
HAL Id: hal-01471315
https://laas.hal.science/hal-01471315

Submitted on 23 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Bigraphical Multi-scale Modeling Methodology for
System of Systems

Amal Gassara, Ismael Bouassida Rodriguez, Mohamed Jmaiel, Khalil Drira

To cite this version:
Amal Gassara, Ismael Bouassida Rodriguez, Mohamed Jmaiel, Khalil Drira. A Bigraphical Multi-
scale Modeling Methodology for System of Systems. Computers and Electrical Engineering, 2017, 58,
pp.PP.113-125. �10.1016/j.compeleceng.2017.01.016�. �hal-01471315�

https://laas.hal.science/hal-01471315
https://hal.archives-ouvertes.fr

A Bigraphical Multi-scale Modeling
Methodology for System of Systems

Amal Gassara

ReDCAD, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia
amal.gassara@redcad.org

Ismael Bouassida Rodriguez

ReDCAD, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia
Digital Research Center of Sfax, B.P. 275, Sakiet Ezzit, 3021 Sfax, Tunisia

Mohamed Jmaiel

ReDCAD, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia
Digital Research Center of Sfax, B.P. 275, Sakiet Ezzit, 3021 Sfax, Tunisia

Khalil Drira

CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
Univ de Toulouse, LAAS, F-31400 Toulouse, France

Abstract

In this paper, we present a multi-scale modeling methodology for software System of Systems (SoS) using the
formal technique of Bigraphical Reactive System. This methodology provides a correct by design approach
ensuring the correctness of the SoS architectures. A first scale is defined by the designer. Then, it is refined
by successively adding lower scale details. The transition between scales is implemented following a rule-
oriented refinement process. The executed rules respect the system constraints ensuring, in this way, the
correctness of the obtained scale architectures. Moreover, we address the dynamic aspect of SoS by providing
model-based rules of reconfiguration actions. We illustrate our approach with a Smart Buildings case study.

I. Introduction

The increasing integration of software,
hardware and network has raised a new
class of software systems, the so-called

System of Systems (SoS) [Maier, 1998]. A SoS
is composed of large scale integrated systems
that are heterogeneous and independently op-
erable on their own, but are networked to-
gether for a common goal. Systems of Sys-
tems are increasingly involved in different ar-
eas [Zhou et al., 2011] like emergency coordi-
nation and crisis management, health care,

smart cities, etc.

These systems are characterized by geo-
graphic distribution, operational and manage-
rial independence of their elements, evolu-
tionary development, and emergent behavior.
These characteristics have therefore brought
new challenges to software development in-
cluding software architecture design. In fact, a
software architecture represents the structure
of a system which comprises software compo-
nents, their externally visible properties, and
the relationships among them [Garlan, 2003].
Hence, by providing a high-level model of the

1

B3MS • January 2017 • Vol. 58

system architecture, it allows to understand
the system in a simple way and to reason
about its key properties.

However, the complexity of SoSs makes
their design more difficult especially in en-
suring the correctness of their architectures.
By correct, we mean that architectures re-
spect a set of functional requirements like
structural constraints related to the hierarchy
of their constituents and the connections be-
tween them. Therefore, an existing open
issue is how to facilitate the modeling of
SoS architectures and how to represent them
rigourously in order to guarantee their correct-
ness.

Another major issue is to address the dy-
namic aspect of such systems by ensuring re-
configurations. A reconfiguration describes
how an architecture can evolve by adding or
removing not only components and connec-
tions inside a system but also the containing
systems themselves considered as larger com-
ponents in their own.

In recent years, some research activities
like [Bryans et al., 2013, Khlif et al., 2014] ad-
dressed the description of SoS software
architectures. But they provide infor-
mal description and can be extended with
a solid formal foundation to ensure the
correctness of the designed architectures.
Other approaches [Petitdemange et al., 2015,
Riddle, 2012, dan,] were proposed including
formal models and techniques. However,
these approaches do not provide a solution
for facilitating the modeling of SoS architec-
tures and mastering their complexity. They ad-
dressed the dynamic aspect of such systems by
focusing only on correctness by evolution and
not on correctness by design. Whereas, our ap-
proach ensures in addition the correctness of
the initial architecture.

In this direction, the main goal of
this work is to provide a rigourous so-
lution for SoS modeling based on the
formal technique of Bigraphical Reac-
tive Systems (BRS) [Milner, 2009] with an
inspiring vision from multi-scale model-
ing [Ingram et al., 2004, Gassara et al., 2013,

Gassara et al., 2015, Khlif et al., 2014].
Therefore, we proposed B3MS, a Bigraphi-

cal Multi-scale Modeling Methodology for Sys-
tem of Systems. This formal methodology
aims, first, to help the designer to model cor-
rect SoS architectures. Instead of modeling
the whole SoS and verifying it with respect
to the defined constraints, we rather propose
a correct by design approach using a multi-
scale modeling. Actually, multi-scale mod-
eling is a suitable solution since it is based
on a refinement process. Following B3MS, a
coarse grained scale is defined by the designer.
Then, it is refined automatically by succes-
sively adding lower scale details until detail
goals are satisfied. This refinement is ensured
by applying specific rules that comply with
the structural constraints of ths system ensur-
ing, in this way, the correctness of the obtained
scale architectures.

Moreover, we address the dynamic aspect
of SoS by giving some reconfiguration meta-
rules which help the designer to model recon-
figurations. These meta-rules are modeled as
BRS and encompass the essential SoS reconfig-
urations such as adding, removing and replac-
ing system constituents. In fact, we envision
that modeling SoS reconfigurations can bene-
fit, on the one hand, from multi-scale model-
ing since there is a need to work sometimes at
coarse-grained levels and other times at fine-
grained levels. On the other hand, model-
ing these reconfigurations benefits from the
expressive power and visual representation of
BRS to describe architectures and reconfigura-
tion. It benefits also from the ability of BRS to
abstract the constituent systems via parame-
ters. Hence, the difficulty of dealing with SoS
reconfigurations can be reduced by focusing
on coarse-grained level without going into de-
tails of fine-grained levels.

