
HAL Id: hal-01472021
https://laas.hal.science/hal-01472021

Submitted on 20 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and Generating large-scale Google-like
Workload

Georges da Costa, Léo Grange, Inès de Courchelle

To cite this version:
Georges da Costa, Léo Grange, Inès de Courchelle. Modeling and Generating large-scale Google-
like Workload. International Workshop on Resilience and/or Energy-aware techniques for High-
Performance Computing, Nov 2016, Hangzhou, China. �10.1109/IGCC.2016.7892623�. �hal-01472021�

https://laas.hal.science/hal-01472021
https://hal.archives-ouvertes.fr

Modeling and Generating large-scale Google-like
Workload

Georges Da Costa∗, Léo Grange∗, Inès De Courchelle∗†
∗ IRIT Laboratory, University of Toulouse, France, {Georges.Da-Costa,Leo.Grange,Ines.De-Courchelle}@irit.fr

† CNRS, LAAS, Toulouse, France

Abstract—One of the key element needed to test most large-
scale scheduling algorithms is a testing infrastructure. Large
scale is of upmost importance as failures and complex behaviors
are common occurrences only at such scale. In order to test
the reaction of a system to failures or extreme behaviors, it is
necessary to be able to create large scale environments. Such
an infrastructure must be reproducible so that several work
are able to compare themselves but also capable of diversity
as otherwise it would risk to lead to particular subcases. In this
article, we propose a generic adaptable and reusable model of
large scale workload. The original schema comes from the Google
Cluster Workload Traces which is a perfect representative of
large scale production workload. Contrary to most model analysis
of such traces, we propose along with our model a reference
implementation in order for other studies using our results to
produce comparable experiments.

I. INTRODUCTION

With the increase of demand from the scientific commu-
nity, HPC infrastructure are subject to more constraints. New
datacenters are built and already existing one are subject
to high demand from users. In order to improve the usage
of these infrastructure, a large computer science community
research innovative algorithms and middlewares [9]. The three
main tools actually used are mathematical models, simulation
and experimentation on real hardware. Contributions are new
scheduling and methods of resource management in order
to improve several metrics such as energy, performance, re-
silience, throughput or dynamism.

In most works, these contributions are evaluated with perfect
hardware. At large scale, several hardware elements will fail
even during a small time period. Thus, in order to evaluate
these contributions using simulations a complete environment
is needed, from the input workload to hardware failure models.

One of the key element needed to reliably evaluate these
contributions are precise, realistic and adapted models of
workload. Most study use workload extracted from particular
infrastructures [7]. For the purpose of evaluation of scheduling,
the mostly used way to take advantages of these data is to
directly replay the traces, reducing the possibilities of test to
a specific case with particularities. Few studies [3] provide
more detailed information on the global characteristics of
usable traces but are not sufficient to generate similar ones
for replaying purpose.

This article will model and propose an implementation of
a generic trace generator based on realistic traces from a pro-
duction environment with a large number of different usages.

The traces used as reference are from the Google Cluster [13]
because they were used for internal heavy computing and data
treatments internally on more than 10,000 servers for over a
month. In this matter, the presented workload is similar to
the one running on an HPC infrastructure shared by a large
number of users.

By using the configuration possibilities of the proposed
model and implementation it becomes possible to simulate
large scale HPC workload. Such workload is necessary to
evaluate the schedulers and middlewares capabilities from
several point of view, performance, energy and resilience.
Indeed, the scale of the proposed models is necessary for these
types of evaluation in order to exhibit particular behaviors such
as failing servers or thermal effects with impact on servers
energy.

This article is structured as follow: The next section will
describe the inner characteristics of the Google Cluster Work-
load. Then, the next section will describe the state of the
art of the workload models extracted from these traces. The
following section will propose a generic model for HPC
workload along-with models for each of its characteristics.
Before the conclusions and perspectives, a last section will
propose a reusable workload generator.

