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Introduction

This paper deals with a scheduling problem involving a set of tasks and a continuouslydivisible renewable resource of limited capacity shared by the tasks. Each task must be processed between a release date and a deadline. During its time window, each task must receive a given total amount of resource units that we will refer to as a required energy amount. We consider the case where the resource amount (intensity) that a task requires during its processing is not xed. More precisely, the resource requirement is a continuous function of time that must be determined. Once the task is started the resource usage must lie within an interval until the total required energy has been received by the task. Furthermore we consider that the total energy received by the task is not equal to the total amount of the resource used by it. Instead we have eciency functions, which translates the required resource amounts into energy. Consequently, the duration of the task is not xed neither but is determined by the resource requirement function as the task is nished once the necessary energy has been received.

As typical examples, we cite energy-consuming production scheduling problems. In (Artigues et. al. 2009), a foundry application is presented where a metal is melted in induction furnaces. Due to the complexity of the problem, eciency functions were not considered in the paper. In a continuous time setting but still without considering the eciency functions, constraint propagation algorithms based on the energetic reasoning concept were proposed in (Artigues and Lopez 2015). An extension of this work to linear eciency functions were considered in (Nattaf et. al. 2015).

In this paper, we perform an analysis of the structural properties of the problem for more realistic concave piecewise linear functions (Hung et. al. 2005, Lewis 2009). We also adapt the energetic reasoning satisability test as well as the hybrid branch-and-bound algorithm developed for the linear case to the case of concave piecewise linear functions.

Problem denition

In the Continuous Energy-Constrained Scheduling Problem (CECSP), we have as input a set A = {1, . . . , n} of tasks and a continuous resource, which is available in a limited capacity B. Each task has to be performed between its release date r i and its deadline di . Instead of being dened by its duration and resource requirement, in CECSP a task is dened by an energy requirement W i , a minimal and maximal resource requirement b min i and b max i .

To solve the CECSP, we have to nd for each task its start time st i , its end time et i and a function b i (t), for all t ∈ T (where T = [ min i∈A r i , max i∈A di ]), representing the amount of the resource allocated to this task. These variables have to verify the following equations:

r i ≤ st i ≤ et i ≤ di ∀i ∈ A (1) b min i ≤ b i (t) ≤ b max i ∀i ∈ A; ∀t ∈ [st i , et i ] (2) b i (t) = 0 ∀i ∈ A; ∀t ∈ T \ [st i , et i ] (3) eti sti f i (b i (t))dt = W i ∀i ∈ A (4) i∈A b i (t) ≤ B ∀t ∈ T (5) 
where f i (b) is a continuous non-decreasing power processing rate function.

In this paper, we consider the case where functions f i are non-decreasing, concave, piecewise linear and for which f i (0) = 0. Therefore, let P i be the number of pieces of function f i and let (γ i p ) {1,...,Pi} be the breakpoints of

f i . Thus, f i (b) = a ip * b + c ip , ∀b ∈ [γ i p , γ i p+1 ].
This problem is NP-complete (Nattaf et. al. 2015). Now, we present a property of the CECSP, which will be helpful for solving it. Actually, we have proved that if a solution S exists, then another solution S can be created from S with the property that each function b i (t) is piecewise constant. This is the statement of the following theorem: Theorem 1. Let I be a feasible instance of CECSP, with non-decreasing, concave piecewise linear functions f i such that f i (0) = 0, ∀i ∈ A. A solution such that, for all i ∈ A, b i (t) is piecewise constant, exists. Furthermore, ∀i ∈ A the only breakpoints of b i (t) can be restricted to the start and end times of the tasks.

The main idea of the proof is as follows. Let (t q ) {q=1..Q} be the increasing series of distinct start time and end time values (Q ≤ 2n). Then, in each interval [t q , t q+1 ], we set b i (t) to the mean value of b i (t) over this interval, i.e. b i (t) = t q+1 tq bi(t)dt tq+1-tq . The new solution consumes as much resource as the rst one. For the energy received, we use Jensen inequality (Jensen 1906) to show each task receives an amount of energy greater or equal to the previous one. Finally, to obtain a feasible solution, we set, for each task receiving too much energy, its end time to the exact time where the task has received enough energy. Now, we are able to present two satisability tests for the CECSP with concave and piecewise linear eciency functions as well as a hybrid branch-and-bound to solve it.

3 Satisability tests for the CECSP Energetic reasoning In this section, we present an extension of the energetic reasoning for the CECSP with non-decreasing, linear function f i (Nattaf et. al. 2015) to the CECSP with non-decreasing, concave and piecewise linear f i .

In order to present this satisability test, we dene two quantities: the minimum resource consumption (resp. energy requirement) of a task i over an interval [t 1 , t 2 ], b(i, t 1 , t 2 ) (resp. w(i, t 1 , t 2 )). Then, the energetic reasoning consists in testing whether the available area within [t 1 , t 2 ] (B × (t 2 -t 1 )) is large enough to contain the minimum resource quantity needed by all the tasks in this interval.