The remainder of this paper is organized
as follows. We present in Section II some re-
search activities dealing with modeling SoS ar-
chitectures. Then, in Section III, we present
B3MS, our proposed modeling methodology
for SoS that is illustrated by the Smart Build-
ings case study in Section IV. Finally, Sec-

2

B3MS • January 2017 • Vol. 58

tion V concludes this paper and presents fu-
ture work.

II. Related work

Recent systematic literature re-
views [Nakagawa et al., 2013,
Guessi et al., 2015b] on the description of
SoS architectures presented the use of some
architecture description languages (ADLs)
such as UML (Unified Modeling Language),
SysML (System Modeling Language), CML
(COMPASS Modeling Language), and X-
UNITY. So, we identified some research
activities that are based on these ADLs. For
instance, Khlif et al. [Khlif et al., 2014] pro-
posed a multi-scale modeling approach for
SoS architecture description using UML and
SysML notations. They ensure the description
of SoS architectures (their constituents and
the connections between them). To do so, they
adopt a rule-oriented description technique
to manage the refinement process as a model
transformation between the coarse-grain and
the fine-grain descriptions. Moreover, Bryans
et al. [Bryans et al., 2013] used SysML to
specify interfaces among the constituents and
then they enriched such a specification with
CML to specify contracts in SoS software.
CML [Woodcock et al., 2012] is specifically
designed for SoS modeling and analysis. It is
a collection of process definitions and interact
with the environment via synchronous com-
munications. The use of interface descriptions
enables the specification of pre and post
conditions for operations.

However, we can notice that these two stud-
ies support only the static aspect of SoS and
do not address dynamic aspect. This is ex-
plained by the fact that ADLs lack evolution
feature of SoS, as it is claimed by Guessi et
al. [Guessi et al., 2015a] after assessing fours
ADLs used for SoS architecture description.
Actually, SoS architectures should support dy-
namic evolution by adding new constituents
and connections or removing existing ones.
Moreover, despite the advantages of semi-
formal representation, mainly with regard to

comprehension, formal methods are interest-
ing since considering that many SoS can ad-
dress critical domains.

In this direction, Flavio Oquendo and
Axel Legay [Oquendo and Legay, 2015] de-
fined SosADL, a novel formal ADL which is
an evolution of Π-ADL, used to describe static
and dynamic architectural specifications. It ex-
tends Π-ADL with new architectural concepts
and notations for SoS. SosADL allows to de-
clare a set of architectural constraints which
are solved at runtime in order to construct ar-
chitectures. Using SosADL, Petitdemange et
al. [Petitdemange et al., 2015] proposed an ap-
proach to describe SoS architectures and to
manage their reconfigurations using the exam-
ple of a fire emergency system. They proposed
a pattern-based approach that provides a set
of reconfiguration patterns in order to assist
dynamic reconfigurations. According to these
patterns, reconfigurations can be implemented
and applied at runtime, while maintaining the
consistency in the SoS.

Based on formal models, we identified
also two major European projects (COM-
PASS [Riddle, 2012] and DANSE [dan,]).
DANSE [dan,] proposed a methodology for
the development of SoS architectures based
on architectural patterns. This methodology
starts with an initial SoS model that is cre-
ated using the Model SoS solution method.
Then, this model is changed to encompass
a pattern that offers improvement. Through
simulation and statistical model checking, the
changed SoS model is tested to conform the
SoS goals while meeting the desired evolu-
tionary performance. To deal with dynamic-
ity and evolution, DANSE abstracted models
from SoS characteristics and used a contract
approach to define semantics on behaviors,
evolutions and structural parts of SoS. COM-
PASS [Riddle, 2012] aims to develop a mod-
elling framework for SoS architectures and to
provide a formal semantic foundation to sup-
port analysis of SoS models. This framework
provides different levels of description, start-
ing with SysML that is easy for stakehold-
ers to understand. SysML is linked to CML

3

B3MS • January 2017 • Vol. 58

by extending it with SoS-specific features to
describe the assumptions and the guarantees
of constituent systems. This extended SysML
can then be readily processed by static analy-
sis tools including theorem provers and model
checkers, allowing automated detection of in-
consistencies, and of potential deviation from
contract conformance.

Although these latter work are based on
formal techniques, the correctness of archi-
tectures is based on verification using model
checkers which would cause computational
problems due to the complexity of SoS archi-
tectures. Whereas, in our work, we ensure SoS
correctness by construction instead of verifica-
tion.

Furthermore, these approaches do not pro-
vide a methodology that facilitates the design
of SoS architectures and masters their com-
plexity. In this context, Clark [Clark, 2009]
considered that SoS consists of elements that
are traditional systems and then classical mod-
eling methodologies can be applied. In-
deed, he used two Building Block and V-
Model to model them. The Building Block
method demonstrates that a SoS could be de-
composed into subsystems until every sub-
system becomes an individuals system, and
then the system engineering methods can be
applied. The V-Model method describes the
SoS life cycle. It can be used to each sub-
system until every subsystem is validated ac-
cording to its requirements. However, us-
ing these classical methods, essential charac-
teristics of SoS such as communication are ig-
nored [Zhou et al., 2011]. This appeals to de-
velop a more SoS-specific methodology. In this
direction, we aim in our work to provide a
methodology for SoS. We adopt a multi-scale
modeling approach which supports a contin-
uous and a coherent architecture description
from the coarse grained level down to the fine
grained level. This approach facilitates the
design of such system architectures through
a refinement process as well as ensures their
correctness by construction instead of verifica-
tion.

Also, Valerdi et al. [Valerdi and Lane, 2004]

affirmed that to understand the SoS model,
one can view the SoS as a set of systems, with
the systems at each level comprised of some
combination of other systems and system ele-
ments. Much of the total development effort
for this type of system can be estimated using
current system engineering and software de-
velopment models. So, Valerdi et al. proposed
COSOSIMO (Constructive System-of-Systems
Integration Cost Model) that is a newest ad-
dition to the Constructive Cost Model suite
(COCOMO) [Madachy, 2009]. COCOMO is
designed to help users estimate software en-
gineering effort for requirements analysis, de-
sign, construction, and verification and valida-
tion at the software configuration item level.
However, COSOSIMO is designed to estimate
the SoS architecture definition and integration
effort for SoSs. Comparing with our approach,
this work focuses on estimating the cost of
modeling and integrating SoS. However, our
approach focuses on providing a methodology
of describing SoS architectures ensuring their
correctness.