II. WORKLOAD CHARACTERISTICS

The data used in this study and analyzed below come from
one of the datacenter of Google. Google provided a dataset
[13] of some of its servers usage in 2011. The monitored
datacenter is composed by more than 12,000 servers with
heterogeneous characteristics. The different statistics were
collected for a period of 29 days. Data have been anonymized
to protect the servers configuration (CPU, Memory, Disk)
by being normalized between 0 and 1. The data consists
in a zipped collection of files taking 43 GB compressed. It
includes six main data tables: job_events, machine_attributes,
machine_events, task_constraints, task_events and task_usage.
A job is composed by one or many tasks. The present article
focuses on the task_events table. This record contains 500 CSV
files, 25 millions tasks. This record encompass 100 millions
events which describe each task and their life cycles. During
its lifetime, a task has a state: Unsubmitted, Pending, Running
or Dead. An event indicates a transitions between states (9
events):

The initial task event is Submit which allows the task to be
scheduled. The Schedule event means that a task has been

978-1-5090-5117-5/16/$31.00 c©2016 IEEE

TABLE I
DISTRIBUTION OF NUMBER OF EVENTS PER TASK.

Number of events 1 2 3 4 5
Number of tasks 248 1,093,992 24,258,907 19,378 17,215

number of events 6 7 8 9+ total
Number of tasks 8,510 5,093 3,028 18,360 25,424,731

TABLE II
DISTRIBUTION OF FINISHING EVENT FOR ALL TASKS WITH THREE EVENTS

Events type Finish Kill Fail Other
Number of tasks 17,775,284 6,381,906 86,348 15,369

Percentage 73.31 % 26.31 % 0.35 % 0.03 %

scheduled on a particular server. There are ending events
such as Evict which means that a task has been unscheduled
because of a higher priority task; as Fail is when a task was
unscheduled because of a task failure; Finish means that a task
finishes normally; Kill is when a task is canceled by a user
or a driver program or when a linked task died; Finally Lost
is an event to characterize missing info. Actually, most tasks
finish with either Finish or Fail due to limits of the monitoring
infrastructure.

Considering the 500 CSV files which describe task events,
the results show that task pass throws several events. Table I
describe the distribution of number of events for each tasks.
95% (24,258,907 out of 25,424,731) of tasks have only the
three classical events: An initial one Submit, a Schedule one
and an ending event. Most other tasks (4.5%) are the one
which are submitted, scheduled but do not finish during the
time frame of the acquired data. The remaining (less than
0.5%) are tasks that have intermediate events of reconfigura-
tion. In the following of this article, tasks taken into account
are the one composed of three events.

The way the tasks are ending is also important. Table II,
describes the distribution of finishing state for all tasks with
three events. 73 % completed normally, 26 % are killed (in the
Kill state), and less than 1% finish in another state. As stated in
the description of the workload by Google[13], nearly all tasks
that do not finish normally are in this Kill state. No additional
information allow to know the actual reason that caused the
tasks to finish abnormally.

The behavior of these two types of tasks are quite different.
As an example, the total time of execution of the 73% of tasks
with the Finish state are accumulating 13×109 seconds (with
an average makespan of 1694s) whereas the 26% of tasks with
the Kill finish state are accumulating 20× 109 seconds (with
an average of 7994s).

Most tasks are composed of three tasks and are finishing
in either Finish or Kill states. In the following, the focus will
be on these tasks. All tasks are not equals. Some tasks are
production one and cannot be stopped or postponed, some
can be postponed but not stopped such as accounting, and
some statistical verification can be stopped but their is no more
interest to restart them latter if they were postponed.

TABLE III
NUMBER OF TASKS AND FREQUENCY FOR EACH SCHEDULING CLASS

Scheduling class 0 1 2 3
Tasks number 20,317,398 3,327,283 533,330 49,614

Percentage 83.86 % 13.73 % 2.20 % 0.21 %

TABLE IV
NUMBER OF TASKS FOR EACH PRIORITY LEVEL

Priority 0 1 2 3 4 5
Tasks 5,701,546 2,357,274 1,078,476 1,027 13,975,078 104

Priority 6 7 8 9 10 11
Tasks 633,445 0 249,932 230,164 579 0

Schedulers or middleware need information on the require-
ments of tasks in order to evaluate the quality of their decision.
One important such requirement is the impact of time on their
allocation. In most systems, tasks are labeled with their priority
or deadline. These tasks properties affect the policy of the
scheduler.

The Google Workload Traces collection contains, for each
task, two properties for their priority and scheduling class.
According to the Google’s documentation [13], the priority
is used by the cluster’s scheduler, whereas scheduling class
is used locally by a machine to manage resource usage. The
following studies are from a sample of 11 millions tasks from
the tasks files.

