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Abstract—Typical devices of the Internet of Things are usually
under-powered, and have limited RAM. This is due to energy
and cost concerns. Yet, IoT applications require increasingly
complex programs with increasingly large amounts of data. In
principle, an application could manage the increasing data within
the limited RAM by saving and loading data from the file system
as needed. But managing the use of RAM in this way is both time-
consuming and error-prone for the code developer. We propose
instead a novel architecture in which different semantic scenes are
implemented as independent operating system processes. As the
need arises to switch from one scene to another, the currently run-
ning process, which represents the current scene, is checkpointed
and a process representing the new scene is restarted from a
checkpoint image. This solution employs checkpointing to provide
a simpler framework for the end programmer, while at the same
time resulting in higher performance. For example, experiments
show that restarting an old process from a checkpoint image is
about 25 times faster than starting a new process. When using
an mmap-based optimization (deferring the paging in of virtual
memory pages until runtime), restarting an old process is about
500 times faster. Overall, checkpoint and restart each execute in
less than 0.2 seconds on a Raspberry Pi B.

Index Terms—Semantics, Scene Management, Advances Driver
Assistance System, Internet of Things, Checkpointing, Con-
strained Devices

I. INTRODUCTION

The Internet of Things (IoT) is fast becoming a critical
technology in the evolution toward a “connected world”.
However, IoT faces some challenges in terms of optimization
on performance-constrained devices and gateways. The CPUs
are of low performance, with minimal associated RAM. This
is intrinsic to many IoT scenarios, such as Advanced Driver
Assistance Systems (ADAS: “smart cars”), drones, etc., which
are constrained by limited battery size and by cost concerns.

In many applications, IoT software is consuming increasing
amounts of memory, due in part to increasingly complex
behavior with increasingly complex semantics as software
requirements continue to evolve. Virtual memory is usually
not available, since IoT devices involve real-time computation,
and paging in virtual memory makes running times difficult
to predict. So, the central question is:

how to write a large program with large data that
does not naturally fit in the small RAM available.

We propose a novel software architecture that is well-
adapted to RAM-constrained devices for IoT. Specifically, we
will target a simplistic model of Advanced Driver Assistance

System (ADAS) in order to illustrate the architectural benefits
of easier scene-management for the end programmer and
improved performance through efficient checkpoint-restart.
We implement this model on the ARM-based Raspberry Pi
Model B computer, as an example of a low-performance CPU
configuration with limited RAM.

The proposed software architecture consists of smart scene
management, using semantic modelling and rule-based reason-
ing. Each scene is represented by an operating system process,
and a checkpointing mechanism is applied to save the state of
the process in a checkpoint image file.

Such a scene represents a partial view of the context.
It contains information about the spatial context, the road
conditions, the participants, etc. Since the memory for a single
scene can be huge, one typically does not have sufficient RAM
to load two scenes at the same time within small or embedded
computers such as the Raspberry Pi. The novelty here consists
of using checkpoint-restart to manage RAM by saving the
old scene and restore a new scene. This performs better than
writing a monolithic program that includes all scenes, which
would have to rely on the random memory access of virtual
memory to page in the memory of scenes on demand.

Semantic web technologies such as the Web Ontology
Language (OWL) formalism allow one to represent knowledge
using a description logic. It allows for the creation of vocabu-
laries that can be shared, along with a set of rules to apply to
the model using semantic reasoners. We propose a new model
for Scene management, with a specific set of properties and a
possible link to application model such as ADAS.

The remainder of the paper is organized as follows. Sec-
tion II presents a brief overview of semantic web principles
and technologies in the context of the IoT and some back-
ground on checkpointing. In Section III, the presentation of a
Ideal Global Architecture of our Scene system is provided,
presenting the models and rules used. Section IV presents
the specific contributions of our work. Section V analyzes the
experiment results. Then we conclude this paper in Section VI.

