numerical results are reported in Table 5. First of all, note that all three algorithms perform

quite well since the average relative error is below 4.37% for each one. Over the 800 instances, the

maximum relative error of the best-response algorithm is 20.16% (to be compared to the 13.32% of

the other algorithms). We also note that on average GSA performs slightly better than ACO and

the best-response algorithm. Remember however that GSA is initialized with the solution obtained

with the best-response algorithm. If we now look at the computing times presented in Table 9, we
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Table 4: Relative gap (%) to the optimal solution for the piece-wise linear objective function.

Topology min max avg

ABOVENET 0.04 1.912 0.725
ARPANET 0.08 3.488 1.103
BHVAC 0.347 4.225 1.838
EON 0.938 6.390 3.022
METRO 0.177 10.297 3.969
NSF 0.081 63.021 14.128
PACKBEL 0.313 3.294 1.520
VNSL 0.010 2.556 0.240

Global 0.010 63.021 3.31

observe that the best-response algorithm is significantly faster than all other algorithms, since its

worst computing time is 6.8 seconds, whereas the running times of ACO and GSA can be as high

as 50 and 300 seconds, respectively.

It is also interesting to note that the Gurobi solver usually computes the optimal solution

quickly (although always significantly slower that that of the penalized BR algorithm). Given these

fast computing times of the Gurobi solver, and in order to better assess the performance of the

penalized BR algorithm, we ran once again both of them, but this time with k = 6 candidate paths

per OD flow. Gurobi found the optimal solution for all instances. Results are reported in Table 6.

Except for the METRO topology, the relative gaps to the optimal solution are very modest and the

average error over the 800 instances is only 1.07% (it would be as low as 0.2% without the instances

generated with the METRO topology).

5.2.3 M/M/1 network cost function

The results obtained with this cost function are presented in Table 7. In this case, the penalized best-

response and the ACO algorithms perform better than GSA, for which relative errors up to 87.54%

are obtained on some instances. The best-response algorithm achieves the lower average relative

error with only 1%, whereas ACO has a lower maximum relative error with 14.99%. However, as can

be noted from Table 9, the best-response algorithm provides the best tradeoff between optimization

quality and computing times. Over the 800 instances, its worst execution time is only 4.7 seconds,

whereas the computing times of GSA and ACO can be as high as 400 and 50 seconds, respectively.
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Table 5: Relative gap (%) to the optimal multi-path solution for the quadratic cost function.

Topology Penalized BR GSA ACO

min max avg min max avg min max avg

ABOVENET 1.28 5.18 3.86 ' 0 13.32 7.19 0.17 4.87 2.98
ARPANET 1.05 2.83 1.84 1.09 5.40 2.57 4.42 8.49 5.99
BHVAC 0.24 1.16 0.65 0.09 4.35 0.94 3.93 8.30 5.78
EON ' 0 3.37 2.31 ' 0 3.63 0.89 2.24 6.63 4.53
METRO 2.23 20.16 8.59 1.64 8.90 4.47 2.63 13.32 7.41
NSF ' 0 12.97 3.29 0.04 4.43 1.76 0.15 7.46 2.21
PACBELL 1.89 5.27 3.61 0.32 3.00 1.44 2.30 8.00 4.76
VNSL 0.03 7.27 1.91 ' 0 8.57 3.07 0.09 4.92 1.34

Global ' 0 20.16 3.26 ' 0 13.32 2.79 0.09 13.32 4.37

Table 6: Relative gap (%) to the Gurobi solution for the quadratic cost function.

Topology Penalized BR

min max avg

ABOVENET 0.067 0.58 0.28
ARPANET 0.02 0.29 0.13
BHVAC 0 0.16 0.03
EON 0.05 0.97 0.35
METRO 0 18.3 7.17
NSF 0 3.8 0.39
PACBELL 0 0.81 0.16
VNSL 0 0.25 0.05

Global 0 18.3 1.07

We observe that the computing times of Bonmin are two orders of magnitude larger than that

of the penalized BR algorithm. In practice, they often reach the time limit of 15 minutes for the

largest instances, even though there are only k = 2 candidate paths per OD flow (we had to increase

the time limit for the ARPANET network in order to always obtain a feasible solution). Table 8

shows the minimum, maximum and average relative gaps between the solution of the BR algorithm

and the one computed by Bonmin. Here again, despite the fact that significant errors are obtained

for the smallest topologies (NSF and METRO), the average error over the 800 instances is only
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Table 7: Relative gap (%) to the optimal multi-path solution for the M/M/1 cost function.

