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Modeling Rewards and Incentive Mechanisms for
Delay Tolerant Networks

O. Brun?, R. El-Azouzi†, B. Prabhu?, T. Seregina?

Abstract—A central problem in Delay Tolerant Networks
(DTNs) is to persuade mobile nodes to participate in relaying
messages. Indeed, the delivery of a message incurs a certain
number of costs for a relay. We consider a two-hop DTN in which
a source node, wanting to get its message across to the destination
as fast as possible, promises each relay it meets a reward. This
reward is the minimum amount that offsets the expected delivery
cost, as estimated by the relay from the information given by the
source (number of existing copies of the message, age of these
copies). A reward is given only to the relay that is the first one
to deliver the message to the destination. For two relays and
exponentially distributed inter-contact times, we show that the
expected reward the source pays remains the same irrespective of
the information it conveys, provided that the type of information
does not vary dynamically over time. On the other hand, the
source can gain by adapting the information that it conveys to a
meeting relay.

I. INTRODUCTION

The core objective for the design of Delay Tolerant Net-
works (DTNs) is to support communications even when end-
to-end connectivity fails. This might happen either due to
mobility of nodes or because communication devices become
unreachable for a large period of time. In those cases, DTNs
can exchange data in spite of the lack of a dedicated network
infrastructure. In practice, DTNs are composed of mobile
devices, including smartphones, tablets or other mobile devices
having multiple wireless interfaces. For such devices, OS
APIs are available to program dedicated applications for direct
data exchange with peer nodes during radio range contacts.
The networking community has mainly focused on how to
route messages reliably towards the intended destination(s).
Replication of the original message by the so-called epidemic
routing protocol ensures that at least some copy will reach the
destination node with high probability and with a minimum
delivery delay. Another standard optimization problem is how
to maximize the delivery probability under constraints on the
resources spent to forward the message to the destination
[1], [2]. Several papers have further extended the possible
optimization to the use of activation and/or forwarding control
at relays [3], [4], [5]. Almost all earlier works on modelling
performance of DTNs have assumed that relays in DTN are
willing to cooperate with source nodes. However, a central
question is whether owners of relay devices are willing to
have battery depleted to sustain DTNs communications. The
selfish behavior of relays becomes a core threat which hinders
any possible attempt to optimize network performance.
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In different contexts, user participation in network opera-
tions is assured by means of appropriate incentive mecha-
nisms. In peer-to-peer systems, many works proposed a reward
mechanism for providing incentives for cooperation in order
to discourage free riders. In the case of DTNs, nevertheless,
there is an additional technical issue to be solved. In fact,
the credit exchange mechanism cannot be based on end-
to-end communications between nodes due to the fact that
feedback messages in DTNs may incur large delays. In order
to avoid using feedback messages, we introduce a rewarding
mechanism promoting the participation of nodes as relays.
This scheme mandates that only a successful relay (i.e., the
first relay to deliver a message to the destination) receives
a reward. In fact, in order to avoid the use of feedbacks
that allow relays to know whether the message has been
successfully delivered or not, we assume that a relay will
receive a reward if and only if it is the first one to deliver
the message to the destination.

Thus, the reward offered is an incentive reward by which the
source may persuade a mobile node that it meets to become a
relay. To do so, the source has to decide the amount of reward
it proposes to each potential relay that it meets, and the relays
have to decide whether to accept the message or not. The
success of a given relay depends on the number of relays that
have already accepted the message: the bigger the number of
nodes relaying the message, the higher the delivery probability
for the message, but indeed the less the chance for the given
relay to receive a reward from the system. Furthermore, we
will consider different information settings: full information in
which the source informs the meeting relay about the number
of relays that have already accepted the message and at which
time; partial information in which the source gives to each
relay it meets only the information on the number of existing
message copies, and no information where the relays do not
have any information.