III. B3MS: a Bigraphical

Multi-scale Modeling

Methodology for SoS

We aim, in our work, to model correct SoS ar-
chitectures that respect a set of structural con-
straints. To ensure correctness, it is necessary
to study the consistency of a system at a given
time, more precisely, its conformance to an
architectural style. An architectural style de-
fines a vocabulary of component and connec-
tor types, and some constraints on how they
can be combined [Garlan, 2003]. So, an archi-
tecture can be considered as correct if it is an
instance of its architectural style (i.e., it uses
the defined component types and it preserves
all the defined constraints).

B3MS, our proposed formal methodology,
supports the correct modeling of the static as-
pect as well as the dynamic aspect of SoS ar-
chitectures.

4

B3MS • January 2017 • Vol. 58

i. Modeling the static aspect of SoS

Modeling the static aspect of SoS is based
on a multi-scale modeling approach. So, we
follow the three steps of multi-scale model-
ing [Ingram et al., 2004]:

i.1 Step 1: Scales identification

The first step of multi-scale modeling is iden-
tifying and selecting scales. The architecture
of a SoS is characterized by a hierarchical de-
scription of systems containing physical, hard-
ware and software components. So, we define
the relation between scales by a hierarchical
decomposition. In other words, a finer scale
represents the constituent systems of the pre-
vious scale systems:

• Scale i: represents coarse grained entities,
such i ∈ [0, n] where n corresponds to
the level of composition (i.e., when it is
impossible to have more decomposition).

• Scale i + 1: represents the sub-entities of
scale i entities.

• Scale n: describes the communica-
tion entities deployed in each hard-
ware component and how they are con-
nected. We used the publish/subscribe
paradigm [Meier and Cahill, 2005]. This
communication model allows the inter-
connection of components loosely cou-
pled, in a synchronous or asynchronous
mode. It offers three types of entities:
event producers (EP), event consumers
(EC) and channel managers (CM). For ev-
ery determined session, a CM is created
in order to manage, store and deliver ex-
changed data flow between multiple pro-
ducers and consumers. Actually, the EPs
and ECs can be connected to CMs, but
they can not be directly interconnected.
The EPs send data to the CM to which
they are connected. The CM returns a
copy of the received data to all ECs con-
nected to it.
The main advantage of the pub-
lish/subscribe is the opportunity for
better scalability than traditional client-
server pattern through message caching

and network-based routing. Moreover,
publishers are loosely coupled to sub-
scribers and they operate independently
of each other.

i.2 Step 2: Submodel identification

The second step of multi-scale modeling is
identifying the appropriate submodels that
will be adopted at each scale.

Actually, correct architectural design moti-
vates the need for suitable formal language
to avoid ambiguities. This formal language
should (1) be able to describe systems, con-
stituent systems as well as software and phys-
ical components. It should (2) emphasize
both hierarchy and connectivity of constituent
systems and components. It should also (3)
provide information on both static and dy-
namic aspect of the system. We have no-
ticed that Bigraphs and BRS [Milner, 2009]
are the most appropriate languages that sup-
port these requirements. Moreover, Chang
and al. [Chang et al., 2007] recommended that
BRSs are suitable for describing architectural
styles. Indeed, bigraphs are equipped with a
sorting logic that allows to discipline bigraphs
with some constraints. In our methodology,
we used this language as a submodel for all
scales.

A BRS consists of a set of bigraphs and a set
of reaction rules that may be applied to rewrite
these bigraphs. In the following, we give an
overview of bigraphs, reaction rules and their
sorting logic.

(a) Bigraphs A bigraph consists of hyper-
edges and nodes which can be nested (for ex-
ample in Figure 1(a), v1 is nested in v0). Each
hyperedge can connect many nodes via ports.
For example, v0, v1 and v2 are joined by the hy-
peredge e1 in Figure 1(a) where ports are rep-
resented by black dots. A bigraph combines
two graphical structures -a place graph and a
link graph- based on the same node set, hence
the term bigraph.

The place graph (cf. Figure 1(b)) is a hi-
erarchical tree that describes the locality of

5

B3MS • January 2017 • Vol. 58

0 1

0 1

e1

e0

x0 x1

y0 y1 y2

v0
v1 v2

Building

Computer

Agent

(a) A bigraph G

e1

e0

x0 x1

y0 y2

v2
v0

v1

0 1

0 1

v0

v1

v2

y1

(b) place and link graphs

Figure 1: A bigraph G and its graphs

the nodes. In this graph, trees are rooted by
regions represented by dashed rectangles (cf.
Figure 1(b)). There can also be sites, repre-
sented as grey rectangles (cf. Figure 1(b)). A
site is a hole that can host new nodes.

Whereas the link graph (cf. Figure 1(b)) is a
hypergraph that describes the connectivity of
nodes. Within this graph, there can be outer
names like y0 and inner names like x0 rep-
resented as open links (cf. Figure 1). These
names give bigraphs the possibility to be com-
posed by joining the inner names of one bi-
graph with the corresponding outer names of
another one.

Each node in the bigraph is assigned a con-
trol. Controls (Building, Computer and Agent
in the bigraph G in Figure 1(a)) indicate the
node type and the node ports’ number. The
set of controls forms the so called signature.
We use the notation “X-node", which means a
node that has been assigned the control X.

(b) Reaction Rules A reaction rule consists
of two bigraphs: a Redex R (the pattern to be
changed) and a Reactum R’ (the changed pat-
tern). The application of the rule consists in
identifying the image of R in a bigraph and
replacing it by the corresponding R′. For ex-
ample, in Figure 2(b), the rule allows to add
a floor (Floor-node) in a building (Building-
node). The site (grey rectangle) in the Redex
represents all other possible occupants of the
Bluiding-node which are unchanged after ap-
plying this rule.

