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Dynamic output-feedback controller design for analgesia guided by the pupil size variation

This paper pertains to the design of a dynamic output-feedback controller for analgesia taking into account the saturation of the input and the quantization of the output. Actually, the output is given by the smallest magnitude of the stimulus that induces a significant pupil size variation. In addition, to take into account multiple time scale dynamics in the analgesia model, the system is re-expressed by decoupling the fast dynamics from the slow ones.

I. INTRODUCTION

The goal of clinical anesthesia is to avoid patient awareness (hypnosis) and minimize the response to noxious stimulation (analgesia) through the administration of anesthetic drugs based on clinical indicators [START_REF] Bailey | Drug dosing control in clinical pharmacology[END_REF], [START_REF] Lemos | Robust control of maintenance-phase anesthesia[END_REF], [START_REF] Beck | Modeling and control of pharmacodynamics[END_REF]. Concerning more specifically the depth of analgesia, several studies have been concerned with the selection of reliable indicators. [START_REF] De Jonckheere | Heart rate variability analysis as an index of emotion regulation processes: Interest of the Analgesia Nociception Index (ANI)[END_REF], [START_REF] Balocchi | Heart rate variability in subjects with different hypnotic susceptibility receiving nociceptive stimulation and suggestions of analgesia[END_REF] proposed an evaluation of the depth of analgesia by analyzing the heart rate variability and introduced the ANI (for Autonomic Nervous Index). Blood pressure, grimaces, electrocardiogram (EEG), the difference of entropy and other indicators were also proposed in [START_REF] Gentilini | A new paradigm for the closed-loop intraoperative administration of analgesics in humans[END_REF], [START_REF] Mathews | Feasibility study for the administration of remifentanil based on the difference between response entropy and state entropy[END_REF], [START_REF] Huiku | Assessment of surgical stress during general anaesthesia[END_REF], [START_REF] Ushiyama | Analysis of heart rate variability as an index of noncardiac surgical stress[END_REF]. In this work we use the response of the pupil as an indicator, being shown that its area variates according to nociceptive stimulation [START_REF] Mazerolles | La pupillométrie permet-elle de mesurer la profondeur d'anesthésie ?[END_REF]. Actually, [START_REF] Barvais | Effect site concentrations of remifentanil and pupil response to noxious stimulation[END_REF] showed that the pupil response to a painful stimulus is a better indicator of the effect site remifentanil concentration than haemodynamics or BIS measurements.

Moreover, the problem of closed-loop control of the depth of analgesia (DoA) of a patient, similarly to the anesthesia, is a very challenging problem due to the numerous phenomena to be considered as patient variability, multivariable characteristics, positivity constraints, dynamics dependent on the hypnotic agent, ... Main attention in this domain was focused on anesthesia, although few works have concerned analgesia. Basically, PID-based feedback control strategies have been considered to adjust the amount of opioid administered [START_REF] Soltesz | Individualized PID control of depth of anesthesia based on patient model identification during the induction phase of anesthesia[END_REF]. Alternatively, the use of model predictive control was proposed in [START_REF] Gentilini | A new paradigm for the closed-loop intraoperative administration of analgesics in humans[END_REF].

This paper revisits the control problem of the analgesic state of a patient under the framework of quantized [START_REF] Tarbouriech | Control design for quantized linear systems with saturations[END_REF] and saturated systems [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF]. Actually, the output of the controlled system, which is the smallest magnitude of a stimulus that induces a significant dilatation of the pupil, is quantized, i.e, its value can only be a multiple of a constant. The global goal is then to control the DoA in an interval fixed a priori, taking into account directly the magnitude limitation of the control signal, that is the limitation of the rate of drug addition (in the current case the remifentanil) intravenously. Moreover, the dynamics of the evolution of the drug in the patient's body is usually described by a pharmacokinetic model with multiple time scales. Rather than treating the system as a singularly perturbed system [START_REF] Kokotovic | Singular perturbation methods in control: analysis and design[END_REF], we reformulate the problem by separating fast and slow dynamics in order to reduce the global control problem to that one of the fast subsystem (the DoA being directly linked to the states of the fast subsystem) perturbed by the slow dynamics and vice versa. Finally, the main contribution of the paper resides in the control design of a dynamic output-feedback controller proposed through matrix inequalities conditions taking into account the quantized nature of the output and the saturation of the input.