A. Contributions

In a DTN with two relays, we investigate how the reward
that guarantees full cooperation of relays depends on the
information that source makes available to relays, and the time
instant at which the relays meets the source. If the source does
not adapt the information it gives, we show that the average
reward paid by source for delivering a message remains the
same irrespective of the information it conveys. We then show
that the source can do better by changing its strategy on the fly.
When it meets the first relay, it is always optimal for the source
to tell it that it is first one. With this information the source has



to pay less to this relay. When it meets the second relay, we
show that the information to be given depends on the how late
this relay meets the source with respect to the first relay. After
a certain threshold, it is optimal for the source not the give
any information whereas before this threshold it is optimal for
the source to give full information, that is tell the relay that is
second and also tell the time at which the first relay met the
source. The results obtained are for exponentially distributed
inter-contact times between the relays and the source as well
as between the relays and the destination. This assumption is
justified at certain time-scales [6]. While other distributions
such as power-law have also been experimentally observed, in
this paper we restrict the analysis to that of the exponential
distribution.

B. Related works

Several incentive schemes have been developed for DTNs.
For example, [7] uses Tit-for-Tat (TFT) to design an incentive-
aware routing protocol that allows selfish DTN nodes to opti-
mize their individual utilities under TFT constraints. Mobicent
[8] is a credit-based incentive system which integrates credit
and cryptographic technique to solve the edge insertion and
edge hiding attacks among nodes. MobiGames [9] is a user-
centric and social-aware reputation based incentive scheme for
DTNs. In addition, [10] develops socially selfish routing in
DTNs, where the decision of a node to participate on forward-
ing process is based uses social willingness. RELICS [11] is
another cooperative based energy-aware incentive mechanism
for selfish DTNs, in which a rank metric was defined to mea-
sure the transit behavior of a node. In [12], authors proposed an
incentive driven dissemination scheme that encourages nodes
to cooperate and chooses delivery paths that can reach as
many nodes as possible with fewest transmissions. Recently,
authors in [13] proposed a rewarding scheme where relays gain
certain fixed reward that incentivise them to sacrifice memory
and battery on DTNs relaying operation. This mechanism
is designed using the theory of Minority Games in order
obtain cooperation of relays in distributed fashion. They also
proposed a learning algorithm which moves the system to the
aforementioned equilibria with just local estimation of system
parameter at relay nodes.

The rest of the paper is organized as follows. In Section
II, we describe the mobility model, the cost structure for the
relays, and the information that the source can give to the
relays. In Section III, we compute the expected reward for the
source in the three possible information settings. In Section
IV, we compute the optimal adaptive strategy for the source
and compare it with the static strategy. The conclusions and
the future work are summarized in Section V.

II. SYSTEM MODEL

Consider a network of wireless nodes with one source node,
one destination node, and two relays. We shall assume that
the source and the destination are fixed whereas the relays
are moving according to a given mobility model. The inter-

contact time between a relay and the source (resp. destination)
is assumed to be i.i.d with density function fs (resp. fd).

The source generates a message at time 0 and wants it to
be delivered to the destination. It cannot do so directly but has
to send the message through one of the relays. It is assumed
that the network is two-hop, that is a relay cannot forward
the message to another relay. It has to deliver the message by
itself to the destination. The delivery of a message incurs a
certain number of costs for a relay :

1) reception cost, Cr : this is a fixed energy cost for
receiving the message from the source;

2) storage cost, Cs : this is the incurred cost per unit time
the message is stored in the relay; and

3) transmission cost Cd : this is the fixed cost for transmit-
ting the message to the destination.

In order to offset these costs, the source proposes a reward
to the relays, which can decide to either accept or reject the
proposition. The source is not informed when the message
reaches the destination. Thus, it can propose a reward to the
second relay even if the first relay has already delivered the
message. In case both the relays accept, then the reward is
given only to the relay that is the first one to deliver the
message to the destination.

The source has to decide the amount of reward it proposes to
each relay, and the relays have to decide whether to accept the
message or not. An important assumption we shall make is that
a relay will accept the message if the expected reward offsets
its expected costs which depend notably on the information
given by the source to the relays. Note that the reward the
relay gets is a random variable which depends on whether it
is the first one to deliver the message – the relay gets nothing if
it is not the first one to deliver, otherwise it gets the proposed
reward. The expected reward that a relay gets will depend
upon the information the source gives to the relay and when
the two meet. The source could inform the relay on whether it
is the first or the second one, and if the relay is second then the
source could choose to tell the instant when the first relay met
the source. The dependence of the reward on the information
has the following intuitive explanation. The relay that is the
second one to meet the source has a smaller probability of
getting the reward since the first relay could have already
delivered the message to the destination. Since the second
relay has a higher risk of failure, it will naturally ask for a
higher reward to offset its costs. Here we have assumed that
the source tells a relay whether it is first or second. It can
choose not to give this information in which case the relay
which arrives later will again ask for a higher reward.