(c) Sorting logic Bigraphs can be associated
with a sorting logic which consists of a set of
sorts (i.e., types). So, all nodes and/or ports
can be then enriched with such a sort. Fur-
ther, a sorting stipulates some conditions on
bigraphs enabling, thus, to restrict our atten-
tion to the bigraphs which satisfy these condi-
tions and outlaw the others.

Definition III.1. (Sorting [Milner, 2009]). A
sorting ∑ = (Θ,K, Φ) has:
Θ: a set of sorts
K = {K1 : θ1, K2 : θ2, ..}: a signature which
is ∑-sorted over Θ (i.e., assigning a sort θi to
each control Ki)
Φ: a formation rule defining conditions on the
structure of nodes.

As an example of a formation rule, we can
cite the following: “nodes having the sort θ2
should be children of nodes having the sort
θ1"

i.3 Step 3: Multi-scale model construction

In order to construct a multi-scale model, our
methodology adopts the top-down strategy.
This latter helps to follow a correct by design
approach based on our formal language (i.e.,
BRS).

Instead of modeling the whole SoS architec-
ture and verifying it with respect to the de-
fined system constraints (i.e., its conformance
to its architectural style), we rather ensure the
correctness of each scale architecture obtained
by a refinement process.

6

B3MS • January 2017 • Vol. 58

Therefore, at first, the designer defines the
architectural style by identifying the differ-
ent components types (i.e., locations, devices,
hosts and constituent systems, etc.) as well
as their structural constraints (i.e., hierarchi-
cal and connection constraints). Then, he/she
defines the first scale architecture. After that,
this architecture is refined automatically by
adding the next scale entities. The obtained
architecture is refined in turn until reaching
the last scale (i.e., where all system entities are
defined).

With a BRS, a scale architecture is repre-
sented as a bigraph where nodes represent
systems, constituent systems or locations, etc.
and nesting structure represents their hierar-
chy. Whereas the hyperedges represent con-
nections between the CSs. A hyperedge con-
nects a set of nodes via ports where the ports
represent the interfaces of CSs and the hyper-
edge means that these CSs belong to the same
system and communicate together.

Regarding the refinement process, it is per-
formed by applying specific rules that should
respect the defined architectural style (or sys-
tem constraints) ensuring in this way the cor-
rectness of the obtained scale architectures. To
do so, we proposed some types of rules (i.e.,
denoted as meta-rules) ensuring this refine-
ment.

Meta-rule We look upon our meta-rules as
generic templates from which reaction rules
can be automatically instantiated. Our meta-
rules allow to parametrize the node controls
and ports for a given reaction rule as the case
may be. Our approach supports the instanti-
ation of meta-rules in order to guarantee the
construction of correct rules.

In order to construct an SoS architecture, we
proposed two meta-rules:

• The nesting meta-rule nest(Y, X) depicted
in Figure 2(a) encapsulates reaction rules
allowing to add a nested node in a given
node. The parameters X (i.e., the con-
trol of the nesting node) and Y (i.e., the
control of the nested node) are passed to
the reaction rule that will be constructed.

The site (grey rectangle) in the Redex rep-
resents all other possible nodes of the X-
node which will be unchanged after the
application of the rule. When we pass
X = Building and Y = Floor, to the meta-
reaction rule, we get the reaction rule of
Figure 2(b).

• The connecting meta-rule connect(s, nb):
it allows to connect constituent systems
belonging to the same system. The in-
put parameters are the system name (s)
and the number of constituent systems
(nb). As depicted in Figure 3(a), this meta-
rule consists in looking for nb CS-nodes
marked with the s-node (marking con-
stituent systems belonging to the system
s) and connecting them with the same hy-
peredge. This meta-rule can be instanti-
ated (for example connect(s1, 2)) to give
the rule of Figure 3(b), that allows to con-
nect two constituents of the system s1.

Furthermore, we proposed five meta-rules
for enhancing the SoS architecture with the
publish/subscribe communication model:

• The addEPEC(s) meta-rule, depicted in
Figure 4(a), encapsulates reaction rules al-
lowing to add a pair of EP and EC in a CS
that belongs to the system s.

• The addCM(s) meta-rule, depicted in Fig-
ure 4(b), encapsulates reaction rules al-
lowing to add a CM in a CS that belongs
to the system s.

• The linkEP(s) encapsulates reaction rules
allowing to link an EP that belongs to the
system s to its corresponding CM. As de-
picted in Figure 5(a), the Redex consists in
finding an EP and a CM that belong to the
same system (marked by an s-node) and
then connecting them via the port ep.

• The linkEC(s) encapsulates reaction rules
allowing to link an EC that belongs to the
system s to its corresponding CM. As de-
picted in Figure 5(b), the Redex consists in
finding an EC and a CM that belong to
the same system (marked by an s-node)
and then connecting them via the port ec.

7

B3MS • January 2017 • Vol. 58

Redex Reactum

X

0 0

X

Y

(a) The nesting meta-rule
nest(Y, X)

Redex Reactum

Building

0 0

Floor

Building

(b) The nest(Floor, Building)
rule

Figure 2: The nesting meta-rule and examples of its instantiated rules

Redex Reactum

CS CS CS CS

s s ss

(a) The connecting meta-rule connect(s, nb)

Redex Reactum

CS CS CS CS

S1 S1 S1S1

(b) The connect(s1, 2) rule

Figure 3: The connecting meta-rule and one example of its instantiated rules

Correctness by construction To efficiently
tackle the correctness of architectures, B3MS
follows a correct by construction approach.
This approach is based on this idea: if the
initial architecture conforms to a given archi-
tectural style and the changes of this architec-
ture (refinements) preserve the constraints of
this architectural style, by induction, the evolv-
ing architecture would conform to this archi-
tectural style, too.

Since we use a bigraph to describe one scale
architecture, and reaction rules to describe the
refinement of the architectures, we argue the
above idea based on the conformance theorem
proven by Chang et al. [Chang et al., 2007]:

Conformance theorem The changing bigraphs
always preserve the constraints defined by ∑-sorted
BRS if the initial bigraph and reaction rules do.