II. MODELLING ASPECTS AND PROBLEM FORMULATION

A. The patient model

The compartment model used to describe the circulation of drugs in a patient's body, also known as Pharmacokinetic/Pharmacodynamic (PK/PD) model, is based on a classical three-compartment model [START_REF] Derendorf | Modeling of pharmacokinetic / pharmacodynamic (pk/pd) relationships: Concepts and perspectives[END_REF].

The effect of the drug on the patient is expressed throughout the effect site, which represents the action of drugs on the brain and is related to the concentration in the central compartment through a first order dynamic [START_REF] Beck | Modeling and control of pharmacodynamics[END_REF]. So, the compartmental model can be expressed as follows:

ẋan (t) = Ax an (t) + Bu an (t) (1) 
with 

A =     -(k 10 + k 12 + a 13 ) k 21 k 31 0 k 12 -k 21 0 0 k 13 0 -k 31 0 k e0 /V 1 0 0 -k e0     B = 1 0 0 0 where x an = [x 1 x 2 x 3 x 4 ] , x 1 (t), x 2 (t), x 3 (t)

B. Error model

Consider x e4 the effect site concentration target corresponding to a desired DoA known. The other variables can then be deduced from the equilibrium point of system (1):

x e1 = x 4e V 1 , x e2 = k 21 k 12 x e1 , x e3 = a k1 k 13 x e1 ,
and the value of the input for this equilibrium is given by

u e = k 10 x e1 .
Finally, the error model is directly derived from system (1), considering the equilibrium point x e and the change of variable x err = x an -x e , u err = u an -u e . The positivity constraints on u an and x an can be expressed as constraints on u err and x err :

x an ≥ 0 ⇒ x err ≥ -x e u an ≥ 0 ⇒ u err ≥ -u e (2) 
Moreover, an upper limit on the amount of drugs that can be injected in the blood over time is also taken into account.

C. The quantized measurement

1) The DoA measurement: The clinical indicator used in this study is the pupil reaction to an external stimulus. Actually, the pupil size variation in reaction to an electrical pulse of given intensity is related to the effect site concentration of drug. This is illustrated on Figure 1 where the real pupil size variation of a patient (man, 50 years old, 110 kg, 180 cm) is plotted in response to successive 40 mA impulse signals, for increasing effect site concentrations.

We then suggest a model, which relates the pupil size variation to the effect site concentration and the magnitude (in mA) of the pulse stimulation signal, as follows:

ẋ5 ẋ6 = -k 5 0 k 65 (1 -x4 cemax ) -k 6 x 5 x 6 + 1 0 imp (3) 
where x 5 models the impulse signal imp as received by the human body and x 6 represents the pupil size variation in %. This model illustrates that the more x 4 approaches c emax , the less is the pupil reaction to an impulsive signal. The positive parameters k 5 , k 6 , k 65 and c emax are patient dependent and have to be identified, but this is outside the scope of the current paper. For an estimated set of parameters, this model response is illustrated in Figure 1 (in red). Then, in order to use the information related to the pupil reaction to electrical stimuli, we define the output of the 2) Quantization of the DoA: From a practical point of view, successive increasing impulsive pulses are delivered until the reaction size variation exceeds the threshold Θ. This signifies that the output signal is a quantized signal. The quantization is defined around the equilibrium point established above, the output equation is then obtained by

y = q(Cx err ) (4) 
with C = 0 0 0 c 4 . q(.) is the uniform quantizer, having as quantization error bound ∆ > 0, defined by [START_REF] Ferrante | Stabilization of continuous-time linear systems subject to input quantization[END_REF] q :