From the point of view of the source, the expected reward
it pays will depend on the information it gives. We shall
investigate how the expected reward to be paid by the source
depends on the information. For this we shall consider three
settings:

1) no information: the relays are not told whether they are
first or second to meet the source. Each relay only knows
at what time it meets the source.



2) partial information: each relay is told whether it is the
first or second to meet the source. The second relay is
not told when the first one met the source.

3) full information: each relay is told whether it is the first
or second. Moreover, the second relay knows at what
time the first one met the source.

Which of these settings is better for the source will certainly
depend on the mobility model for the relays and the inter-
contact time distribution. As a first attempt, in this paper we
shall restrict the analyses to exponentially distributed inter-
contact times with parameter λ (resp. µ) for the source (resp.
destination).

III. EXPECTED REWARD PAID BY THE SOURCE UNDER THE
THREE SETTINGS

Since the source wishes to transmit the message as fast
as possible to the destination, it is clear that it has to give
the message to any relay it meets, whatever the value of the
reward requested by this relay. Our aim is to compare the
expected reward the source will pay out in the three settings to
determine which is best option for the source. In the sequel, we
shall use the superscript F (resp. P , N ) to denote quantities
related to the full information (resp. partial information, no
information) setting.

A. Expression of the expected reward paid by the source

Let k ∈ {F, P,N} be one of the three settings. Let S1 be
the random time at which the message is given by the source
to the first relay it meets, and S2 > S1 be the random time
at which the second relay meets the source. For fixed s1 and
s2, we denote by s the vector (s1, s2). We define V (k)

i (s) as
the net cost for relay i = 1, 2 under setting k, and we let
R

(k)
i (s) be the reward asked by this relay to the source under

this setting. Of course, V (k)
1 (s) and R(k)

1 (s) do not depend on
s2 since it is not known at what time the second relay meets
the source. Similarly, V (k)

2 (s) and R(k)
2 (s) depend on s1 only

in the full information setting, that is for k = F . As mentioned
in Section II, the reward proposed to a relay has to offset its
expected cost. The latter depends on the information given by
the source to relay i only through the probability of success
p
(k)
i (s) estimated by the relay when it receives the message

from the source. We establish below the general expression
of the expected reward paid by the source in terms of these
estimated probabilities of success.

1) Expected reward of a relay for given contact times: The
net expected cost for relay i under setting k is given by

E[V (k)
i (s)] = Cr + Cs

1

µ
+
[
Cd−R(k)

i (s)
]
p
(k)
i (s). (1)

The first term in the net expected cost is the reception cost.
The second term corresponds to the storage cost. The interval
of time from the instant the relay meets the source to the
instant when it meets the destination is also exponentially
distributed with rate µ. This follows from the memoryless
property of the exponential distribution. Hence, the expected

duration for which the message is stored is 1/µ, which then
engenders an expected storage cost of Cs/µ. The final term is
the cost of transmitting the message to the destination which
then gives the reward to the relay. This term enters into play
only if the relay is the first one to contact the destination with
the message, which explains the factor p(k)i (s).

Relay i = 1, 2 will accept the message if the proposed
reward offsets the cost, that is, if E[V (k)

i (s)] ≤ 0. Thus, the
minimum reward that the source has to promise relay i is given
by

R
(k)
i (s) = Cd +

(
Cr + Cs

1

µ

)
1

p
(k)
i (s)

=: C1 + C2
1

p
(k)
i (s)

. (2)

2) Expected reward paid by the source for given contact
times: Given that S1 = s1 and S2 = s2, the expected reward
paid by the source is

R
(k)
S (s) = R

(k)
1 (s)(1− p(s)) +R

(k)
2 (s)p(s), (3)

where p(s) is the (real) probability of success of the second
relay given s1 and s2. We now proceed to compute p(s).