Hence, the refinement process is performed
on a correct scale architecture by applying the
appropriate rules that comply with the de-
fined constraints, ensuring in this way the cor-
rectness of the next scale architectures. These
rules are instantiated from our proposed meta-
rules. So, we should guarantee that the right
rule is applied and that it is correct, too.

To do so, we proposed an algorithm that

defines tactics for prescribing the sequence in
which the meta-rules should be instantiated
and applied. These tactics comply with the
hierarchy of nodes defined in the architectural
style.

Moreover, we identified conditions on in-
stantiating the meta-rules in order to ob-
tain only correct rules. For this reason, the
nest(Y, X) meta-rule is instantiated according
to the conditions on the nesting of nodes de-
fined in the architectural style. Hence, we en-
sure that all instantiated rules comply with
the constraints. For example, if the condition
is : “Floor-node in Building-node", then we
instantiate the meta-rule with the parameters
Y = Floor and X = Building.

Regarding the connect(s, nb) meta-rule, it
complies with the linking constraints defined
in the architectural style. It allows to con-
nect only nodes belonging to the same sys-
tem. So, it will be instantiated for all defined
systems in the SoS. Likewise, the meta-rules
for adding and connecting publish/subscribe
components are defined in a way that they
comply with the constraints defined in the ar-
chitectural style. Hence, all instantiated rules
are corrects, too.

8

B3MS • January 2017 • Vol. 58

Redex Reactum

s

CS
CS

s

EP

s

EC

0

0

(a) addEPEC(s) meta-rule

Redex Reactum

sEC

EC

s

CM
sEP

EP

(b) addCM(s) meta-rule

Figure 4: The meta-rules for adding publish/subscribe components

Redex

s

EP

s

CM

EP
s

CM

ep

Reactum

ep

ec ec

(a) The linkEP(s) meta-rule

Redex

s

EC

s

CM
EC

s

CM

ec

Reactum

ec

ep ep

(b) The linkEC(s) meta-rule

Figure 5: The meta-rules for linking publish/subscribe components

ii. Modeling the SoS reconfigurations

We address the dynamic aspect of SoS by
modeling reconfigurations. A reconfigura-
tion describes how an architecture can evolve
by adding or removing not only components
and connections inside a system but also the
containing systems themselves considered as
larger components in their own. The diffi-
culty of dealing with such reconfigurations
can be reduced by focusing on coarse-grained
level without going into details of fine-grained
levels. Hence, the modeling of SoS reconfig-
urations can benefit from multi-scale model-
ing. Moreover, it benefits from the ability of
BRS to abstract the constituent components
via parameters. This combination of multi-
scale modeling and BRS offers an intuitive and
a formal way to describe the dynamic aspect
of SoS architectures.

While SoS architectures are represented by
Bigraphs, we model reconfigurations via re-
action rules. Therefore, we define a set
of meta-rules which allows a SoS to handle
communication requirement changes such as
adding, removing or replacing constituent sys-
tems [Selberg and Austin, 2008]. These meta-
rules are defined as follows:

Redex

CS

Reactum

0

s

CS

0 1

Y

CM s

s

CS

ep ec

CM s

ep ec

EP EC

Figure 6: The addCS reconfiguration rule

Adding a constituent system We defined
the meta-rule addCS(s, Y) that allows to add
a constituent system having the control Y (i.e.,
the node type) to a given system (s). This re-
configuration is denoted in Figure 6. The Re-
dex consists in finding a CS-node that belongs
to the system s (containing the CM marked
with an s-node). Afterwards, the Reactum con-
sists in adding another CS-node and connect-
ing it to the same hyperedge as the first CS-
node. Then, it allows to add EP and EC com-
ponents in the new CS and connecting them
to the CM through the port ep and ec, respec-
tively. The site numbered 1 enables the new
CS-node to host its owns constituent systems.

Removing a constituent system We defined
the meta-rule removeCS(cs, s) that allows to re-
move a constituent system (having the id cs)
from a given system (s). This reconfiguration

9

B3MS • January 2017 • Vol. 58

Redex

cs

Reactum

0

s s

Figure 7: The removeCS reconfiguration rule

Redex

cs1

Reactum

0

s

cs2 0

s

Figure 8: The replaceCS reconfiguration rule

(denoted in Figure 7) removes likewise all the
constituent systems of cs that are abstracted
via the site 0. Here, we highlight the advan-
tage of BRS by avoiding the dealt with lower
details.

Replacing a constituent system We defined
the replaceCS(cs1, cs2) meta-rule that allows to
replace a constituent system cs1 with another
one cs2 from a given system. This meta-rule,
denoted in Figure 8, consists in removing cs1.
Then, adding cs2 and connecting it to the sys-
tem. The constituents of cs1 that ensure the
communication will be moved to cs2 after ap-
plying the reconfiguration.

IV. Case study: Smart Buildings

Let present our proposal by looking at the ex-
ample of Smart Buildings.

i. Smart Buildings

In Smart Cities, many systems are in-
terconnected such as power plants, so-
lar farms, smart buildings, hospitals, etc.
Most of these systems are categorized as
SoS [Pérez et al., 2013]. To illustrate B3MS, we

focus on Smart Buildings. Such buildings aim
at improving the life quality of their occupants
and at enhancing their comfort levels with the
aim of setting them free of manual control of
different tasks, while considering energy con-
servation whenever possible. For instance, var-
ious systems and appliances are turned off in
vacant rooms or when they are useless.

