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Dynamic output-feedback controller design for analgesia guided by the
pupil size variation

Said Zabi1, Isabelle Queinnec1, Sophie Tarbouriech1 and Michel Mazerolles2

Abstract— This paper pertains to the design of a dynamic
output-feedback controller for analgesia taking into account
the saturation of the input and the quantization of the output.
Actually, the output is given by the smallest magnitude of
the stimulus that induces a significant pupil size variation. In
addition, to take into account multiple time scale dynamics in
the analgesia model, the system is re-expressed by decoupling
the fast dynamics from the slow ones.

I. INTRODUCTION

The goal of clinical anesthesia is to avoid patient aware-
ness (hypnosis) and minimize the response to noxious stim-
ulation (analgesia) through the administration of anesthetic
drugs based on clinical indicators [1], [14], [4]. Concerning
more specifically the depth of analgesia, several studies have
been concerned with the selection of reliable indicators. [7],
[2] proposed an evaluation of the depth of analgesia by
analyzing the heart rate variability and introduced the ANI
(for Autonomic Nervous Index). Blood pressure, grimaces,
electrocardiogram (EEG), the difference of entropy and other
indicators were also proposed in [10], [15], [11], [23]. In
this work we use the response of the pupil as an indicator,
being shown that its area variates according to nociceptive
stimulation [16]. Actually, [3] showed that the pupil response
to a painful stimulus is a better indicator of the effect
site remifentanil concentration than haemodynamics or BIS
measurements.

Moreover, the problem of closed-loop control of the depth
of analgesia (DoA) of a patient, similarly to the anesthesia, is
a very challenging problem due to the numerous phenomena
to be considered as patient variability, multivariable char-
acteristics, positivity constraints, dynamics dependent on the
hypnotic agent, ... Main attention in this domain was focused
on anesthesia, although few works have concerned analgesia.
Basically, PID-based feedback control strategies have been
considered to adjust the amount of opioid administered
[20]. Alternatively, the use of model predictive control was
proposed in [10].

This paper revisits the control problem of the analgesic
state of a patient under the framework of quantized [21] and
saturated systems [18]. Actually, the output of the controlled
system, which is the smallest magnitude of a stimulus that
induces a significant dilatation of the pupil, is quantized,
i.e, its value can only be a multiple of a constant. The
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global goal is then to control the DoA in an interval fixed a
priori, taking into account directly the magnitude limitation
of the control signal, that is the limitation of the rate of drug
addition (in the current case the remifentanil) intravenously.
Moreover, the dynamics of the evolution of the drug in the
patient’s body is usually described by a pharmacokinetic
model with multiple time scales. Rather than treating the
system as a singularly perturbed system [13], we reformulate
the problem by separating fast and slow dynamics in order
to reduce the global control problem to that one of the fast
subsystem (the DoA being directly linked to the states of
the fast subsystem) perturbed by the slow dynamics and vice
versa. Finally, the main contribution of the paper resides in
the control design of a dynamic output-feedback controller
proposed through matrix inequalities conditions taking into
account the quantized nature of the output and the saturation
of the input.

II. MODELLING ASPECTS AND PROBLEM FORMULATION

A. The patient model

The compartment model used to describe the circulation
of drugs in a patient’s body, also known as Pharmacoki-
netic/Pharmacodynamic (PK/PD) model, is based on a clas-
sical three-compartment model [8].

The effect of the drug on the patient is expressed through-
out the effect site, which represents the action of drugs on
the brain and is related to the concentration in the central
compartment through a first order dynamic [4]. So, the
compartmental model can be expressed as follows:

ẋan(t) = Axan(t) +Buan(t) (1)

with

A =


−(k10 + k12 + a13) k21 k31 0

k12 −k21 0 0
k13 0 −k31 0

ke0/V1 0 0 −ke0


B =

[
1 0 0 0

]′
where xan = [x1 x2 x3 x4]′, x1(t), x2(t), x3(t) are the
masses in grams of the analgesic in the different compart-
ments, x4(t) is the effect site concentration and uan(t) is
the infusion rate in g/min of the analgesic. For numerical
simulations, we use the Minto model [17], shown in Table I,
to express the influence of the patient characteristics (weight,
age, height, ...) on the parameters, but any other model could
be used. The lean body mass (LBM) is calculated using the
James formula [12].