Lemma 1: The probability of success of the second relay
is given by

p(s) =
e−µ(s2−s1)

2
. (4)

Proof: Let Y1 (resp. Y2) be the first time instant after
s1 (resp. s2) when the first (resp. second) relay meets the
destination. From the memoryless property of the exponential
distribution P(Y1 > t) = e−µ(t−s1). Similarly, P(Y2 >
t) = e−µ(t−s2). Then, given that the second relay meets the
destination for the first time after s2 at time t, its probability
of success is

p(s|Y2 = t) = P(Y1 > t) = e−µ(t−s1).

Unconditioning on Y2, we obtain

p(s) =

∫ ∞
t=s2

p(s|Y2 = t)µe−µ(t−s2)dt

=

∫ ∞
s2

e−µ(t−s1)µe−µ(t−s2)dt

=
e−µ(s2−s1)

2
.

3) Expected reward paid by the source: Let R
(k)

denote
the expected reward paid by the source under setting k.
Unconditioning on S1 and S2, we obtain

R
(k)

=

∫ ∞
s1=0

∫ ∞
s2=s1

R
(k)
S (s)fS1,S2

(s)ds2ds1, (5)

where fS1,S2
(s1, s2) is the joint distribution of S1 and S2.

Since the inter-contact times are exponentially distributed
with parameter λ, the joint distribution of S1 and S2 is the



order statistics of two exponentially distributed variables of
parameter λ [14]. That is,

fS1,S2
(s) = 2λ2e−λ(s1+s2), 0 ≤ s1 ≤ s2 <∞. (6)

The resulting expected reward is stated in the following
proposition.

Proposition 1: The expected reward paid by the source is
expressed in terms of the probabilities of success estimated by
the relays as follows

R
(k)

= C1

+ C2

∞∫
0

∞∫
s1

(
1− p(s)
p
(k)
1 (s)

+
p(s)

p
(k)
2 (s)

)
2λ2e−λ(s1+s2)ds2ds1

(7)

Proof: The proof directly follows from (5), (6), (3) and
(2).

We now proceed to the analysis of the probability of success
estimated by the relays in the three settings.

B. Full information

In this setting, once a relay meets the source, it is informed
whether it is the first or the second to meet the source, and
if the relay is second then it is informed of the time the first
one met the source.

1) Minimal reward for the second relay: The second relay
knows s1 and is therefore in position to compute exactly its
probability of success, so that p(F )

2 (s) = p(s). According to
(2), the reward proposed to the second relay is then

R
(F )
2 (s) = C1 + C2

1

p(s)
, (8)

where the expression of p(s) is given in (4). Observe that the
reward proposed to the second relay depends on s1 and s2 only
through their difference, and increases exponentially with this
difference.

2) Minimal reward for the first relay: In a similar way,
one can compute the reward proposed to the first relay by
first computing its estimated probability of success p(F )

1 (s).
Lemma 2:

p
(F )
1 (s) = q = 1− λ

2(λ+ µ)
.

Proof: The first relay does not know at what time the
second relay will meet the source but knows that this time
is exponentially distributed with parameter λ. Let S2 denote
this random time. From the memoryless property of the
exponential distribution, P(S2 > x) = e−λ(x−s1). Given the
second relay meets the source at s2, the probability of success
of the first relay is 1−p(s), which was computed in (4). Now,

p
(F )
1 (s) can be found by unconditioning on S2, that is,

p
(F )
1 (s) =

∫ ∞
x=s1

p
(F )
1 (s|S2 = x)λe−λ(x−s1)dx

=

∫ ∞
x=s1

(1− p(s))λe−λ(x−s1)dx (9)

=

∫ ∞
x=s1

(
1− e−µ(x−s1)

2

)
λe−λ(x−s1)dx

= 1− λ

2(λ+ µ)
. (10)

The reward proposed to the first relay is then

R
(F )
1 (s1) = C1 + C2

1

q
. (11)

Note that in this setting p(F )
1 (s) and hence R(F )

1 , in addition
to be independant of s2 as expected, does not depend on s1
but only on the fact that this relay is the first one to meet the
source.

3) Expected reward paid by the source: The resulting
expected reward is stated in the following proposition.