The table III gives the number of tasks for each scheduling
class. This class value is between 0, for the least latency-
sensitive tasks, to 3 for the most critical tasks.

Priority level is a number between 0 and 11, with 0 as the
lower priority. Table IV provides the count of tasks per priority
value.

For this specific dataset, the priorities are logically grouped
in 4 categories. Those groups are, sorted by increasing priori-
ties, free, normal, production and monitoring. The monitoring
group is, however, also included in the production group, ac-
cording to the dataset documentation. We decided to consider
the priority groups exclusive, as it seems to be a mistake in the
documentation. Table V is obtained by grouping the data from
table IV using those priority groups. It appears that, in terms
of task count, the monitoring group is almost insignificant,
with about 0.002 % of the total.

There is no direct and absolute relationship between
scheduling class and priority. A task with a high priority may
also have a low scheduling class and vice versa. However,
the figure 1 shows the statistical relationship between those.

TABLE V
NUMBER OF TASKS AND FREQUENCY FOR THE FOUR PRIORITY GROUPS

Priority group Free Normal Production Monitoring
Tasks number 8,058,820 15,938,062 230,164 579

Percentage 33.26 % 65.78 % 0.95 % 0.002 %

Free Normal Production Monitoring
0.0

0.2

0.4

0.6

0.8

1.0
0 (Lowest)
1 (Low)
2 (Middle)
3 (High)

Fig. 1. Distribution of priority groups, for each scheduling class

For each scheduling class, it gives the distribution of cor-
responding tasks between the priority groups. Except from
monitoring class, there is a small correlation between priority
and scheduling class. The higher the scheduling class, the
higher the priority. Concerning the global distribution, most
tasks are in the normal scheduling class for each priority.

Depending on the targeted systems, these data can be
directly transposed in a metric showing the quality of the
allocation.

III. STATE OF THE ART

Several studies have previously focused on a better under-
standing of the Google Traces dataset and of the characteristics
of the described tasks.

In [12], authors described the heterogeneity of the hard-
ware resources in the Google traces. They classified priorities
in five categories Infrastructure(11), Monitoring(10), Normal
production (9), other (2-8) and Gratis(0-1). They identify the
boulders and sand of this workload: They have classified tasks
in a majority of small tasks (sand) and an important number of
large tasks (boulders). In this analyze, they shown that 2% of
tasks represent 80% of CPU, Memory and that 92% are long
tasks with a Free priority. In [11], Reiss et al. analyzed the
Google cluster performance. According to this article, many
long jobs have stable resource utilization, which helps the
adaptive resource schedulers. They concluded that machine
configuration and workload composition are heterogeneous.
This analyzed trace allows us to understand the Google dataset,
the importance of an heterogeneous datacenter to adapt the
resources to the demand. However, they did not provided
information related on how to use this workload in another
context.

The paper [6] evaluates the gap between the requested
resources and the one consumed by tasks within the datacenter.
The requested average load for a processor is 10% on the
Google datacenter. This Google trace analysis shows that pro-
cessors are overall under utilized which leads to an increase of
the energy consumed (90% of available processor computing

power is not used). Moreover, most of the workload has a low
priority and is not sensitive to the latency. It shows that there is
only a very few number of sensitive tasks (scheduling class:
2 or 3). In this paper, authors focus on the lack of energy
consideration in the Google trace.

Alam et al. [1] provided a statistical analysis of the traces
to make some reference job profiles emerge. They based this
approach on resource usage, clustering of workload patterns
and classification of jobs with k-means clustering. They have
demonstrated that jobs are trimodal in nature. They can be
Long jobs, Short jobs and Medium jobs. Each job type can
also be sub-categorized as Less resource usage, Mid resource
usage and Resource hungry. They clustered jobs with a k-
mean with k equals to 5 (number of classes). Jobs can also be
classified into short, approaching mid, mid, receding long and
long. This clustering aims at use the workload in a simulator.
Clustering of tasks profiles is also the main result of [2]. These
approaches using k-means lead to difficulties to generalize the
workload for producing new instance of similar workload.