TABLE I
MINTO MODEL PARAMETERS

Parameter Estimation
V1(L) 5.1− 0.0201(age− 40) + 0.072(LBM − 55)
V2(L) 9.82− 0.0811(age− 40) + 0.108(LBM − 55)
V3(L) 5.42
k10 [2.6− 0.0162(age− 40) + 0.0191(LBM − 55)]/V1
k12 [2.05− 0.0301(age− 40)]/V1
k13 [0.076− 0.00113(age− 40)]/V1
k21 [2.05− 0.0301(age− 40)]/V2
k31 [0.076− 0.00113(age− 40)]/V3
ke0 0.595− 0.007(age− 40)

B. Error model

Consider xe4 the effect site concentration target corre-
sponding to a desired DoA known. The other variables can
then be deduced from the equilibrium point of system (1):

xe1 = x4eV1, xe2 =
k21
k12

xe1, xe3 =
ak1
k13

xe1,

and the value of the input for this equilibrium is given by

ue = k10xe1.

Finally, the error model is directly derived from system
(1), considering the equilibrium point xe and the change of
variable xerr = xan − xe, uerr = uan − ue. The positivity
constraints on uan and xan can be expressed as constraints
on uerr and xerr:

xan ≥ 0⇒ xerr ≥ −xe
uan ≥ 0⇒ uerr ≥ −ue

(2)

Moreover, an upper limit on the amount of drugs that can be
injected in the blood over time is also taken into account.

C. The quantized measurement

1) The DoA measurement: The clinical indicator used in
this study is the pupil reaction to an external stimulus. Actu-
ally, the pupil size variation in reaction to an electrical pulse
of given intensity is related to the effect site concentration of
drug. This is illustrated on Figure 1 where the real pupil size
variation of a patient (man, 50 years old, 110 kg, 180 cm)
is plotted in response to successive 40 mA impulse signals,
for increasing effect site concentrations.

We then suggest a model, which relates the pupil size
variation to the effect site concentration and the magnitude
(in mA) of the pulse stimulation signal, as follows:(

ẋ5
ẋ6

)
=

[
−k5 0

k65(1− x4

cemax
) −k6

](
x5
x6

)
+

[
1
0

]
imp (3)

where x5 models the impulse signal imp as received by the
human body and x6 represents the pupil size variation in %.
This model illustrates that the more x4 approaches cemax, the
less is the pupil reaction to an impulsive signal. The positive
parameters k5, k6, k65 and cemax are patient dependent and
have to be identified, but this is outside the scope of the
current paper. For an estimated set of parameters, this model
response is illustrated in Figure 1 (in red).

Then, in order to use the information related to the pupil
reaction to electrical stimuli, we define the output of the
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Fig. 1. Real and estimated pupil size variation in response to a 40 mA
stimulus

PK/PD model as the smallest magnitude of stimuli that
induces a significant (i.e. a reaction larger than a given
threshold Θ) pupil size variation. The output function yimp =
h(x4) may be derived from the manipulation of model (3),
then linearized at the target setpoint (impulsion amplitude
and/or effect site concentration) to obtain yimp = c4x4.

2) Quantization of the DoA: From a practical point of
view, successive increasing impulsive pulses are delivered
until the reaction size variation exceeds the threshold Θ.
This signifies that the output signal is a quantized signal.
The quantization is defined around the equilibrium point
established above, the output equation is then obtained by

y = q(Cxerr) (4)

with C =
[

0 0 0 c4
]
. q(.) is the uniform quantizer,

having as quantization error bound ∆ > 0, defined by [9]

q :

Rp → ∆Zp

z 7→ ∆ sign(z)

⌊
|z|
∆

⌋
(5)

D. Multiplicity of dynamics

Furthermore, as discussed in [24], system (1) involves both
fast and slow dynamics and the control action acts on the fast
dynamics which is the key dynamics in the DoA control.
Thus, thanks to the particular structure of the system, we
split it into two subsystems, namely a fast subsystem (blood,
effect site), on which acts the control input, and a slow
subsystem (muscles and fat) whose dynamics is influenced
only by the state of the fast subsystem. The slow subsystem
is considered as a simple disturbance for the fast subsystem.