Proposition 2: Let R
(F )

denote the expected reward paid
by the source when it gives full information to the relays.
Then,

R
(F )

= C1 + 2C2. (12)

Proof: Using the expressions of R(F )
1 and R(F )

2 given in
(11) and (8), and substituting them in (7)

R
(F )

= C1

+ C2

∫ ∞
0

∫ ∞
s1

(
1− p(s)

q
+1

)
2λ2e−λ(s1+s2)ds2ds1

= C1 + C2

+ C2

∫ ∞
0

2λe−2λs1

q(s1)

∫ ∞
s1

(1− p(s))λe−λ(s2−s1)ds2ds1

= C1 + 2C2,

where the last equality follows from (9).

C. Partial Information

In this setting, the source informs a relay whether it is first
or second. If the relay is second, the source does not inform
the relay of the time at which it met the first relay.

1) Minimal reward for the second relay: Now the second
relay does not know when exactly the first relay met the
source. Let S1 denote this random time. The second relay
knows that the distribution of inter-contact times is exponential
with parameter λ. Hence, the distribution of S1 given that the
second relay meets the source at s2 is given by

P(S1 < y) =
1− e−λy

1− e−λs2
.

The probability of success estimated by the second relay
given that it meets the source at s2 is p

(P )
2 (s). Note that



p
(P )
2 (s) does not depend on s1 which is unknown to the second

relay. This probability can be computed using the same method
as the probabilities in the setting with full information. Hence,
we state the result without proof.

p
(P )
2 (s) =

∫ s2

y=0

p(y, s2)
λe−λy

1− e−λs2
dy (13)

=
1

2

λ

λ− µ
e−µs2 − e−λs2
1− e−λs2

. (14)

Hence, the reward proposed to it by the source has to be

R(P )(s2) = C1 + C2
1

p
(P )
2 (s)

. (15)

2) Minimal reward for the first relay: In this setting, the
first relay obtains the same information from the source as
in the setting with full information. As a consequence, the
minimal reward that the source should propose to it is the
same as in the first setting, and is thus given by

R
(P )
1 (s1) = R

(F )
1 = C1 +

C2

q
. (16)

3) Expected reward paid by the source: Let R
(P )

be the
expected reward to be paid by the source when it gives partial
information. It turns out that

Proposition 3:

R
(P )

= C1 + 2C2. (17)

Proof: Using the expressions of R(P )
1 and R(P )

2 given in
(16) and (15), and substituting them in (7)

R
(P )

= C1

+ C2

∫ ∞
s1=0

∫ ∞
s2=s1

1− p(s)
q

2λ2e−λ(s1+s2)ds2ds1

+ C2

∫ ∞
s2=0

(∫ s2

s1=0

λe−λs1p(s)ds1

)
1

p
(P )
2 (s)

2λe−λs2ds2.

From (9), the second term is equal to C2. That the last term
is also equal to C2 follows directly from (13).

D. No information

In the final setting, a relay does not know whether it is first
or second. Since relays have no information on the order of
contacts with the source and the time at which the other relay
met the source, the reward a relay will ask will depend only
on the instant it meets the source.

1) Minimal reward for a relay:
Lemma 3: In the setting with no information, the probabil-

ity of success of relay i meeting the source at time si is given
by

p
(N)
i (s) =

λ

λ− µ
e−µsi

2
− µ2

λ2 − µ2
e−λsi , (18)

Proof: Let Y be the instant when relay i meets the
destination. Let X (resp. Z) be the instant when the other
relay meets the source (resp. destination). Then, relay i gets

the reward if either the other relay meets the source after Y
or if the other relay meets the source before Y but meets the
destination after Y , that is,

p
(N)
i (s) = 1{X>Y } + 1{X<Y,Z>Y }

From the law of total probability,

p
(N)
i (s) =

∫ ∞
t=s

µe−µ(t−s)
∫ ∞
x=0

λe−λx
∫ ∞
z=x

µe−µ(z−x)

p
(N)
i (s|Y = t,X = x, Z = z)dz dx dt

=

∫ ∞
t=s

µe−µ(t−s)
∫ ∞
x=0

λe−λx
∫ ∞
z=x

µe−µ(z−x)(
1{x>t} + 1{x<t,z>t}

)
dz dx dt

=

∫ ∞
t=s

µe−µ(t−s)e−λtdt

+

∫ ∞
t=s

µe−µ(t−s)
∫ t

x=0

λe−λx
∫ ∞
z=t

µe−µ(z−x)dz dx dt

=
λ

λ− µ
e−µs

2
− µ2

λ2 − µ2
e−λs,

which, if λ = µ, reduces to 3+2λs
4 e−λs.