   R p → ∆Z p z → ∆ sign(z) |z| ∆ (5) 

D. Multiplicity of dynamics

Furthermore, as discussed in [START_REF] Zabi | New approach for the control of anesthesia based on dynamics decoupling[END_REF], system (1) involves both fast and slow dynamics and the control action acts on the fast dynamics which is the key dynamics in the DoA control. Thus, thanks to the particular structure of the system, we split it into two subsystems, namely a fast subsystem (blood, effect site), on which acts the control input, and a slow subsystem (muscles and fat) whose dynamics is influenced only by the state of the fast subsystem. The slow subsystem is considered as a simple disturbance for the fast subsystem.

E. Problem statement

Let us denote x f = [x err1 x err4 ] ∈ R n the fast state vector, x s = [x err2 x err3 ] ∈ R n the slow state vector and u = u err ∈ R m . The error system can be written as follows:

ẋf = A f x f + A f s x s + B f u ẋs = A sf x f + A s x s y f = q(C f x f ) (6)
with y f ∈ R p . q(.) represents the quantizer given in [START_REF] Boyd | Linear Matrix Inequalities In System And Control Theory[END_REF]. We consider a n-order dynamic output-feedback stabilizing controller with an anti-windup action of the form:

ẋc = A c x c + B c u c + E c φ(y c ) y c = C c x c + D c u c (7) 
where x c ∈ R n , u c ∈ R p , y c ∈ R m are respectively the state, the input and the output of the controller. φ(y c ) ∈ R m is an input signal used to perform the anti-windup action introduced in order to reduce any undesirable effects caused by the actuator saturation. Matrices A c , B c , C c , D c and E c are constant matrices of appropriate dimensions to be designed. The interconnection between the plant (6) and the controller ( 7) is done as follows:

u = sat(y c ) u c = y f φ(y c ) = sat(y c ) -y c (8) 
where sat(.) denotes the vector-valued saturation function defined as sat(y c(i) ) = sign(y c(i) )min{u 0(i) , |y c(i) |}, i = 1, . . . , m, u 0(i) > 0 being the level of saturation of the i-th component of y c . According to (2), one sets the symmetric bound u 0 = u e . Then, considering ( 6)-( 7)-( 8) yields the following closedloop system:

ẋf = A f x f + B f sat(C c x c + D c q(C f x f )) + A f s x s ẋc = A c x c + B c q(C f x f ) + E c φ(C c x c + D c q(C f x f )) ẋs = A s x s + A sf x f (9) 
By defining the augmented state x = [x f x c ] ∈ R 2n and by defining ψ(z) = q(z) -z, the closed-loop system (9) reads:

ẋ = Ãx + B φ φ(Kx + D c ψ( Cx)) +B ψ ψ( Cx) + B s x s (10a) ẋs = A s x s + B x x (10b) 
with

à = A f + B f D c C f B f C c B c C f A c ; B φ = B f E c K = D c C f C c ; C = C f 0 B ψ = B f D c B c ; B s = A f s 0 ; B x = A sf 0
The problem we intend to solve can then be formulated as follows:

Problem 1: Design A c , B c , C c , D c , E c and characterize three sets A 0 , A ∞ , A s such that:

1) the closed-loop trajectories of systems (10a) and (10b) are confined in the sets A 0 and A s respectively; 2) for any initial condition x(0) ∈ A 0 \ A ∞ , the trajectories of system (10a) converges to A ∞ ⊂ A 0 . Remark 1: Notice that, due to the presence of the uniform quantizer, the right-hand side of equation (10a) is discontinuous. Then there is no guarantee about the existence of solutions in a classical sense [START_REF] Cortes | Discontinuous dynamical systems[END_REF]. The notion of solution should be then properly defined. To this end, similarly to [START_REF] Tarbouriech | Control design for quantized linear systems with saturations[END_REF], we suppose that the Caratheodory solutions for the system (10a) exist. Another option would be to consider Krasovskii solutions [START_REF] Ferrante | Stabilization of continuous-time linear systems subject to input quantization[END_REF].