Topology Penalized BR GSA ACO

min max avg min max avg min max avg

ABOVENET ' 0 1.52 0.72 ' 0 87.54 5.95 1.94 6.23 3.59
ARPANET ' 0 0.50 0.13 ' 0 77.01 3.44 2.58 7.64 4.82
BHVAC ' 0 1.45 0.35 ' 0 64.58 8.57 3.30 8.54 5.17
EON ' 0 1.87 0.82 ' 0 58.09 3.15 1.71 8.92 3.63
METRO ' 0 24.45 2.38 ' 0 30.89 3.62 0.20 14.99 2.77
NSF ' 0 21.06 2.77 0.01 60.14 3.75 0.01 8.77 1.47
PACBELL ' 0 1.19 0.20 ' 0 45.13 5.30 1.44 7.14 4.00
VNSL ' 0 4.40 0.64 ' 0 24.07 3.51 0.34 6.82 2.46

Global ' 0 24.45 1.00 ' 0 87.54 4.53 0.01 14.99 3.26

1.04%.

Table 8: Relative gap (%) to the Bonmin solution for the M/M/1 cost function.

Topology Penalized BR

min max avg

ABOVENET 0 0.23 0.06
ARPANET 0 0.19 0.04
BHVAC 0 0.29 0.04
EON 0 0.72 0.21
METRO 0 6.18 0.76
NSF 0 26.6 5.95
PACBELL 0 0.87 0.18
VNSL 0 0.52 0.12

Global 0 26.6 1.04

We remind the reader that all algorithms where run with only 2 candidate paths for each OD

pair. In order to evaluate how increasing the number of paths affects the quality of the solution

and the computing times, we also have run the penalized BR algorithm with 4 and 6 paths for

the ARPANET topology (the largest one) and the M/M/1 cost function. These paths were chosen

using Yen’s algorithm for computing the k-shortest loopless paths in a graph [40]. Figure 3(a)

presents the computing times of the penalized BR algorithm with 4 and 6 paths (normalized by
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Table 9: Computing times (seconds) for the 800 problem instances.

Scenario Quadratic Cost M/M/1 Cost

BR GSA ACO Gurobi BR GSA ACO Bonmin

Min 0.04 1.02 4.73 0.11 0.03 0.75 4.98 0.6
Max 6.75 297.73 48.83 302.3 4.68 400.82 50.95 2638
Average 0.92 30.85 22.16 5.01 0.72 27.45 22.40 725

the computing times with 2 paths) for the first 25 instances. Over the whole set of 100 instances,

the computing times increase only by a factor 1.69 (resp. 2.49) on average when passing from 2 to

4 paths (resp. 6). Similar results were obtained with the other topologies and other cost functions,

which leads to the conclusion that running the penalized BR algorithm with 2n candidate paths

yields roughly an increase of computing times by a factor n. This has usually a positive impact

on the quality of the solution, and Figure 3(b) shows the relative cost improvements when using

4 and 6 candidate paths instead of 2 for the first 25 instances. Although significant improvements

can be observed in some cases, the average relative improvement over the 100 instances is only

2.1 % with 4 paths, and 2.34 % with 6 paths. We however observed that, in contrast to the case

of computing times, the benefits of using more candidate paths heavily depend on the particular

instance considered.

Remark 3. The results obtained with the standard best-response algorithm are comparable to those

presented above for the penalized best-response algorithm (see Tables 10 and 11). In practice, the

results of the standard best-response algorithm are sometimes better, and sometimes worse, but

the difference is always in the order of a few percents. On the other hand, the computing times

of the standard best-response algorithm are clearly better since its worst execution time over the

800 instances is 1.1 seconds for the M/M/1 cost. This is something expected since the penalty

term implies an extra computation with respect to the standard best-response algorithm. It is also

interesting to note that both versions of the BR algorithm require roughly the same number of

iterations. For instance, for the quadratic objective function, the average number of iterations of

the penalized BR algorithm over the 800 instances was 4.63, whereas it was 4.53 for the non-penalized

BR algorithm.
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(a) Computing times with 4 and 6 paths (normal-
ized by the computing times with 2 paths).

��

��

��

��

��

��

��

��

�	

�


���

� � � � � � � 	 
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� ��

�
�
��
��
�
�

��
	


��
��
�

	
�
�
�
�
�
��
��
�

��
�����


��������������������
�������������
� ���!!�� "������

#$�
#$�

(b) relative cost improvements (%) with 4 and 6
paths instead of 2 paths.

Figure 3: Impact of passing from 2 candidate paths to 4 or 6 candidate paths on the quality
of the solution and on computing times for the first 25 instances of the ARPANET topology.

Table 10: Relative gap (%) to the optimal multi-path solution for the quadratic cost func-
tion.