According to (2), the minimal reward that the source should
propose to relay i is

R
(N)
i (s) = C1 + C2

1

p
(N)
i (s)

. (19)

2) Expected reward paid by the source: Let R
(N)

be
the expected reward paid by the source when it gives no
information. In this setting as well, the expected reward is
the same as in the previous two settings and is

R
(N)

= C1 + 2C2.

The proof follows the same lines as in the full information
and partial information settings.

IV. ADAPTIVE STRATEGY

It was seen in the previous section that the expected reward
paid by the source is the same in the three settings. Thus, if the
source uses a fixed strategy independently of s1 and s2, then
it is not beneficial for the source to give the state information
to the relays.

We now show that the source can reduce the expected
reward to be paid by adapting its strategy on the fly as and
when it meets the relays. Since the source knows at what time
it met the first relay, it can decide to either withhold or give
information to the second relay depending on s1 and s2. The
decision of the source will depend upon the reward it has to
propose in each of the three settings.

A key assumption we shall make is that the relays are naive,
that is, they do not react to the fact that the source is adapting
its strategy. A relay computes its success probability purely
based on the information it receives and according to the
formulas obtained in the previous section. In practice, if the
relay knows that the source will adapt its strategy as a function



of time, then the relay also must react accordingly. However,
as a first model, we assume that the relays are naive.

Our first result in this direction states that it is always
beneficial for the source to give information to the first relay
independently of s1.

Proposition 4:

R
(F )
1 (s) = R

(P )
1 (s) ≤ R(N)

1 (s) (20)

Proof: The equality R(F )
1 = R

(P )
1 follows from (11) and

(16). So, we now show that R(F )
1 ≤ R

(N)
1 . Note that for this

it is sufficient to show that

p
(N)
1 (s) ≤ p(F )

1 (s) = q, ∀s1 ≥ 0.

From (18), first note that p(N)
1 (0, s2) = q. It is thus sufficient to

show that the derivate of p(N)
1 (s) with respect to s1 is negative

to complete the proof. From (18),

d

ds1
p
(N)
1 (s1, s2) =

λµ2eµs1

λ− µ

(
−e
−2µs1

2µ
+
e−(λ+µ)s1

λ+ µ

)
.

For λ > µ, since e−x/x is a decreasing function of x, it
follows that − e

−2µs1

2µ + e−(λ+µ)s1

λ+µ seen as a function of λ is

negative. Hence p(N)
1 (s1, s2) is a decreasing function of s1. A

similar argument shows the same result for λ ≤ µ.
We now turn our attention to what the source should do

when it meets the second relay. First, let us restrict the set of
choices to either partial information (that is, the relay is told
that it is the second relay but not told the s1) or no information.
Then,

Proposition 5:

R
(N)
2 (s) ≤ R(P )

2 (s) (21)

Proof: The probability of success of the second relay in
the setting with no information, p(N)

2 (s), given in (18), can be
rewritten as

p
(N)
2 (s) = e−λs2q + (1− e−λs2)p(P )

2 (s),

where p(P )
2 (s), given in (14) is the probability of success of

the second relay when it has partial information, and q, given
in (10), is the probability of success of the first relay. The
intuitive explanation of this relation is that the second relay
does not know whether it is first or second. So, it will condition
on when the other relay meets the source to determine the
order. With probability (1− e−λs2), the other relay will have
met the source before s2. So, the second relay will correctly
assume that it is second and use the probability of success
with partial information because it does not know s1. With
probability e−λs2 , the other relay will meet the source after
s2. So, the second relay will wrongly assume that it is first
and use the corresponding probability of success.

Also, q ≥ p
(P )
2 (s), since the probability of success of the

first relay is always greater than that of the second relay.
Hence,

p
(N)
2 (s) ≥ p(P )

2 (s).

Since the expected reward proposed to the second relay
depends inversely on the probability of success, the claimed
result follows.
Proposition 5 says that between the choice of informing a
relay that is the second one and not giving this information,
it is better for the source not to give this information.