III. CONTROLLER SYNTHESIS

A. Main results

The closed-loop system (10) contains nested nonlinearities since φ depends on ψ. To solve Problem 1, we exploit the sector conditions both for ψ as presented in [START_REF] Ferrante | Stabilization of continuous-time linear systems subject to input quantization[END_REF] and for φ as given in [START_REF] Tarbouriech | Stability analysis and stabilization of systems presenting nested saturations[END_REF]. Let us recall these conditions.

Lemma 1: [START_REF] Ferrante | Stabilization of continuous-time linear systems subject to input quantization[END_REF] Let z ∈ R p , and let S 1 , S 2 ∈ R p×p be diagonal positive definite matrices. Then the pair (ψ(z), z) satisfies the following conditions:

ψ (z)S 1 ψ(z) -trace(S 1 )∆ 2 ≤ 0 (11) ψ (z)S 2 (ψ(z) + z) ≤ 0 (12) Lemma 2: [22] Considering a matrix G ∈ R m×2n , the non-linearity φ(y c ) satisfies φ(y c ) T (φ(y c ) + D c ψ( Cx) + Gx) ≤ 0 (13) 
for any diagonal positive matrix T ∈ R m×m if x ∈ S(u 0 ) defined by

S(u 0 ) = x ∈R n ; ∀i ∈ {1, ..., m}, -u 0(i) ≤ (K (i) -G (i) )x ≤ u 0(i) (14) 
Now, we are in position to state the main result to address Problem 1.

Theorem 1: If there exist two symmetric positive definite matrices P ∈ R 2n×2n , Q ∈ R n×n , three diagonal positive definite matrices S 1 , S 2 ∈ R p×p , T ∈ R m×m , a matrix G ∈ R m×2n , matrices A c , B c , C c , D c , E c and positive scalars τ 1 , τ 2 , τ 3 , τ 4 , τ 5 , η, δ such that1   

He(P Ã) + (τ 1 -τ 2 )P P B ψ -C S 2 P B φ -G T P Bs -S 1 -2S 2 -D c T 0 -2T 0 -τ 3 Q    < 0 (15) He(QA s ) + τ 4 Q QB x -τ 5 P < 0 (16) 
P K (i) -G (i) ηu 2 0(i) ≥ 0 i = 1, ..., m. (17) 
η(τ 3 + δ(∆ 2 trace(S 1 ) -τ 1 )) + τ 2 δ ≤ 0 (18) η ≤ 1 (19) -τ 4 η + τ 5 δ ≤ 0 (20) then A c , B c , C c , D c , E c A 0 = E(P, η) := {x ∈ R 2n : x P x ≤ η -1 } A ∞ = E(P ) := {x ∈ R 2n : x P x ≤ 1} A s = E(Q) := {x s ∈ R n : x s Qx s ≤ δ -1 }
are solution to Problem 1.

Proof: One has to prove that the trajectories of subsystem (10a) remain confined in a compact set E(P, η) as long as the trajectories of subsystem (10b) are in E(Q, δ). Furthermore, one has also to prove that the trajectories of the closed-loop system (10a) initialized in E(P, η) converge to a compact set E(P ) ⊂ E(P, η).

Consider, for the closed-loop fast subsystem (10a), the quadratic Lyapunov function V (x) = x P x, P = P > 0. One has then to prove that V (x) < -α(V (x)), α being a K-function, for any x such that x P x ≤ η -1 and x P x ≥ 1, and for any x s ∈ E(Q, δ). In other words, we have to verify by using the S-procedure the following inequality:

V (x) + τ 1 (x P x -1) + τ 2 (η -1 -x P x) +τ 3 (δ -1 -x s Qx s ) < -α(V (x)) (21) 
Furthermore, by using Lemmas 1 and 2, a sufficient condition to verify ( 21) is that