As showed in Figure 9, Building Automa-
tion Systems are managed and controlled by
a City Control Unit. Each system may con-
sist of HVAC systems (i.e., Heating, Ventila-
tion and Air-Conditioning), Automated Con-
trol of Lighting (ACL), security or surveillance
systems, etc. installed in building floors. In
our case study, we take the example of the
two first systems. These floors contain rooms
and each room can be equipped with heteroge-
neous devices (sensors like thermometer, pres-
ence sensor, light sensor, etc. and actuators
like air conditioner, lamp, etc). These devices
are connected together and communicate to
ensure an intelligent building control. Sensors
collect information such as rooms lighting, hu-
man presence, temperature, etc. The Building
Control Unit receives and analyses these infor-
mation in order to adaptively configure the de-
vices.

ii. Modeling the static aspect of
Smart Buildings

Step 1: Scales identification

In a city, the Smart Buildings are character-
ized as a hierarchy of systems that are located
in different spatial scales like city, buildings,
floors, rooms, and so on (Figure 9). While
each constituent system must be placed in a
specific location, locations in turn may have a
hierarchical description. So, the Smart Build-
ings architecture describes systems, their con-
stituents and their locations. According to this
architecture, we define the following scales:

• City scale: this scale contains the Smart
Buildings system which is managed by
the City Control Unit to control all the
buildings in the city. It includes also city

10

B3MS • January 2017 • Vol. 58

Building

Floor

City

Smart Buildings
 SoS

Building Automation
 System

Building

Building Automation
 System

Building

Building Automation
 System

HVAC ACL

Floor

HVAC ACL

Floor

HVAC ACL

Room

D D D

Room

D D D

Room

D D D

Device

EP EC CM

Device

EP EP EC

Device

EP EC CM

Figure 9: The hierarchy of the Smart Buildings as a SoS

resources such as buildings, homes, etc.
• Building scale: it contains the building

floors and the Building Automation Sys-
tem which is managed by a Control Unit.

• Floor scale: it contains rooms as well as
different systems such as HVAC systems
and Automated Control of Lighting in our
case study.

• Room scale: it includes equipped devices
like sensors and actuators. In fact, the
HVAC system is composed of thermome-
ters and air conditioners connected to the
Building Control Unit. Whereas, the Au-
tomated Control of Lighting is composed
of lamps, presence sensors and light sen-
sors connected to the Building Control
Unit.

• Device scale: it describes the communica-
tion entities deployed in each device and
how they are connected.

Step 2: Submodel identification

This step is already defined by our methodol-
ogy. We identified BRS as a submodel for all
scales (See Section i.2).

Step 3: Multi-scale model construction

Following our methodology, the designer
should start by identifying the node controls
(CCU representing the City Control Unit, BCU
representing a Building Control Unit, Build-
ing representing a building, Floor represent-
ing a floor, Room representing a room, D rep-
resenting a device, EP representing an event
producer, EC representing an event consumer
and CM representing a channel manager).

Then, the designer defines the structural
constraints that should be respected while in-
stantiating the meta-rules. For smart Build-
ings, he/she defines the following information
and constraints:

• A building node can contain only a Build-
ing Control Unit node and floor nodes.

• A floor node can contain only room
nodes.

• A room node can contain only device
nodes.

• Smart Buildings System is composed of
Building Control Units and the City Con-
trol Unit.

11

B3MS • January 2017 • Vol. 58

• HVAC System is composed of devices
and their corresponding Building Control
Unit.

• Automated Light Control system is com-
posed of devices and their corresponding
Building Control Unit.

Based on the publish/subscribe paradigm, we
identified likewise a set of structural con-
straints:

• EPs and ECs communicate only via CM
and all EPs and ECs belonging to the
same system are connected to the same
CM.

• Each system has a CM that is placed in a
device belonging to this system.

• Each constituent system contains a pair of
EP and EC.

Moreover, the designer should specify some
constraints on the number of nodes. For exam-
ple, each building has two floors. Each floor
contains three rooms and is equipped with a
HVAC system and an ACL system. Each room
in turn is equipped by two devices belonging
to the HVAC system and three devices belong-
ing to the ACL system.

Since the architectural style of Smart
Buildings describes physical entities includ-
ing locations, constituent systems and pub-
lish/subscribe entities, we distinguish three
main kinds of nodes: Loc representing lo-
cations, CS representing constituent systems
and PS representing publish/subscribe enti-
ties.

Based on these requirements, let’s present
the corresponding sorting that defines this ar-
chitectural style.

Definition IV.1 (Sorting for Smart Buildings).
∑SC = (Ω,K, Φ) where:
Ω = {Loc, CS, PS}
K = {Building:(Loc,0),Floor:(Loc,0),
Room:(Loc,0),CCU:(CS,4),BCU:(CS,4),
D:(CS,1), EP:(PS,1), EC:(PS,1), CM:(PS,2)}.
Φ = {BCU in Building, Floor in Building,
Room in Floor, D in Room, CS nodes marked
with the same node should be connected with
the same hyperedge, a pair of EP and EC in a

CS, one CM in a CS that belongs to its system,
EP must be connected to the CM of its system
through the port ep, EC must be connected to
the CM of its system through the port ec}.

The signature of this sorting defines the con-
trols Building, Floor and Room which are as-
signed to the sort Loc and have 0 ports as well
as the controls CCU, BCU having 4 ports and
D having 1 port. These latter controls are as-
signed to the sort CS. Also, it defines the con-
trols EP and EC having 1 port and CM having
2 ports. These controls are assigned to the sort
PS.

Finally, the designer defines the first scale
model (i.e., city scale). After that, the construc-
tion of the Smart Buildings architecture begins
as highlighted in the following:

City scale The first scale (i.e., city scale),
given by the designer, includes buildings and
the City Control Unit. The first part of Fig-
ure 10 shows the corresponding bigraphical
model, where CCU-node represents the City
Control Unit and Building-nodes represent
buildings. Here, we present only three build-
ings in order to obtain a simple and under-
standable model.

Transition from city scale to building scale
The city scale model is refined to obtain the
next scale model (i.e., building scale). This
refinement consists in adding building floors.
To do so, we instantiated the nesting meta-
rule to have the rule enabling to add a floor
in the building nest(Floor, Building) (cf. Fig-
ure 2(b)). Therefore, this rule can be applied
several times in order to add many floors re-
siding in the same building.

Moreover, we instantiated this meta-rule to
have the rule enabling to add a Building Con-
trol Unit in the building nest(BCU, Building).
Then, we instantiated the connecting meta-
rule to obtain connect(sb, 4) rule. This rule al-
lows to connect Building Control Units to the
City Control Unit. These control units contain
sb-nodes in order to mark that they belong to
the smart buildings system (marks are not pre-
sented in the model).