In [10], authors analyzed how the servers are managed
in the cluster and how the workload behaves during the
period of monitoring. According to them, there is over 870
machines events on average each days. In this study, they have
clustered the machine population per same CPU and memory
(15 groups). Contrary to [11], [10] shown that the machines
are almost homogeneous, 93% machines have the same CPU
capacities and 86 % of the machines have the same memories
capacities. Also they have explored the workload behavior. A
lot of jobs are frequently killed, and during the job lifetime,
40.52% which are scheduled are killed at least once.

Di et al. [5] evaluated the Google trace compared to other
Grid/HPC systems. They found that the Google dataset have
a finer resource allocation with respect to CPU and memory
than Grid/HPC systems. They compared the CDF (cumulative
distribution function) of the job length, 55% of tasks finish
within 10 minutes for the Google dataset. Others studied
traces have shorter task, they explain this difference because
of the users and applications which can include commercial
applications such as web services. In addition, Google jobs
are submitted with much higher and more stable frequency
than that of Grid jobs. In [4], Di et al. have observed that, for
the Google workload, the resource utilization per application
(logic job name) follows a typical Pareto principle (joint ratio <
2%) as for the jobs/events per applications (joint ratio almost
10%). Di et al. used a K-means clustering algorithm based
on task events and resource utilization to classify application.
The number of applications in the K-means clustering sets
follow a Pareto-similar distribution. They shown that all ap-
plications can be split into 4 types (single-task application,
sequential-task application, batch-task application and mix-
mode application). They exposed a correlation between task
events and the four application types. For example, 81.3 %
of failed task events belong to batch-task applications. These
two publication shows that except for the length of jobs, the
behavior of tasks in the Google workload is similar to the one
seen in Grid/HPC systems.

0 1 2 3 4 5 6 7 8
Time (s)

100

101

102

103

104

105

106

107

108
Nu

m
be

r o
f t

as
ks

Pareto law with exponent=5
Google Traces Interarrival Time

Fig. 2. Cumulative distribution of inter-arrival time (s) between tasks (log-
scale)

These studies goals mostly were to understand and charac-
terize the workload rather than to propose complete models
and implementation for providing the ability to generate new
similar workload.

IV. WORKLOAD LAWS

In a general way for a large scale datacenter, a workload is
a list of tasks defined by their:

• Starting time: Usually defined as the inter-arrival time
between tasks

• Type: Service or task
• Priority: Used to evaluate the relative importance of tasks
• Makespan: Length of the tasks in seconds
Based on the provided data, we can extract the required

laws.

A. Submission Time

As described in the state of the art [12], tasks are submit-
ted continuously on the monitored platform which is highly
charged. Very few inter-arrival times are over 10s, and the
average is 0.052s. The inter-arrival law is well modeled by a
Pareto distribution, with a λ parameter set to 5 in the case of
the Google Dataset as shown on figure 2.

A gap for very small intervals can be explained as a large
number of tasks can be simultaneously submitted, breaking the
assumption of independent tasks. But even with this remark,
a Pareto distribution simulates well the inter-arrival time.

B. Type

As described in section II, most of the tasks end with one
of the Finish or Kill events. In the first case, the task just
finishes its work and ends normally. In the second case, the
documentation is unclear about which are the possible causes
of a Kill event.

By analyzing those two sets, it appears they don’t follow
the same statistical properties. Figure 3 shows the average
execution time, depending on both priority and finished or

Free Normal Production Monitoring101

102

103

104

105

106

M
ak

es
pa

n
(s

)

Finish
Kill

Fig. 3. Average makespan for each priority group, depending if the task
finished by a Finish or a Kill event (log scale)

killed groups. Whereas the makespan for the finished group
tends to decrease when the priority increase, the opposite is
observed for killed group. In addition, the killed group is
always longer in average. The difference is the most significant
for production level, with about 493 seconds for finished group
compared to 148424 seconds for killed tasks.

Those different characteristics, especially the important exe-
cution time and the number of high-priority tasks in the killed
group, suggest two different populations. Our hypothesis is
that most of the killed tasks are, in fact, long-running services.
It may be some monitoring services, web servers, or any other
task implementing a service for other internal or external tasks.
This kind of service have no pre-determined duration, and
may be started and killed to scale with the demand or with
the cluster usage. The killed set should also contain some
tasks killed manually for other reasons, but it can’t explain
the amount of production tasks stopped this way.