E. Problem statement

Let us denote xf = [xerr1 xerr4]′ ∈ Rn the fast state
vector, xs = [xerr2 xerr3]′ ∈ Rn the slow state vector and
u = uerr ∈ Rm. The error system can be written as follows:

ẋf = Afxf +Afsxs +Bfu
ẋs = Asfxf +Asxs
yf = q(Cfxf )

(6)



with yf ∈ Rp. q(.) represents the quantizer given in (5).
We consider a n−order dynamic output-feedback stabilizing
controller with an anti-windup action of the form:

ẋc = Acxc +Bcuc + Ecφ(yc)
yc = Ccxc +Dcuc

(7)

where xc ∈ Rn, uc ∈ Rp, yc ∈ Rm are respectively the
state, the input and the output of the controller. φ(yc) ∈ Rm
is an input signal used to perform the anti-windup action
introduced in order to reduce any undesirable effects caused
by the actuator saturation. Matrices Ac, Bc, Cc, Dc and
Ec are constant matrices of appropriate dimensions to be
designed. The interconnection between the plant (6) and the
controller (7) is done as follows:

u = sat(yc)
uc = yf
φ(yc) = sat(yc)− yc

(8)

where sat(.) denotes the vector-valued saturation function
defined as sat(yc(i)) = sign(yc(i))min{u0(i), |yc(i)|}, i =
1, . . . ,m, u0(i) > 0 being the level of saturation of the i−th
component of yc. According to (2), one sets the symmetric
bound u0 = ue.

Then, considering (6)-(7)-(8) yields the following closed-
loop system:

ẋf = Afxf +Bf sat(Ccxc +Dcq(Cfxf )) +Afsxs

ẋc = Acxc +Bcq(Cfxf ) + Ecφ(Ccxc +Dcq(Cfxf ))

ẋs = Asxs +Asfxf

(9)

By defining the augmented state x = [x′f x′c]
′ ∈ R2n and by

defining ψ(z) = q(z)− z, the closed-loop system (9) reads:

ẋ = Ãx+Bφφ(Kx+Dcψ(C̃x))

+Bψψ(C̃x) +Bsxs
(10a)

ẋs = Asxs +Bxx (10b)

with

Ã =

[
Af +BfDcCf BfCc

BcCf Ac

]
; Bφ =

[
Bf
Ec

]
K =

[
DcCf Cc

]
; C̃ =

[
Cf 0

]
Bψ =

[
BfDc

Bc

]
; Bs =

[
Afs

0

]
; Bx =

[
Asf 0

]
The problem we intend to solve can then be formulated

as follows:
Problem 1: Design Ac, Bc, Cc, Dc, Ec and characterize

three sets A0, A∞, As such that:
1) the closed-loop trajectories of systems (10a) and (10b)

are confined in the sets A0 and As respectively;
2) for any initial condition x(0) ∈ A0 \ A∞, the trajec-

tories of system (10a) converges to A∞ ⊂ A0.
Remark 1: Notice that, due to the presence of the uniform

quantizer, the right-hand side of equation (10a) is discon-
tinuous. Then there is no guarantee about the existence of
solutions in a classical sense [6]. The notion of solution
should be then properly defined. To this end, similarly to

[21], we suppose that the Caratheodory solutions for the
system (10a) exist. Another option would be to consider
Krasovskii solutions [9].

III. CONTROLLER SYNTHESIS

A. Main results

The closed-loop system (10) contains nested non-
linearities since φ depends on ψ. To solve Problem 1, we
exploit the sector conditions both for ψ as presented in [9]
and for φ as given in [22]. Let us recall these conditions.

Lemma 1: [9] Let z ∈ Rp, and let S1, S2 ∈ Rp×p be
diagonal positive definite matrices. Then the pair (ψ(z), z)
satisfies the following conditions:

ψ′(z)S1ψ(z)− trace(S1)∆2 ≤ 0 (11)
ψ′(z)S2(ψ(z) + z) ≤ 0 (12)

Lemma 2: [22] Considering a matrix G ∈ Rm×2n, the
non-linearity φ(yc) satisfies

φ(yc)
′T (φ(yc) +Dcψ(C̃x) +Gx) ≤ 0 (13)

for any diagonal positive matrix T ∈ Rm×m if x ∈ S(u0)
defined by

S(u0) =

{
x ∈Rn;∀i ∈ {1, ...,m},
− u0(i) ≤ (K(i) −G(i))x ≤ u0(i)

}
(14)

Now, we are in position to state the main result to address
Problem 1.