12

B3MS • January 2017 • Vol. 58

Building

City scale

Building scale

CCU

Floor

CCU

Floor scale CCU

Room
Room

BCU

RoomRoom

Room Room Room

Room scale CCU

BCU

Room

Room Room Room

D

D

D

D

D

D

D

D

D

D

D

BCU
BCU

Room

BCUBCU BCU

Room

BCU

D

D

D
D

BCU

F
F F

Building Building

Building Building Building
Floor

Floor

Floor

Floor

Floor

Floor FloorFloor

Building
Building Building

BuildingBuildingBuilding

Floor

Floor Floor

Floor

Floor
Floor

Room

Room

Room

RoomRoom

Figure 10: The different scales of Smart Buildings as a
bigraphical description

Building scale This scale bigraphical model
is showed in the second part of Figure 10,
where Floor-nodes represent floors and BCU-
nodes represent Building Control Units and
edges represent connections between the the
City Control Unit and Building Control Units.

Transition from building scale to floor scale
The building scale model is refined in turn to
obtain the floor scale model. This refinement
consists in adding rooms. To do so, we instan-
tiated the nesting meta-rule to have the rule
nest(Room, Floor) enabling to add a room in
a floor. Furthermore, we applied the instan-

tiated rule as many times as the number of
rooms.

Floor scale The third part of Figure 10 shows
the correspondent bigraphical model, where
Room-nodes represent rooms. For sake of clar-
ity, we represent only the rooms of one build-
ing floor.

Transition from floor scale to room scale
The floor scale model is in turn refined in or-
der to obtain the room scale model. This re-
finement is performed by applying rules en-
abling to add devices in rooms and to connect
them with the Building Control Unit. To do so,
we instantiated the nesting meta-rule to add
devices (nest(D, Room)). Then, we have instan-
tiated the connecting meta-rule for each sys-
tem (connect(hvac, 6) and connect(alc, 9)). In
fact, hvac-nodes mark devices belonging to the
HVAC system which are connected via the
same hyperedge and alc-nodes mark devices
belonging to the ACL system which are con-
nected via another hyperedge.

Room scale This scale model is depicted in
the last part of Figure 10. Likewise, for sake
of clarity, we represent only the devices of one
building floor. The devices that are connected
by a blue hyperedge ensure the light control
(represent the ACL system). Whereas the de-
vices that are connected by a green hyperedge
ensures the temperature control (represent the
HVAC system).

Transition from room scale to device scale
The room scale model is in turn refined in
order to obtain the device scale model. This
refinement is performed by applying rules en-
abling to add publish/subscribe components
in devices and then to connect them. To do
so, we instantiated the addEPEC and addCM
meta-rules for each system. Then, we instan-
tiated the linkEP and linkEC meta-rules for
each system.

Device scale This scale model represents the
architecture of the smart buildings SoS en-

13

B3MS • January 2017 • Vol. 58

hanced with the communication entities de-
ployed in each device. EPs are connected to
their corresponding CM through the port ep
and ECs are connected to their CM through
the port ec.

Hence, we obtain the bigraphical model that
describes the architecture of Smart Buildings
in a city. This model represents a correct archi-
tecture since the first scale architecture and all
applied rules are corrects (i.e., conform to the
architectural style).

iii. Modeling the Smart Buildings re-
configurations

According to the needs of the residents in-
side buildings and the resource changes of the
equipped devices, many reconfigurations may
be appealed. We take the example of some
scenarios:

Scenario 1: In order to automate the switch-
ing on/off task of the Air conditioner, each
room is equipped with a new presence sen-
sor to be connected to the HVAC system. The
air conditioner is turned on only when the
room is occupied. In this case, we instantiate
the meta-rule addCS(s, Y) with the parameter
s = hvac and Y = D. The obtained rule allows
to add a device and connect it to the HVAC
system.

Scenario 2: When a device breakdowns, it
should be replaced by a good one. For exam-
ple, if a lamp having the identifier lamp1 is
broken down, it is replaced with a lamp hav-
ing as identifier lamp2. In this case, we in-
stantiate the meta-rule replaceCS(cs1, cs2) with
the parameter cs1 = lamp1 and cs2 = lamp2.
Then, we apply it on the SoS architecture.

V. Conclusions and Future Work

We proposed, B3MS, a novel methodology for
SoS modeling based on the formal technique
of Bigraphical Reactive System with an inspir-
ing vision from multi-scale modeling. Multi-
scale modeling is addressed in various disci-

plines such as physics, chemistry, biology and
materials science. It allows to describe differ-
ent granularity of a system at varying degrees
of complexity and different description scales.
In our work, we adopted this modeling ap-
proach for SoS architecture design since there
is a need for both coarse-grained levels and
fine-grained levels.

Our methodology provides a correct by de-
sign approach based on a formal model en-
suring the correctness of the SoS architectures.
This approach follows a refinement process
for the transformation between coarse-grained
and fine-grained descriptions. Considering
that the first scale given by the designer is cor-
rect, this refinement is performed by adding
lower scale details. It is implemented by ap-
plying corrects rules (i.e., preserve the system
constraints). Hence, the obtained scale archi-
tectures are in turn corrects.

Moreover, we address the dynamic aspect
of SoS by providing model-based rules of ba-
sic reconfigurations such us adding, removing
and replacing constituent systems. These re-
configurations are defined as meta-rules en-
suring the correctness of the evolved SoS ar-
chitectures. To illustrate and evaluate our
approach, we considered a case study called
"Smart Buildings".

In future work, we aim at focusing more on
the dynamic aspect of SoS by modeling safe
reconfigurations. In fact, we should guarantee
the correctness of the modeled reconfiguration
rules defined by the designer.

References

References

[dan,] Danse - designing for adaptability
and evolution in system of systems engi-
neering. http://danse-ip.eu/home/main-
project-objectives.html.

[Bryans et al., 2013] Bryans, J., Payne, R., Holt,
J., and Perry, S. (2013). Semi-formal and
formal interface specification for system of

14

B3MS • January 2017 • Vol. 58

systems architecture. In Systems Conference
(SysCon), pages 612–619.