In the following sections, we will use task to refer to a
finite task, which have a given amount of work to do before
to finish normally. As an example, typical kinds of tasks in
a such cluster are MapReduce jobs, each containing a set of
map and reduce tasks. The word service will be used to refer
to a task which, at the opposite, have no precise amount of
work to do, and therefore just run until stopped.

C. Makespan

The execution time of tasks is one of the main charac-
teristics of a workload, as it differs a lot depending on the
kind of application it contains. Particularly, the task makespan
is clearly different between traditional grid workloads and
this cloud trace, as pointed by Di et al. [5]. As most other
characteristics are similar, a method to have more HPC-like
traces would be to increase the average makespan.

1) Tasks: In figure 4, the distribution of finished tasks
makespan shows a huge number of small tasks, and few very
long ones. The shape is typical of long-tailed distributions, like
Pareto or log-normal. Table VI gives more precise statistical
information. The shape of the distribution is confirmed by

0 100000 200000 300000 400000 500000
Time (s)

100

101

102

103

104

105

106

107

108
Nu

m
be

r o
f t

as
ks

Fig. 4. Distribution of makespan for tasks finished normally

TABLE VI
STATISTICS FOR EXECUTION TIME OF TASK FINSIHED BY A FINISH EVENT

Priority Count Average Std. dev. Median
Free 5,081,775 1,937.9 4,518.7 345.7

Normal 12,677,000 1,600.3 5,231.4 492.6
Production 49,190 493.9 1,955.1 39.1
Monitoring 0 N.A. N.A. N.A.

All 17,807,965 1,693.6 5,034.5 448.9

the gab between the median value and the average. Standard
deviation is also important compared to average, another
property of long-tailed distribution.

To use the more appropriate distribution for modeling
the makespan, we compared the Kolmogorov–Smirnov (KS)
statistic between several fitted distribution and the original
data. The more the KS statistic is close to 0, the more the
chosen distribution is similar to the real data. A fit with a
Pareto distribution gives a Pareto coefficient of 0.113 and a
scale factor of 0.073 for these tasks. Its calculated KS statistic
is 0.5. The parameters of the fitted log-normal distribution are
σ = 1.42 and µ = 6.25, with a KS statistic value of 0.057. By
looking at the KS statistic, the better model to describe this
characteristic is the log-normal law.

2) Services: The figure 5, similarly, shows the same kind
of distribution, with even longer makespans. By comparing
table VII with the statistics of finished tasks, it appears
that the average makespan is about 5 times higher, with a
lower median. A fit with a Pareto distribution gives a Pareto
coefficient of 0.0916 and a scale factor of 0.0077 for these
tasks. Using a log-normal law, fitting it gives σ = 2.06 and
µ = 6.14. The calculated values of KS statistic are 0.49 for
the Pareto distribution, and 0.064 for the log-normal one. For
the services too, using a log-normal distribution to model their
makespan is accurate.

D. Priority

The exact semantic of priority and scheduling classes is not
specified in the original document. From the combination of

0 500000 1000000 1500000 2000000 2500000
Time (s)

100

101

102

103

104

105

106

107

Nu
m

be
r o

f t
as

ks

Fig. 5. Distribution of execution time before the Kill event for killed tasks

TABLE VII
STATISTICS FOR EXECUTION TIME OF TASKS FINISHED BY A KILL EVENT

Priority Count Average Std. dev. Median
Free 2,977,045 5,195.6 24,336.4 595.4

Normal 3,261,062 2,688.5 19,468.9 213.9
Production 180,974 148,424.4 294,182.3 31,429.4
Monitoring 579 388,232.5 579,101.9 71,831.6

All 6,419,660 7,994.3 59,363.8 333.8

priority and scheduling class, importance of tasks and services
can be deduced. To represent this relative importance in our
model, we use a value in the continuous interval]0, 1]. The
lower this value is for a task, the lower its priority is.

1) Tasks: For tasks, as shown on figure 6, there is a strong
relation between priority and scheduling class. To model
this behavior, a simple categorization is sufficient. From the
statistic of occurrences, 84% are of the lowest priority, 15%
of the next one, and the remaining 1% of the highest ones. It
can be simulated with an exponential law, truncated between
0 and 1, with a high λ parameter.