V (x) + τ 1 x P x -τ 2 x P x -τ 3 x s Qx s -ψ S 1 ψ -2ψ S 1 (ψ + Cx) -2φ T (φ + D c ψ + Gx) < -α(V (x)) (22) and trace(S 1 )∆ 2 -τ 1 + τ 2 η -1 + τ 3 δ -1 < 0 (23) 
as long as E(P, η) ⊆ S(u 0 ), which is ensured by satisfying inequality [START_REF] Minto | Pharmacokinetics and pharmacodynamics of remifentanil.Model application[END_REF]. The inequality ( 22) can be written as ζ Lζ < -α(V (x)), with ζ = [x ψ φ x s ] and L is the left-hand side matrix of inequality [START_REF] Mathews | Feasibility study for the administration of remifentanil based on the difference between response entropy and state entropy[END_REF]. Hence, the satisfaction of inequalities ( 15) and [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF] means that it exists a small enough positive scalar α such that V (x)+τ 1 (x P x-1)-τ 2 (x P xη -1 ) + τ 3 (δ -1 -x s Qx s ) ≤ -αx x which in turn gives [START_REF] Tarbouriech | Control design for quantized linear systems with saturations[END_REF]. Moreover, one has to prove that the set A 0 = E(P, η) contains the set A ∞ = E(P ) which holds if η ≤ 1.

On the other hand, similarly to [START_REF] Zabi | New approach for the control of anesthesia based on dynamics decoupling[END_REF], [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF], the satisfaction of relations ( 16) and ( 20) ensures the invariance of the ellipsoid E(Q, δ) for the subsystem (10b), for any x ∈ E(P, η).

Remark 2:

The fact that the set E(P ) is an attractor for the trajectories of system [START_REF] Gentilini | A new paradigm for the closed-loop intraoperative administration of analgesics in humans[END_REF] means that, inside this set, x f and x c evolve close to the origin. Then, considering only the x f part, that means that x 1 , x 4 evolve close to their equilibrium points x 1e , x 4e . However, it is important to point out that, without additional conditions, we cannot ensure the convergence of x 1 , x 4 to x 1e , x 4e . Indeed, in general, the asymptotic stability properties of the quantization-free closed-loop system are destroyed by quantization [START_REF] Ferrante | Stabilization of continuous-time linear systems subject to input quantization[END_REF] and the implicit interest by minimizing the size of the set E(P ) is to ensure that x 1 , x 4 will remain close to their equilibrium point.

Remark 3: Note that the approach induces several sources of conservatism (these are only sufficient conditions) and in particular, it assumes that the disturbance (the slow dynamics) may evolve randomly in A s , not considering the fact that it is actually a vanishing disturbance.

B. Computational issue

Theorem 1 provides a sufficient condition in terms of matrix inequalities to solve Problem 1. Nevertheless, some matrix inequalities of Theorem 1 are nonlinear since having some products between decision variables, in particular involving the matrices A c , B c , C c , D c and E c and the Lyapunov matrix P . Then, these conditions are hardly tractable from a numerical point of view, making in general impossible to design a suitable controller directly from Theorem 1. In order to partly linearize the conditions of Theorem 1, we use the congruence transformation proposed in [START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF] to propose a sufficient set of conditions to solve Problem 1.

Proposition 1: If there exist three symmetric positive definite matrices X, Y, Q ∈ R n×n , three diagonal positive definite matrices

S 1 , S 2 ∈ R p×p , S ∈ R m×m , matrices W ∈ R n×n , R ∈ R n×m , L ∈ R n×p , M ∈ R m×n , N ∈ R m×p , Z ∈ R m×n , Z 1 ∈ R m×n and positive scalars τ 1 , τ 2 , τ 3 , τ 4 , τ 5 , η, δ such that,    He(H1) + (τ1 -τ2)H2 H3 H6 H4 -S1 -2S2 -N 0 -2S 0 -τ3Q    < 0 (24) He(QA s ) + τ 4 Q QH 5 -τ 5 H 2 < 0 (25) 
H 2 H 7 ηu 2 0(i) ≥ 0 i = 1, ..., m (26) 
and scalar conditions ( 18), ( 19) and [START_REF] Soltesz | Individualized PID control of depth of anesthesia based on patient model identification during the induction phase of anesthesia[END_REF], where