II. BACKGROUND

This section provides an overview of the literature for
the technologies employed in this paper. A brief overview
of IoT is provided first. This is followed by a discussion
of the requirements for semantics for IoT. Finally, we dis-



cuss checkpointing and introduce Distributed Multi-Threaded
CheckPointing (DMTCP).

A. IoT Overview
The IoT is an important area for innovation due to the

large numbers of possible applications [1]. This presents a
vision of a world-wide network of interconnecting physical
(sensors, activators, complex objects like cars). The vision
also includes virtual objects able to interact and affect the real
world create a significant number of challenges [2]. In most
cases, these objects have strong constraints in term of energy,
communication and/or processing [3].

B. Semantic Web Technologies for IoT
Semantic computing [4] is an emerging and rapidly evolving

interdisciplinary field that originated from artificial intelli-
gence. It consists of applying models and standardized tech-
nology describing the semantics of the linked objects to enable
interactions and interoperability between different components
(software or hardware). It is a recommended best practice in
the domain of IoT [5]. However, one of the problems facing
users of semantic technologies is that the semantic information
increases the complexity and processing time, and is therefore
unsuitable for dynamic and responsive environments such as
IoT. Complex models require greater CPU processing and
therefore are not suitable for constrained environments such as
IoT. The earlier proposal of the W3C [6] takes this difficulty
into account by providing a lightweight ontology specially
adapted for IoT.

We use the OWL formalism to represent the data and the
associated knowledge. OWL is a description language based
on linked data and share vocabularies. Semantic Web Rule
Language (SWRL) is a rule-based language that describes
what could happen when the knowledge base changes, or when
an event happens. It allows one to express abstract rules to be
applied in the model.

C. Checkpointing using DMTCP
A checkpointing mechanism consists in creating images

(snapshots) of a process and being able to recreate the process
from this image.

Checkpointing has a long history in HPC [7]–[10]. In
2012, a cluster of ARM CPUs was tested with respect to
checkpointing as a basis for power-efficient HPC [11]. This
used the more powerful ARM Cortex-A9 CPU, whereas the
current Raspberry Pi Model B uses the less powerful ARM
Cortex-A7. In those earlier experiments, checkpoint times
from 3.4 to 138 seconds were observed on various NAS
parallel benchmarks for MPI — a standard test suite for
parallel applications. In comparison, the experiments of this
work apply checkpointing only to a single process.

In Section V, DMTCP [12] is used to create checkpoint im-
age files from running processes. DMTCP-style checkpointing
is transparent, in that the original application binary is not
modified, and the target process is not aware of DMTCP.

In this work, the latter approach is used to allow the
application to change scenes on demand. The application

program can be further modified through the use of DMTCP
plugins [13]. Plugins are used to virtualize resources, so
that the application can be restarted in a new environment,
independently of changing physical names such as pathnames,
process ids (PIDs), etc.

DMTCP also supports options for two well-known opti-
mizations that enhance the speed of checkpoint and restart.
The first is “Forked Checkpointing”. DMTCP forks a child
process, which executes the checkpoint. This takes advantage
of the well-known operating system support for copy-on-write
between the parent and child processes. The parent process
continues to execute without blocking, while the child process
writes memory and other state into the checkpoint image file.

The second optimization option is “Fast restart”, based
on the Linux mmap system call. The mmap call maps the
checkpoint image file to RAM, but the data is not actually
copied to RAM until the virtual memory subsystem pages it
in. Thus, execution begins early after restart, paging in only
the actively used pages, and without waiting for all of the
checkpoint image file to be loaded.

III. IDEAL GLOBAL ARCHITECTURE: SCENES AND
SEMANTICS

This section presents the semantic concepts associated with
the Scene concept, along with the rules used to manage the
Scenes.

A. Semantic Models Used

A Scene is defined as a partial view of the context. Several
scenes are created according to the needs of the application.
Only one Scene is loaded at any given time. The Scene
includes the destination of the vehicle, along with a possible
path. It also contains a partial representation of the map
ontology used in [14]. Since the entire map is split among
different scenes, this lowers the system complexity through
rules to navigate from one scene to another.