Free Normal Production Monitoring
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0 (Lowest)
1 (Low)
2 (Middle)
3 (High)

Fig. 6. Distribution of priority groups, for each scheduling class, among the
task finished by a Finish event

Free Normal Production Monitoring
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0 (Lowest)
1 (Low)
2 (Middle)
3 (High)

Fig. 7. Distribution of priority groups, for each scheduling class, among the
task finished by a Kill event

2) Services: For services, as shown on figure 7, the relation-
ship between priority and scheduling class is less visible but
present. A simple model would be also a truncated exponential
law, with a lowest λ value compared to the tasks priority
model.

E. Comparison with other workloads

Such an analysis of this single dataset can only allow
us to model the workload for this specific Google’s cluster.
However, several reasons give us confidence that our model
can be used to describe workloads run by other cloud and grid
clusters.

Those traces are known to contain multiple and heteroge-
neous kinds of applications. This is also the case of datacenters
used by most IaaS and PaaS cloud providers, and we think this
diversity gives good insights on their typical workloads.

For datacenters running more homogeneous applications,
such as HPC jobs, Di et al. have done detailed comparisons
between the traces from Google and those provided by several
grid infrastructures [5]. They found some differences, such
as the lack of periodic patterns in tasks submission over
time for the traces we studied here, compared to the grid
ones. Particularly, diurnal submission pattern is a common
characteristic of datacenter workloads, and may be added to
our model to fit better to a typical grid workload.

Di et al. also discovered several similarities which make
our model relevant for grid computing. Notably, distribution
of makespan have a long-tailed shape in every workload they
studied, which is a key characteristic of Pareto and log-normal
laws. They observed differences, such as a smaller average
makespan, a higher maximum and more short tasks in the
Google traces compared to the grid ones. Those characteristics
can be obtained, using our model, by adjusting the parameters
of the probability distribution functions.

In [8], Kavulya et al. analyzed the traces of a production
Hadoop cluster owned by Yahoo! . They found the same
kind of distribution in the Hadoop jobs completion time, and

used a log-normal law to model it. Such similarities between
several kinds of workloads show that our model, based on a
specific dataset, keeps some important characteristics shared
by workloads in other datacenter use cases.

V. GENERATING WORKLOAD

The law described in the previous section are simulating
exactly the same behavior as the workload traces from the
Google Datacenter. To create more generic workloads it is
needed to be able to provide configuration possibilities needed
to adapt to different types of experiments and context.

There are two main characteristics needed to define a
particular workload : Dynamism and Type

• Dynamism: Represents the dynamism of tasks, the num-
ber of arriving tasks

• Type: Is a value between 0 and 1 representing the
percentage of tasks in the total workload.

Two other characteristics are to be specified for both tasks
and services : Mass and Disparity

• Mass: Represents the average makespan
• Disparity : The ratio between the average and the median

makespan, must be greater than 1
For these Google traces, the dynamism, which is the average

inter-arrival time, has a value of 0.05 (in seconds) for Google
Traces. As the percentage of tasks in this workload is 70%,
we use a value of 0.7 for type.

The mass and disparity parameters are calculated using the
average and median values from the tables VI and VII. For
tasks, we have a mass of 1700 and a disparity of 3.8. The
values found for services are respectively 8000 and 24.

The implementation of the generator is shown in algorithm
8 in the Python3 language.

VI. CONCLUSION

In this article we proposed the models needed to create
a Workload generator aimed at large scale homogeneous
clusters. The traces used as basis of this work are large
scale (from time and space point of view) realist data from
a Google internal datacenter. The second contribution is an
actual implementation of the workload generator with possi-
bilities to adapt to several usecases. This generator will open
new possibilities for testing large scale datacenter and will
help providing insight for several scheduling methods based
on different metrics such as performance, energy, reliability
and dynamism.

The next step will be to augment the generator with more
diverse possibilities such as diagram of tasks, constrained
resources or MPI tasks. Another important step will be to use
it in large scales simulators in order to evaluate scheduling
policies.