Topology penalized BR standard BR

min max avg min max avg

ABOVENET 1.28 5.18 3.86 1.42 5.81 4.16
ARPANET 1.05 2.83 1.84 1.20 3.01 1.91
BHVAC 0.24 1.16 0.65 0.15 1.46 0.69
EON ' 0 3.37 2.31 ' 0 3.85 2.47
METRO 2.23 20.16 8.59 2.23 22.67 9.43
NSF ' 0 12.97 3.29 0.10 16.92 4.07
PACBELL 1.89 5.27 3.61 2.04 5.46 3.72
VNSL 0.03 7.27 1.91 0.21 7.27 2.31

Global ' 0 20.16 3.26 ' 0 22.67 3.60

6 Conclusion

In this paper, we studied non-linear single-path routing problems, which are known to be extremely

hard to solve. Yet, these problems naturally arise when one seeks to optimize a quality of service
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Table 11: Relative gap (%) to the optimal multi-path solution for the M/M/1 cost function.

Topology penalized BR standard BR

min max avg min max avg

ABOVENET ' 0 1.52 0.72 ' 0 1.10 0.46
ARPANET ' 0 0.50 0.13 ' 0 2.99 0.31
BHVAC ' 0 1.45 0.35 ' 0 1.54 0.38
EON ' 0 1.87 0.82 ' 0 4.03 0.52
METRO ' 0 24.45 2.38 ' 0 12.90 1.46
NSF ' 0 21.06 2.77 ' 0 20.85 1.03
PACBELL ' 0 1.19 0.20 ' 0 2.07 0.45
VNSL ' 0 4.40 0.64 ' 0 2.05 0.66

Global ' 0 24.45 1.00 ' 0 20.85 0.67

metric such as the delay. For solving these problems, we have proposed an algorithm inspired from

Game Theory in which individual flows are allowed to independently select their path to minimize

their own cost function. Given the routing of the other flows, each flow seeks to minimize the sum

of its own end-to-end delay, plus a penalty term which plays the role of an incentive for players to

take into account the impact of their actions on the others. We have proven the convergence of

this algorithm to a Nash equilibrium of the game. In the case of polynomial link latency functions,

we have also established a tight upper bound on the approximation ratio of the algorithm. The

numerical results obtained with this algorithm are quite interesting: the relative gap to the optimal

multi-path solution remains modest (equivalent to that of GSA and ACO), while the execution

times are substantially lower than that of the other algorithms. These results suggest that the

best-response algorithm is an appropriate solution for large-scale single-path routing problems with

non-linear cost functions, where other techniques show their limits.
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A Proof of Theorem 3

Before proving Theorem 3, let us first introduce some notation. Let π be a solution computed

with the best-response algorithm and let π∗ be an optimal solution. In the following, to simplify

notation, we denote by ye and y∗e the traffic volumes ye(π) and ye(π∗), respectively. Since π is a

Nash equilibrium, we have ci(π) ≤ ci(π∗i ,π−i), for all i ∈ K, which according to Lemma 1 translates

into F (π) ≤ F (π∗i ,π−i) for all i. The deviation of player i from path πi to path π∗i partitions the

set of links in three separate subsets: those for which the load increases (e ∈ π∗i \ πi), those for

which it decreases (e ∈ πi \ π∗i ), and those for which it remains constant. Let us therefore define

αie =

1 if e ∈ π∗i \ πi,

0 otherwise.
and βie =

1 if e ∈ πi \ π∗i ,

0 otherwise.

In order to simplify the presentation of the proof, we shall first prove the result for monomials,

and then generalize to arbitrary polynomials. The monomial case contains most of the essential

ingredients of the proof and has the added advantage of being notationally lighter. Note that in the

course of the proof, we shall use two technical results which are proved at the end of this appendix.

Proposition 6. If `e(x) = aex
d, then the approximation ratio of the penalized best-response algo-

rithm is bounded above by
(
21/(d+1) − 1

)−(d+1)
.

Proof. For all i ∈ K, the condition F (π) ≤ F (π∗i ,π−i) can be written as follows
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0 ≤
∑
e

ae

((
ye + (αie − βie)λi

)d+1 − yd+1
e

)
(24)

=
∑
e

ae

(
αieλi

d∑
k=0

(ye + αieλi)
kyd−ke − βieλi

d∑
k=0

(ye − βieλi)kyd−ke

)
(25)

=
∑
e

ae

(
αieλi

d∑
k=1

(ye + αieλi)
kyd−ke − βieλi

d∑
k=1

(ye − βieλi)kyd−ke

)
(26)

+
∑
e

ae(α
i
e − βie)λiyde

≤
∑
e

ae

(
αieλi

d∑
k=1

(ye + αieλi)
kyd−ke

)
+
∑
e

ae(α
i
e − βie)λiyde (27)

≤
∑
e

ae

(
αieλi

d∑
k=1

(ye + y∗e)kyd−ke

)
+
∑
e

ae(α
i
e − βie)λiyde , (28)

where equality (25) follows from Lemma 2 with γ = αieλi and δ = βieλi. To get to (26), we have

separated the k = 0 term in each of the two sums and combined them together.