H 1 = A f Y + B f M A f + B f N C f W XA f + LC f H 2 = Y I X , H 3 = B f N -Y C f S 2 L -C f S 2 H 4 = A f s XA f s , H 5 = A sf Y A sf H 6 = B f S -Z R -Z 1 , H 7 = M (i) -Z (i) C f N (i) -Z 1(i) i = 1, ..., m. then E c = U -1 (R -XB f S)S -1 D c = N C c = (M -N C f Y )(V ) -1 B c = U -1 (L -XB f N ) A c = U -1 (W -XA f Y -XB f M -U B c C f Y )(V ) -1 and A 0 = E(P, η) := {x ∈ R 2n : x P x ≤ η -1 }, A ∞ = E(P ) := {x ∈ R 2n : x P x ≤ 1}, A s = {x s ∈ R n : x s Qx s ≤ δ -1 } where U, V ∈ R n are any nonsingular matrices such that U V = I -XY and P = X U U X with X = U (X -Y -1 ) -1 )U (27) 
are solution to problem 1. Proof: Considering the matrix P defined in (27), one can define

J = Y V I 0 (28) 
which is a nonsingular matrix as U and V are assumed to be nonsingular. The objective is to rearrange the conditions of Theorem 1 thanks to adequate changes of variables. Then, by pre-and post-multiplying condition (15) by diag{J, I, S, I} and diag{J , I, S, I}, with S = T -1 , one gets

    He(JP ÃJ ) + (τ1 -τ2)JP J B ψ P J -S2 CJ -S1 -2S2 SB φ P J -GJ -Dc -2S BsP J 0 0 -τ3Q    
Let us consider the following changes of variables 

W L M N = XA f Y 0 0 + U XB f 0 I A c B c C c D c V 0 C f Y I , Z 1 = G 1 , Z = G 1 Y + G 2 V , R = XB f S + U E c S. with G = [G 1 G 2 ]. It
(i) -G (i) ) = H 7 .

C. Optimization issue

The implicit objective behind Problem 1 is to obtain a set A 0 as large as possible with respect to some practical constraints and a set A ∞ as small as possible. Those sets are characterized by the same matrix P and the distance between the two sets is directly related to η. Then we can consider an optimization problem minimizing both trace(P -1 ) and η (see, for example, [START_REF] Boyd | Linear Matrix Inequalities In System And Control Theory[END_REF] or [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF]). From the definition of P in (27), it follows that:

P -1 = Y V V Ŷ with Ŷ = -U -1 X(I -XY ) U -1
. Matrix U may be arbitrary chosen as any nonsingular matrix without any influence on the feasibility of conditions given in Proposition 1. In particular, by selecting U = X, it follows: trace(P -1 ) = trace(Y ) + trace( Ŷ ) = 2 trace(Y ) -trace(X -1 ). Then, the considered optimization problem consists in

min trace(X + Y ) + η (29) 
Practical constraints relative to the set A 0 are suggested to guarantee that the DoA remains in the range [-l∆, +l∆], l being an integer to be chosen, corresponding to some degree of freedom. This constraint can be represented by:

P = {x ∈ 2n : | a k x| ≤ 1} with a k = [0 l/∆ 0 0]. The inclusion of A 0 in P reads P a k η ≥ 0 
and, by pre-and post-multiplying this inequality by diag{J, 1} and diag{J , 1}, it follows:

H 2 H 8 η ≥ 0 (30) 
with

H 8 = Ja k = [a k1 Y a k1 ] , a k1 = [0 l/∆].
Moreover, the relations of Proposition 1 yet involve some products between decision variables, in particular in the terms 24) and (25), or still η(τ 3 -τ 1 ), η trace(S 1 ) in ( 18) and τ 4 η in [START_REF] Soltesz | Individualized PID control of depth of anesthesia based on patient model identification during the induction phase of anesthesia[END_REF]. Nevertheless, by fixing τ 1 , τ 2 , τ 3 , τ 4 , τ 5 , δ, S 1 , S 2 and Q, the relations become linear. Hence, except for Q, they can be selected by performing a grid search over a certain interval. Regarding the QH 5 term, one can proceed in three steps. First, by considering any symmetric positive matrix Q 0 (corresponding to some given perturbation set), we compute a solution to the optimization problem (29) with respect to the LMI conditions of the fast system only ( 18), ( 19), [START_REF] Zabi | New approach for the control of anesthesia based on dynamics decoupling[END_REF] and (26). Secondly, considering X, Y solution to the first step, search for the largest invariant set E(Q) ⊂ E(Q 0 ) that satisfies the LMIs [START_REF] Soltesz | Individualized PID control of depth of anesthesia based on patient model identification during the induction phase of anesthesia[END_REF] and (25) associated to the slow subsystem only. Finally, take the matrix Q solution to the second step and solve the full optimization problem: The initial state (no drug in the patient) is associated to a DoA = 12.5 mA, which corresponds to a patient awake (pupil of a patient awake does not react for small stimulation). The target reference is then set to 40mA, with the objective to achieve a target interval [-5∆, +5∆]. Figures 2 and3 show the evolution of the DoA and of the drug infusion rate, respectively. One can check in Figure 2 that the time response to reach the target interval is about 4.3 minutes. V. CONCLUSION The novelty of this work is that, with the introduction of a new analgesia indicator, we presented a dynamic output feedback controller for a decoupled model taking into account the output quantization and the input saturation. The decomposition of the model into a fast and a slow systems allows to focus the control design on the fast subsystem, whereas the slow one is considered as a disturbance. For the future, the fact that the DoA information is actually a sampled output, obtained only by performing pulses on the patient, will have to be taken into account. Moreover, the synthesized controller guarantees to keep the DoA in the range [-∆, +∆] but does not address the induction phase corresponding to the first drug injection produced by the anesthetist. To finalize the automation of the entire process, the next step will be to propose a switched control law inspired by the practice.

(τ 1 -τ 2 )H 2 , τ 3 Q, τ 4 Q, τ 5 H 2 , Y C f S 2 , QH 5 in (
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 1 Fig. 1. Real and estimated pupil size variation in response to a 40 mA stimulus

  min X,Y,S,L,W,R,M,N,Z,Z1,η trace(X + Y ) + η subject to (24) -(26), (18) -(20), (30) (31) IV. NUMERICAL ILLUSTRATION Consider a nominal patient, man, 53 years old, 77 kg and 177 cm. By considering the quantization error ∆ = 1 which means that the DoA is given as multiple of 1mA and setting τ 1 = 1.23, τ 2 = 0.1, τ 3 = 0.3, τ 4 = 0.02, τ 5 = 0.0485, δ = 0.3306; S 1 = 0.3225 and S 2 = 0.002, the following controller, solution to Problem 1 is obtained:A c B c C c D c =
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 23 Fig. 2. DoA evolution (y imp )

  turns out, after calculations, that JP ÃJ = H 1 , JP J = H 2 , JP B ψ -J C S 2 = H 3 , JP B φ S -JG = H 6 and JP B s = H 4 . Then, one obtains relation[START_REF] Zabi | New approach for the control of anesthesia based on dynamics decoupling[END_REF]. By the same way, relation (25) is obtained by pre-and post-multiplying (16) by diag{I, J} and diag{I, J }, by noting that B x J = H 5 . Relation (26) is obtained by pre-and post-multiplying (17) diag{J, I} and diag{J , I} and by noting J(K

In symmetric matrices, the notation stands for symmetric blocks and He(A) = A + A.
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