VII. ACKNOWLEDGMENT

This work was supported by the ANR DATAZERO project,
grant ANR-15-CE25-0012 of the French Agence Nationale
de la Recherche and by the neOCampus operation funded by
University Paul Sabatier, Toulouse, France.

import s c i p y . s t a t s
import random
import numpy

def t r u n c a t e d _ e x p o n (lamda) :
whi le True :

v a l = s c i p y . s t a t s . expon . r v s (s c a l e = 1 . 0 / lamda)
i f v a l <= 1 . 0 :

re turn v a l

def ge t_makespan (mass , d i s p a r i t y) :
mu = numpy . l o g (mass / d i s p a r i t y)
s igma = numpy . s q r t (2∗ (numpy . l o g (mass) − mu))
re turn s c i p y . s t a t s . lognorm . r v s (sigma ,

s c a l e = mass / d i s p a r i t y)

def g e t _ n e x t _ t a s k (t i m e s t a m p L a s t E v e n t , dynamism ,
r a t i o T a s k , t a sksMass , t a s k s D i s p ,
servMass , s e r v D i s p) :

a r r i v a l = s c i p y . s t a t s . p a r e t o . r v s (4 , l o c =−1)
∗ 3 . 0 ∗ dynamism

newTimestamp = t i m e s t a m p L a s t E v e n t + a r r i v a l

i f random . random () < r a t i o T a s k :
t t y p e = ’TASK ’
p r i o r i t y = t r u n c a t e d _ e x p o n (6)
makespan= get_makespan (ta sksMass , t a s k s D i s p)

e l s e :
t t y p e = ’SERVICE ’
p r i o r i t y = t r u n c a t e d _ e x p o n (3)
makespan= get_makespan (servMass , s e r v D i s p)

re turn (newTimestamp , t t y p e , p r i o r i t y , makespan)

Fig. 8. Reference implementation of tasks generator implemented in python

REFERENCES

[1] Mansaf Alam, Kashish Ara Shakil, and Shuchi Sethi. Analysis and
clustering of workload in google cluster trace based on resource usage.
arXiv preprint arXiv:1501.01426, 2015.

[2] Yanpei Chen, Archana Sulochana Ganapathi, Rean Griffith, and Randy H
Katz. Analysis and lessons from a publicly available google cluster

trace. EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2010-95, 94, 2010.

[3] G. D. Costa, M. D. Dikaiakos, and S. Orlando. Nine months in
the life of egee: a look from the south. In 2007 15th International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, pages 281–287, Oct 2007.

[4] Sheng Di, Derrick Kondo, and Franck Cappello. Characterizing cloud
applications on a google data center. In 2013 42nd International
Conference on Parallel Processing, pages 468–473. IEEE, 2013.

[5] Sheng Di, Derrick Kondo, and Walfredo Cirne. Characterization and
comparison of cloud versus grid workloads. In 2012 IEEE International
Conference on Cluster Computing, pages 230–238. IEEE, 2012.

[6] Fréjus Gbaguidi, Selma Boumerdassi, Éric Renault, and Eugène Ezin.
Characterizing servers workload in cloud datacenters. In Future Internet
of Things and Cloud (FiCloud), 2015 3rd International Conference on,
pages 657–661. IEEE, 2015.

[7] Alexandru Iosup, Hui Li, Mathieu Jan, Shanny Anoep, Catalin Du-
mitrescu, Lex Wolters, and Dick HJ Epema. The grid workloads archive.
Future Generation Computer Systems, 24(7):672–686, 2008.

[8] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan. An Analysis of Traces
from a Production MapReduce Cluster. In 2010 10th IEEE/ACM Inter-
national Conference on Cluster, Cloud and Grid Computing (CCGrid),
pages 94–103, May 2010.

[9] Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran. A tax-
onomy and survey of grid resource management systems for distributed
computing. Software: Practice and Experience, 32(2):135–164, 2002.

[10] Zitao Liu and Sangyeun Cho. Characterizing machines and workloads
on a google cluster. In 2012 41st International Conference on Parallel
Processing Workshops, pages 397–403. IEEE, 2012.

[11] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and
Michael A Kozuch. Heterogeneity and dynamicity of clouds at scale:
Google trace analysis. In Proceedings of the Third ACM Symposium on
Cloud Computing, page 7. ACM, 2012.

[12] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz,
and Michael A Kozuch. Towards understanding heterogeneous clouds
at scale: Google trace analysis. Intel Science and Technology Center for
Cloud Computing, Tech. Rep, page 84, 2012.

[13] Charles Reiss, John Wilkes, and Joseph L. Hellerstein. Google cluster-
usage traces: format + schema. Technical report, Google Inc., Mountain
View, CA, USA, November 2011. Revised 2012.03.20. Posted at http:

//code.google.com/p/googleclusterdata/wiki/TraceVersion2.