Finally, let us compare the settings of full information with
that of no information to determine which one is better for
the source. For this comparison, we shall again compare the
success probabilities in the two settings. Let us define the
difference of the success probabilities in the two settings as

g(v, s1) = p
(N)
2 (s1, v + s1)− p(F )

2 (s1, v + s1),

where v = s2 − s1. So, at s2 = s1 + v, if g(v, s1) < 0, then
it is better for the source to give information. Otherwise, it is
better for the source not to give information. We can rewrite
g(v, s1) as g(v, s1) = a(s1)e

−µv − b(s1)e−λv , where

a(s1) =
1

2

(
λ

λ− µ
e−µs1 − 1

)
, and

b(s1) =
µ2

λ2 − µ2
e−λs1 ,

First let us consider the case λ > µ.
Theorem 1: For λ > µ, there exist 0 ≤ θ1 ≤ θ2 <∞ such

that
1) if 0 ≤ s1 ≤ θ1, then g(v, s1) ≥ 0, ∀v ≥ 0;
2) if s1 ≥ θ2, then g(v, s1) < 0, ∀v ≥ 0;
3) if θ1 < s1 < θ2, then

a) g(v, s1) < 0, ∀s2 ∈ [s1, s1 + ω(s1));
b) g(v, s1) > 0, ∀s2 ∈ (s1 + ω(s1),∞);

where

θ2 = − 1

µ
log
(
1− µ

λ

)
,

ω(s1) =
1

λ− µ
log

(
b(s1)

a(s1)

)
,

and θ1 is the solution of a(θ1) = b(θ1). Moreover, ω is an
increasing and convex function.
Before going into the proof of the above result, some explana-
tion of its consequences is in order. If the source met the first
relay at s1 ≤ θ1, then irrespective of the time instant at which
it meets the second relay, it should not give any information to
the second relay. On the other hand, if s1 ≥ θ2, then it should
give full information to the second relay irrespective of s2.
For θ1 ≤ s1 ≤ θ2, then the strategy of the source should be
threshold type : if it meets the second relay before s1+ω(s1),
then it should give full information, otherwise it should not
give any information. This is illustrated in Figure 1.

Proof of Theorem 1: First, note that for s1 ≥ θ2, a(s1) ≤
0 which immediately shows that g(v, s1) < 0, ∀v ≥ 0 thereby
proving statement 2).

For s1 < θ2, a(s1) > 0, and there is exactly one real
solution of g(v, s1) = 0 seen as an equation in v, and this
is given by ω(s1). Moreover, at v = ω(s1),

d

dv
g(v, s1)

∣∣∣
v=ω(s1)

= (λ− µ)b(s1)e−λω(s1) > 0.



s1

s2

θ1

s 2
=
s 1

+
ω
(s

1)

θ2

s1 = s2

NO INFORMATION

FULL
INFORMATION

Fig. 1. Optimal strategy for the source for λ > µ.

Hence, g(v, s1) < 0 for v < ω(s1), and g(v, s1) > 0
otherwise.

To complete the proof, we need to show that ω(s1) > 0 if
and only if s1 > θ1. For this, note that

d

ds1
ω(s1) =

λ

λ− µ
1− e−µs1
2a(s1)

> 0,

that is, ω(s1) is a strictly increasing function of s1. From
a(θ1) = b(θ1), we have ω(θ1) = 0. As a consequence ω(s1) >
0 if and only if s1 > θ1.

The convexity of ω(s1) follows from the fact that

d2

ds21
ω(s1) =

λµ2

4(λ− µ)2
e−µs1

(a(s1))2
> 0.

The other case λ ≤ µ is similar with the difference that
θ2 = ∞. For any s1 there will always be some values of s2
when the source will not give information to the second relay.
We state the result for this case without proof as it follows a
similar reasoning to that of Theorem 1.

Theorem 2: For λ ≤ µ, there exist 0 ≤ θ1 <∞ such that

1) if 0 ≤ s1 ≤ θ1, then g(v, s1) ≥ 0, ∀v ≥ 0;
2) if θ1 < s1 <∞, then

a) g(v, s1) < 0, ∀s2 ∈ [s1, s1 + ω(s1));
b) g(v, s1) > 0, ∀s2 ∈ (s1 + ω(s1),∞);

where θ1 and ω(s1) are as defined in Theorem 1.
This strategy for the source is illustrated in Figure 2. As a
special case, for λ = µ,

θ1 =
−LW (−e−1.5)− 1.5

λ
,

ω(s1) =
2eλs1 − (3 + 2λs1)

2λ
,

where LW is the LambertW function.