Figure 1 shows a semantic model with some example
relations in the semantic class Scene. The last relation of the
Scene is its Specificity. This relation represents, for example, a
location specificity, or a time-of-day specificity (e.g., day and
night). This associates with the Scene specific characteristics
that enable the reasoner to choose the best target scene to
switch to.

correspondingSpecificity

Interest

Scene CkptImage Process

restarts

checkpointsTo

hasCkptImage

hasValueOfInterest

Specificity

hasSpecificity
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Fig. 1. Overview of Scene representation and link between Scenes and
Checkpointing Mechanism

A second model that is linked to the Scene is used to guide
the Checkpointing. Figure 1 shows the link to the Check-
pointing model classes. The class ValueOfInterest is used to



characterize the values that are important for other Scenes.
They are linked to the Specificity class by a corresponding-
Specificity property for that class. This property links a value
to a specific type of scene. Thus, the Scene is linked to a
CkptImage class by the hasCkptImage object property. This
allows the reasoner to identify the available checkpoint images
for a Scene. The checkpoint image is then linked to a process.
Two types of relations are possible: 1) the process has been
checkpointed into a CkptImage (shown via checkpointsTo); or
2) a CkptImage is used to restart a process (a restarts relation
is created between the CkptImage and the restarted process).

B. Scene Hierarchy

Since each scene represents a partial view of the global
state, a classification of the scenes is needed. A hierarchy is
used in which each scene (except for the root scene) has a
parent scene.

A “child” scene inherits parameters and rules from its parent
scene and adds additional, more specialized information. That
information might be, for example, information about the
type of location (e.g., what city, or what neighborhood in a
vehicular context) and is considered to be static in the sense
that it does not change over time. In contrast, each specialized
scene also has dynamic information. An example is the specific
road conditions, which might depend on road work in progress.

A hierarchical classification of this type allows one to
create lightweight scenes, each of which has more specialized
information than the parent in the hierarchy.

C. Rules for Scene Management

Two models are considered in Section III-A. Specific rules
for each model are used and will be described.

The first model includes a set of rules that affects the
vehicle and its actions. This model is used to analyze the car
sensor data (e.g., its position). It will allow the system to react
according to the current context.

The second rule-based model from Section III-A is used
to guide the checkpointing mechanism for the scene manage-
ment. This model is in charge of gathering enough information
from the system to infer that a change of scene is required. In
this case, the rules cause the process in charge of the scene
management to checkpoint the current scene and then to load
the second one.

D. Shared Information

The checkpointing mechanism allows the state of a running
process to be serialized into a file. But some information and
knowledge acquired by the first scene must then be passed to
the second scene.

As described in Section III-B, the scenes are derived from a
hierarchical classification. This classification allows the system
to provide relevant information to the next scene. For instance,
the whole system shares information from the car sensors and
geographical location. This general information is stored and
defined by the root scene of the system, which will be shared
by all sub-scenes.

With such a mechanism, the system is able to share infor-
mation between different scenes, according to the relevance
of the data for the next scene. Such a mechanism allows one
to reduce the amount of information handled by the system
and the reasoner. This mechanism is implemented using the
DMTCP plugins discussed in Section II-C.

The information to share can be retrieved from the model
using the property hasValueOfInterest of the Scene. This
relation is shown in Figure 1.

IV. EFFICIENT RAM MANAGEMENT FOR IOT AND
EMBEDDED SYSTEMS

In principle, the use of scenes within a large, global
hierarchy can be implemented as a single large process.
However, typical IoT-based embedded systems are restricted
to small RAM without any virtual memory. For this reason,
we represent each scene of the global hierarchy as a separate
operating system process. Only one process (the current scene)
runs at a time. We demonstrate that switching between scenes
can be made efficient through the use of checkpointing. The
original scene (with all of its internal state) is checkpointed,
and a new scene is restarted from a previous checkpoint image.