[Chang et al., 2007] Chang, Z., Mao, X., and
Qi, Z. (2007). An Approach based on Bi-
graphical Reactive Systems to Check Archi-
tectural Instance Conforming to its Style. In
The first Joint IEEE/IFIP Symposium on Theo-
retical Aspects of Software Engineering (TASE),
pages 57–66.

[Clark, 2009] Clark, J. (2009). System of Sys-
tems Engineering and Family of Systems
Engineering from a standards, V-Model,
and Dual-V Model perspective. In The 3rd
Annual IEEE on Systems Conference, pages
381–387.

[Garlan, 2003] Garlan, D. (2003). Formal Mod-
eling and Analysis of Software Architecture:
Components, Connectors, and Events. In
Formal Methods for Software Architectures, vol-
ume 2804 of Lecture Notes in Computer Sci-
ence, pages 1–24. Springer Berlin Heidel-
berg.

[Gassara et al., 2013] Gassara, A., Bouas-
sida Rodriguez, I., and Jmaiel, M. (2013).
Towards a Multi-scale Modeling for Archi-
tectural Deployment Based on Bigraphs.
In The 7th European Conference on Soft-
ware Architecture, ECSA, pages 122–129.
Springer-Verlag.

[Gassara et al., 2015] Gassara, A., Bouas-
sida Rodriguez, I., Jmaiel, M., and Drira,
K. (2015). A Formal Method for Modeling
Deployment Architectures Based on Bi-
graphs. SIGAPP Applied Computing Review,
15(2):8–16.

[Guessi et al., 2015a] Guessi, M., Cavalcante,
E., and Oliveira, L. B. R. (2015a). Char-
acterizing Architecture Description Lan-
guages for Software-intensive Systems-of-
systems. In The Third International Work-
shop on Software Engineering for Systems-of-
Systems (SESoS), pages 12–18. IEEE Press.

[Guessi et al., 2015b] Guessi, M., Neto, V.,
Bianchi, T., Romero Felizardo, K., Oquendo,

F., and Yumi Nakagawa, E. (2015b). A Sys-
tematic Literature Review on the Descrip-
tion of Software Architectures for Systems
of Systems. In 30th ACM Symposium on Ap-
plied Computing, pages 1–8.

[Ingram et al., 2004] Ingram, G., Cameron, I.,
and Hangos, K. (2004). Classification and
analysis of integrating frameworks in mul-
tiscale modelling. Chemical Engineering Sci-
ence, 59(11):2171 – 2187.

[Khlif et al., 2014] Khlif, I., Hadj Kacem, M.,
Hadj Kacem, A., and Drira, K. (2014). A
Multi-scale Modelling Perspective for SoS
Architectures. In The 8th European Confer-
ence on Software Architecture Workshops, EC-
SAW, pages 30:1–30:5. ACM.

[Madachy, 2009] Madachy, R. (2009). Inte-
grated COCOMO suite tool for education.
In The 24th International Forum on COCOMO
and systems/software cost modeling.

[Maier, 1998] Maier, M. W. (1998). Architect-
ing principles for systems-of-systems. Sys-
tems Engineering, 1(4):267–284.

[Meier and Cahill, 2005] Meier, R. and Cahill,
V. (2005). Taxonomy of Distributed Event-
Based Programming Systems. The Computer
Journal, 48(5):602–626.

[Milner, 2009] Milner, R. (2009). The Space and
Motion of Communicating Agents. Cambridge
University Press.

[Nakagawa et al., 2013] Nakagawa, E. Y.,
Gonçalves, M., Guessi, M., Oliveira, L. B. R.,
and Oquendo, F. (2013). The State of the
Art and Future Perspectives in Systems
of Systems Software Architectures. In
The First International Workshop on Software
Engineering for Systems-of-Systems, SESoS,
pages 13–20. ACM.

[Oquendo and Legay, 2015] Oquendo, F. and
Legay, A. (2015). Formal Architecture
Description of Trustworthy Systems-of-
Systems with SosADL. ERCIM News,
2015(102).

15

B3MS • January 2017 • Vol. 58

[Pérez et al., 2013] Pérez, J., Díaz, J., Garba-
josa, J., Yagüe, A., Gonzalez, E., and Lopez-
Perea, M. (2013). Large-scale Smart Grids
As System of Systems. In The First In-
ternational Workshop on Software Engineering
for Systems-of-Systems, SESoS, pages 38–42.
ACM.

[Petitdemange et al., 2015] Petitdemange, F.,
Borne, I., and Buisson, J. (2015). Approach
Based Patterns for System-of-Systems Re-
configuration. In The IEEE/ACM 3rd Inter-
national Workshop on Software Engineering for
Systems-of-Systems (SESoS), pages 19–22.

[Riddle, 2012] Riddle, S. (2012). Contract-
based modelling and analysis technologies
for Systems-of-Systems. In 7th International
Conference on System of Systems Engineering
(SoSE), pages 469–470.

[Selberg and Austin, 2008] Selberg, S. A. and
Austin, M. A. (2008). Toward an Evolution-
ary System of Systems Architecture. IN-
COSE International Symposium, 18(1):1065–
1078.

[Valerdi and Lane, 2004] Valerdi, R. and Lane,
J. A. (2004). Steps Toward Model Unifica-
tion for Software, Systems Engineering, and
Systems of Systems. In The 19th International
Forum on COCOMO and Software Cost Mod-
eling.

[Woodcock et al., 2012] Woodcock, J., Cav-
alcanti, A., Fitzgerald, J., Larsen, P.,
Miyazawa, A., and Perry, S. (2012). Features
of CML: A formal modelling language for
Systems of Systems. In The 7th International
Conference on System of Systems Engineering
(SoSE), pages 1–6.

[Zhou et al., 2011] Zhou, B., Dvoryanchikova,
A., Lobov, A., and Lastra, J. (2011). Model-
ing system of systems: A generic method
based on system characteristics and inter-
face. In The 9th IEEE International Confer-
ence on Industrial Informatics (INDIN), pages
361–368.

16