A. Adaptive versus Static strategies

It was observed that the source can reduce the reward it has
to pay by adapting its strategy depending on s1 and s2. Let

s2 = s1 + ω(s1)

s1

s2

θ1

s1 = s2
FULL

NO INFORMATION

INFORMATION

Fig. 2. Optimal strategy for the source for λ < µ.

R
(A)

denote the expected reward paid by the source when it
uses the adaptive strategy. Then,

R
(A)

=

∞∫
0

∞∫
s2=s1

(
R

(F )
1 (s1)(1− p(s))+

min(R
(F )
2 (s), R

(N)
2 (s2))p(s)

)
fS1,S2

(s)ds2ds1

Since the source has to pay at least C1+C2, it follows that
Proposition 6:

C1 + C2 ≤ R
(A) ≤ R(F )

= C1 + 2C2

Corollary 1:

R
(A)

R
(F )
≥ C1 + C2

C1 + 2C2
≥ 1

2
.

By using an adaptive strategy, the source can reduce its
expenses at most by a factor of 0.5. Though the source
can reduce the expected reward it pays to the relays, the
difference R

(F ) − R(A)
is in fact borne by the relays. Thus,

the relays do not have zero net expected cost when the source
uses the adaptive strategy, and in fact incur a loss when the
source adapts its strategy. In this case, the relays also have an
incentive to adapt their strategy and ask for a higher reward.
We do not model this strategic behaviour of the relays in the
present work.

The exact analytical expression of R
(A)

is difficult to
compute unlike the expression for R

(F )
. In order to provide

a quantitative comparison between the adaptive and the static
settings, we resort to numerical experiments. In Figures 3 and
4, R

(A)
is plotted as a function of λ for µ = 1, C1 = 1,

and C2 = 5 (C2 = 0.5 in Figure 4). It is observed that R
(A)

increases with λ and is gets close to R
(F )

when λ→∞. On
the other hand, for small values of λ, R

(A)
is close to the

minimal reward C1 + C2. It appears that R
(A)

has the form
(C1 + C2) + C2(1− e−λγ), for some constant γ, but we are
unable to prove this result.
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Fig. 3. Expected reward paid by the source for the adaptive statergy. µ = 1,
C1 = 1, C2 = 5.
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Fig. 4. Expected reward paid by the source for the adaptive statergy. µ = 1,
C1 = 1, C2 = 0.5.

V. CONCLUSIONS AND FUTURE WORK

We investigated the impact of state information on the
expected reward the source has to pay to relays in a two-
hop DTN. Three possible settings were considered: (i) full
information; (ii) partial information; and (iii) no information.
It was shown that on an average the source paid out the same
expected reward in the three settings. The source can however
reduce the expected reward by adapting the information as a
function of the contact times with the relays. It was shown
that it is optimal to always tell the first relay that it is the first
one. For the second relay, a threshold type strategy is optimal,
where the threshold depends on the contact time of the first
relay. If the second relay arrives before this threshold, then it
is optimal to give full information to it, otherwise it is optimal
not to give any information.

The results obtained in this work are based on certain
assumptions and simplifications that could be debated. The
key assumption made in the definition of the adaptive strategy
is that the second relay does not adapt the way it computes its
success probability when it receive no information from the
source. The fact that the source does not give information to
the second relay could lead it to believe that the first relay
met the source at a time further away in the past than what

is suggested by the exponential distribution. The second relay
could thus ask for a higher reward than in the no information
setting, and offset any potential gains of the adaptive strategy.
Another assumption made relates to the distribution of the
contact process with the source and the destination. These
were assumed to be exponentially distributed. While this
assumption has been experimentally verified under certain
circumstances and widely used as a model for the inter-contact
times, other distributions such as heavy-tailed distributions
have also been proposed as a model for the contact process. A
final remark concerns the number of relays in the network. The
current work assumes that there are two relays which leads to
a simpler analysis.

Our current work focusses on relaxing these assumptions,
with emphasis being placed on modelling the strategic re-
sponse of the second relay to the adaptive strategy of the
source. The objective would be to determine an equilibrium
strategy from which neither the source nor the relays have an
incentive to deviate.
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