RAM

Manager
Ckpt Scene 1

to ckpt image

Restarts Scene 2

from ckpt image

Scene 2

Manager

Scene 1

RAM

Fig. 2. Proposal of new architecture for Scene Management. Each rectangle
represents a process.

Figure 2 illustrates the proposed architecture. The data
to be handled is split into multiples scenes, which contain
information and rules as described in Section III-A. Each scene
is represented as an individual process. A Scene Manager is
used to checkpoint and restart the process that represents a
scene.

This enhancement provides a simpler way for the end
programmer to design the architecture and the data handling
of its program and is evaluated in the next section. We
demonstrate the efficiency of such a system compared to a
standard initialization of a process.

V. EXPERIMENTAL EVALUATION

In this section we evaluate the system presented in Sec-
tion III and Section V. Here, we discuss the additional time
needed when a checkpoint is invoked, and the time needed to
restart a scene from a checkpoint image file. Then we compare
this restart time to a traditional approach, which consists of
dynamically reading the data files. Finally, we discuss the
runtime overhead introduced when the process is executed
under the control of DMTCP, as opposed to executing the
process natively.



A. Experimental Environment

These experiments use a Raspberry Pi 2 Model B with
one GB of RAM. In these experiments, we emphasize the
limited RAM of a constrained embedded system by restricting
ourselves to a more limited 256 MB of RAM. This was also
the RAM provided with the earlier Pi 1 Model A+. The files
containing the scenes and the images files for the experiment
are stored in the file system of the SD card of the Raspberry Pi.

For the checkpointing software, DMTCP version 3.0.0 was
used, available at its github repository.

B. Checkpoint and Restart

As a first case for evaluation, we analyze the checkpoint
and restart times on the Raspberry Pi. The size of the input
files is varied in order to find the relation between the size of
the files and the checkpoint-restart time.
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Fig. 3. Checkpoint and restart time

Two sets of experiments are discussed. First the standard
checkpointing and restart mechanism is used. In Figure 3, the
two lines at the top of the graph show the time needed for
a standard checkpoint and restart the Java program with the
Jena library and the data files loaded. The “standard” times
refer to the case when the DMTCP optimizations of forked
checkpoint and mmap-based fast restart (see Section II-C) are
not used. The times vary as the size of the scene file is varied.
Note that a logarithmic y-axis is used for the checkpoint and
restart times. The largest file used is about 20 MB, which
serves as a placeholder for the actual scene-related data that
would be used in a realistic ADAS application. It is assumed
that the operating system must execute in RAM along with
the application in a real-time system. Recall that the goal of
these experiments is to simulate a low-cost embedded device,
with only 256 MB of RAM.

The time to checkpoint and restart grows slightly when the
size of the scene-related data increases. This is expected, since
DMTCP must map the process image to the checkpoint file
(or reverse for restart operation) and this operation is slower
if there is more data to save to a file (or to load from a file).
The unoptimized checkpointing times of Figure 3 vary from

1.5 s to about 2 s. This is reasonable for energy-constrained
devices such as the Raspberry Pi, but it can be improved to
be more responsive. Similarly, the unoptimized restart times
vary from about 600 ms to 1.5 s.

In order to further improve responsiveness, a second ex-
periment (also presented in Figure 3) shows the impact of
using the two DMTCP optimizations discussed in Section II-C:
forked checkpointing and mmap-based fast restart. These
optimizations improve the checkpoint/restart times (and hence
the responsiveness) by a further factor of ten.