Summing the inequalities (28) over i and using the fact that
∑
i(α

i
e − βie)λi = y∗e − ye yields

0 ≤
∑
e

aey
∗
e

d∑
k=1

(ye + y∗e)kyd−ke +
∑
e

aey
∗
ey
d
e −

∑
e

aey
d+1
e (29)

=
∑
e

aey
∗
e

d∑
k=0

(ye + y∗e)kyd−ke −
∑
e

aey
d+1
e (30)

=
∑
e

ae (ye + y∗e)
d+1 −

∑
e

aey
d+1
e −

∑
e

aey
d+1
e (31)

=
∑
e

ae (ye + y∗e)
d+1 − 2

∑
e

aey
d+1
e (32)

≤ (s1/(d+1) + (s∗)1/(d+1))d+1 − 2
∑
e

aey
d+1
e , (33)

where the last inequality follows from Lemma 3 with s =
∑
e aey

d+1
e and s∗ =

∑
e ae(y

∗
e)d+1.

Rearranging the above inequality, we get

2F (π) ≤
(
F (π)1/(d+1) + F (π∗)1/(d+1)

)d+1

, (34)

32



from which we deduce that
F (π)

F (π∗)
≤
(

1

21/(d+1) − 1

)d+1

, (35)

as was stated in the proposition.

Proof of Theorem 3. For each monomial of degree j, we shall follow the same steps as for the

monomial case until inequality (33) to arrive at

0 ≤
∑
j

(
s

1/(j+1)
j + (s∗j )

1/(j+1)
)j+1

− 2
∑
j

∑
e

ae,jy
j+1
e , (36)

where sj =
∑
e ae,jy

j+1
e and s∗j =

∑
e ae,j(y

∗
e)j+1. Since (xp1 + xp2)1/p ≤ (xq1 + xq2)1/q for p ≥ q > 0,

the above inequality becomes

2F (π) ≤
∑
j

(
s

1/(d+1)
j + (s∗j )

1/(d+1)
)d+1

. (37)

Applying Lemma 3 to the sum on the right-hand side, we get

2F (π) ≤
(
F (π)1/(d+1) + F (π∗)1/(d+1)

)d+1

, (38)

from which the stated result follows.

Lemma 2 (Decomposition). Let γ and δ be two non-negative numbers such that γδ = 0. Let m be

a non-negative integer and x ≥ 0. Then,

(x+ (γ − δ))m+1 − xm+1 = γ

m∑
k=0

(x+ γ)kxm−k − δ
m∑
k=0

(x− δ)kxm−k. (39)

Proof. The proof is based on simple algebraic manipulations but we give it for the sake of com-
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pleteness. Starting from the left-hand side, we have

(x+ (γ − δ))m+1 − xm+1 = (γ − δ)
m∑
k=0

(x+ (γ − δ))mxm−k (40)

= γ

m∑
k=0

∑
j

(
k

j

)
(x+ γ)j(−δ)k−j

xm−k (41)

− δ
m∑
k=0

∑
j

(
k

j

)
(x− δ)jγk−j

xm−k (42)

= γ

m∑
k=0

(x+ γ)kxm−k − δ
m∑
k=0

(x− δ)kxm−k, (43)

where the last equality follows from the assumption that γδ = 0.

Lemma 3. For non-negative numbers ae, xe ze, and non-negative integer m,

∑
e

ae(xe + ze)
m+1 ≤

(
s1/(m+1)
x + s1/(m+1)

z

)m+1

(44)

where sx =
∑
e aex

m+1
e and sz =

∑
e aez

m+1
e .

Proof. The proof is an application of Hölder’s inequality. Starting from the left-hand side,

∑
e

ae(xe + ze)
m+1 =

∑
e

ae

m+1∑
k=0

(
m+ 1

k

)
xkez

m+1−k
e (45)

=

m+1∑
k=0

(
m+ 1

k

)(∑
e

aex
k
ez
m+1−k
e

)
(46)

=
m+1∑
k=0

(
m+ 1

k

)(∑
e

(aex
m+1
e )k/(m+1)(aez

m+1
e )(m+1−k)/(m+1)

)
(47)

≤
m+1∑
k=0

(
m+ 1

k

)(∑
e

aex
m+1
e

)k/(m+1)(∑
e

aez
m+1
e

)(m+1−k)/(m+1)

(48)

=

m+1∑
k=0

(
m+ 1

k

)
sk/(m+1)
x s(m+1−k)/(m+1)

z (49)

=
(
s1/(m+1)
x + s1/(m+1)

z

)m+1

, (50)

where we have used the Hölder’s inequality with p = (m + 1)/k and q = (m + 1)/(m + 1 − k) to
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get to (48) from (47).
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