To compute the minimum required resource consumption, we rst have to compute w(i, t 1 , t 2 ). Given an interval [t 1 , t 2 ], the minimum consumption always corresponds to a conguration where task i is scheduled at b

max i outside interval [t 1 , t 2 ] or scheduled at b min i between [t 1 , t 2 ].
Therefore, let I be the interval (note I can be the union of two intervals)

Q over which i is scheduled at b max i outside interval [t 1 , t 2 ]. Then, we have: w(i, t 1 , t 2 ) = max(f i (b min i )(t 2 -t 1 ) , W i -|I| * f i (b max i )).
Then, in order to compute b(i, t 1 , t 2 ), let J = [t 1 , t 2 ] ∩ [r i , di ] be the interval over which task i must receive an energy w(i, t 1 , t 2 ). First, since f i is a non-decreasing function, processing a task i at b min i has the best eciency ratio, i.e. 

(i, t 1 , t 2 ) is equivalent to solving: minimize J b i (t)dt subject to J f i (b i (t))dt ≥ w(i, t 1 , t 2 )
In the latter case, using Jensen inequality (Jensen 1906), we know that it exists a solution where b i (t) is constant and this constant is equal to f -1 i (W i /|J|). Since f i is a non-decreasing concave piecewise linear function this value can easily be computed and, we have:

f -1 i (W i /|J|) = max p∈Pi ( w(i,t1,t2)-cip|J| aip|J|
).

Time-table/Flow-based test In this section, we describe a linear program which helps to detect infeasibility. Indeed, if the program is infeasible, then there is no solution for the CECSP.

To describe this program, let (t q ) q∈Q be the increasing series of distinct domain bounds of the start and end times values and let s max i (resp. e min i ) be the latest start (resp. earliest end) time of i. Then, for each interval [t q , t q+1 ] and for each task, we dene two variables b iq and w iq , which stand for the quantity of resource (resp. energy) used (resp. received) by task i in this interval.

i∈A biq ≤ B(tq+1 -tq) ∀q ∈ Q @TA biq ≥ b min i (tq+1 -tq) ∀i ∈ A ; ∀q ∈ Q|s max i ≤ tq ≤ e min i @UA biq ≤ b max i (tq+1 -tq) ∀i ∈ A ; ∀q ∈ Q @VA biq = 0 ∀i ∈ A ; ∀q ∈ Q|tq ∈ [ri, di] @WA wiq ≤ aipbiq + cip(tq+1 -tq) ∀i ∈ A ; ∀q ∈ Q ; ∀p ∈ {1..Pi} @IHA q∈Q wiq = Wi ∀i ∈ A @IIA
The linear program is based on the following observation: in all intervals [t q , t q+1 ]

⊆ [s max i , e min i ]
, task i has to be scheduled, at least, at b min i . These constraints are expressed by ( 7). Constraints (6) model the resource capacity constraints. Constraints (8) impose that the maximum resource requirement constraints are satised. Constraints (9) set the resource consumption of task i to be equal to

0 in [t q , t q+1 ] if [t q , t q+1 ] ⊆ [r i , di ].
Constraints (10) combined with the objective function, ensure the resource conversion. Finally, constraints (11) state that the tasks received the required energy.

Hybrid branch-and-bound

In this section, we describe the hybrid branch-and-bound algorithm we used to solve the CECSP. This algorithm is an adaptation of the one in (Nattaf et. al. 2015) for linear functions.

First, a branch-and-bound algorithm is used to reduce the size of possible start and end intervals (until their size is less than a given > 0) and, then, a start/end event-based MILP is used in order to nd exact task start and end times and to determine the quantity of resource allocated to i between two consecutive events.

The branching procedure is inspired by the work of (Carlier and Latapie 1991). At the beginning, a task can start (resp. end) at any time

st i ∈ [r i , s max i ] (resp et i ∈ [e min i , di ]).
The idea is, at each node, to reduce the size of one of these intervals. For example, suppose that we choose to reduce the start time interval of i, then we create two nodes: one with constraint st i ∈ [r i , (r i + s max i )/2[ and one with constraint

st i ∈ [(r i + s max i )/2, s max i ].
The variable on which we will branch is selected with the following heuristic: we choose the smallest interval among all [r i , s At each node, we apply one or both of the satisability tests described above and, if the test does not fail, we perform the time-window adjustments proposed in (Nattaf et. al. 2015). We continue this procedure using a depth-rst strategy until all intervals are smaller than . When it happens, the remaining solution space is searched via the event-based MILP.

Experiments have been conducted on the set of 129 instances of (Nattaf et. al. 2014) showing the interest of both satisability tests as well as the one of the hybrid branch-andbound.

Conclusions

In this paper, we demonstrated that the resource usage changes can be restricted to start and end times of tasks. This allows us to present two polynomial satisability tests for the CECSP with concave piecewise linear power processing rate functions. We also presented a solution method including these satisability tests as well as a branching procedure and a Mixed Integer Linear Program.

In the continuity of this work, it will be interesting to establish the instance properties that make one test stronger than the other one. Studying more general functions is also a challenging research direction. 
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