The first line from the bottom of Figure 3 shows the time
for the Forked Checkpointing. This Forked Checkpointing
operation is about 5 to 10 times faster than the Standard
Checkpointing and allows the running process to be available
more time — since the Checkpointing operation freezes all
threads to avoid any error in the memory of the process.
The checkpoint operation is done by the child process and
the time to make this operation is equivalent to the Standard
Checkpointing. The times are reduced to about 150 ms to
200 ms for the running process. Since the times are close to
the minimum quantum of times given to the thread, we expect
some variations in the checkpoint time, as exemplified by the
slightly higher checkpoint time for a file size of 15 MB.

The Fast Restart time is the second curve from the bottom
in Figure 3. The time for fast restart operation is nearly
constant as the file size varies. This is the mmap optimization
defers loading of most of the virtual memory pages. From our
experiment, we see that the Fast Restart operation is about 3
to 10 times faster than the Standard Restart.

TABLE I
SIZE OF CKPT IMAGE DEPENDING ON INPUT FILE

Input file (MB) 2.0 5.1 10.2 15.4 20.5
Ckpt image (MB) 86.8 98.4 143.5 157.1 179.7

Table I shows the checkpoint image size as a function of
the input file size. The checkpoint image size increases with
the size of the input file, since the file data has been loaded
into RAM during initialization. The image is large compared
to the 2 MB input file, since the process is Java-based. The
JVM must be checkpointed along with the loaded classes. The
checkpoint image file size is also large because of the large
Java classes running in the JVM. The size of the checkpoint
image file increases more in absolute terms than the increase
in size of the input file. This is because the data loaded are
submitted to a semantic reasoner. This reasoner infers new
knowledge that has been stored into the RAM and then must
be saved as part of the checkpoint image.

C. Startup Times

In the second experiment, we discuss the difference in
execution times between a restart and launching a fresh, new
process that need to load data from a file.

Figure 4 shows the execution times in different situations.
The diamond-shaped and square plotted points represent the
restart times for a checkpoint image. The square plot uses the
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Fig. 4. Initialization of a new process versus restart of a previously
checkpointed process. This compares the time for restarting a new process
using the techniques of this work, versus the traditional alternative of starting
(initializing) a new process for each new scene. Restarting an old process is
about 25 times faster (and 500 times faster when using the mmap-based fast
restart optimization). This is because restart avoids any data initialization that
is executed by the Scene framework itself before it gives control to the end
programmer.

mmap-based Fast-Restart option. The round plot represents
the initialization time of the process when reading the data
from the file. The initialization and restart times grow with the
size of the input file that is loaded. Of the total initialization
time, about 2 to 4 seconds is required solely to start the JVM
before reaching the “main” method of the ADAS framework.
The remaining time is used to load the Java-based semantic
libraries and the input data.

Collecting together JVM startup, semantic library startup
and loading the initial data, Figure 4 shows that “Restarting
an Old Process” is about 25 times faster than the standard
execution startup of a new process in the ADAS framework.
Further, the Fast Restart method is about 500 times faster than
the standard initialization.

VI. CONCLUSION AND FUTURE WORK

A new software architecture was presented that allows
one to manage the RAM usage efficiently for Internet of
Things (IoT) devices, and more generally for performance-
constrained devices. A mechanism is used to checkpoint a
process in order to make RAM available for a new process,
which will be restarted from a checkpoint image file. A large,
monolithic process would not be a good alternative, since the
delays due to virtual memory paging are not consistent with
real-time programming. We demonstrated that the proposed
architecture is about 25 times faster than the standard startup
of a new process (see Figure 4). When used with mmap-based
fast restart (thus deferring paging in of virtual memory until
runtime), the proposed architecture can even be 500 times
faster. This work has been applied to an Advanced Driver
Assistance Systems (ADAS) domain as an example, but the
scene concept is generic and can be equally well applied to
other problems in the Internet of Things.

This work has simulated the operating system characteristics
and expected performance of an example scene-based archi-
tecture for ADAS as a proof-of-principle. The ADAS example
itself is not intended as a realistic system for production. In
future work, we will apply this to a full-fledged domain in the
Internet of Things integrating management of the connectivity
of multiple devices and real time constraints.
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