Theorem 1: If there exist two symmetric positive definite
matrices P ∈ R2n×2n, Q ∈ Rn×n, three diagonal positive
definite matrices S1, S2 ∈ Rp×p, T ∈ Rm×m, a matrix G ∈
Rm×2n, matrices Ac, Bc, Cc, Dc, Ec and positive scalars
τ1, τ2, τ3, τ4, τ5, η, δ such that1

He(PÃ) + (τ1 − τ2)P PBψ−C̃′S2 PBφ−G′T PBs
? −S1 − 2S2 −D′

cT 0
? ? −2T 0
? ? ?′ −τ3Q

 < 0

(15)[
He(QAs) + τ4Q QBx

? −τ5P

]
< 0 (16)[

P K ′(i) −G
′
(i)

? ηu20(i)

]
≥ 0 i = 1, ...,m. (17)

η(τ3 + δ(∆2 trace(S1)− τ1)) + τ2δ ≤ 0 (18)

η ≤ 1 (19)

−τ4η + τ5δ ≤ 0 (20)

then
Ac, Bc, Cc, Dc, Ec

A0 = E(P, η) := {x ∈ R2n : x′Px ≤ η−1}

A∞ = E(P ) := {x ∈ R2n : x′Px ≤ 1}

1In symmetric matrices, the notation ? stands for symmetric blocks and
He(A) = A′ +A.



As = E(Q) := {xs ∈ Rn : x′sQxs ≤ δ−1}

are solution to Problem 1.
Proof: One has to prove that the trajectories of subsystem
(10a) remain confined in a compact set E(P, η) as long as the
trajectories of subsystem (10b) are in E(Q, δ). Furthermore,
one has also to prove that the trajectories of the closed-loop
system (10a) initialized in E(P, η) converge to a compact set
E(P ) ⊂ E(P, η).

Consider, for the closed-loop fast subsystem (10a), the
quadratic Lyapunov function V (x) = x′Px, P = P ′ > 0.
One has then to prove that V̇ (x) < −α(V (x)), α being a
K-function, for any x such that x′Px ≤ η−1 and x′Px ≥ 1,
and for any xs ∈ E(Q, δ). In other words, we have to verify
by using the S-procedure the following inequality:

V̇ (x) + τ1(x′Px− 1) + τ2(η−1 − x′Px)
+τ3(δ−1 − x′sQxs) < −α(V (x))

(21)

Furthermore, by using Lemmas 1 and 2, a sufficient condition
to verify (21) is that

V̇ (x) + τ1x
′Px− τ2x′Px− τ3x′sQxs − ψ′S1ψ

−2ψ′S1(ψ + C̃x)− 2φ′T (φ+Dcψ +Gx) < −α(V (x))
(22)

and
trace(S1)∆2 − τ1 + τ2η

−1 + τ3δ
−1 < 0 (23)

as long as E(P, η) ⊆ S(u0), which is ensured by satisfying
inequality (17). The inequality (22) can be written as ζ ′Lζ <
−α(V (x)), with ζ = [x′ ψ′ φ′ x′s]

′ and L is the left-hand
side matrix of inequality (15). Hence, the satisfaction of
inequalities (15) and (18) means that it exists a small enough
positive scalar α such that V̇ (x)+τ1(x′Px−1)−τ2(x′Px−
η−1) + τ3(δ−1 − x′sQxs) ≤ −αx′x which in turn gives
(21). Moreover, one has to prove that the set A0 = E(P, η)
contains the set A∞ = E(P ) which holds if η ≤ 1.

On the other hand, similarly to [24], [18], the satisfaction
of relations (16) and (20) ensures the invariance of
the ellipsoid E(Q, δ) for the subsystem (10b), for any
x ∈ E(P, η). �

Remark 2: The fact that the set E(P ) is an attractor for
the trajectories of system (10) means that, inside this set, xf
and xc evolve close to the origin. Then, considering only
the xf part, that means that x1, x4 evolve close to their
equilibrium points x1e, x4e. However, it is important to point
out that, without additional conditions, we cannot ensure
the convergence of x1, x4 to x1e, x4e. Indeed, in general,
the asymptotic stability properties of the quantization-free
closed-loop system are destroyed by quantization [9] and
the implicit interest by minimizing the size of the set E(P )
is to ensure that x1, x4 will remain close to their equilibrium
point.

Remark 3: Note that the approach induces several sources
of conservatism (these are only sufficient conditions) and
in particular, it assumes that the disturbance (the slow
dynamics) may evolve randomly in As, not considering the
fact that it is actually a vanishing disturbance.

B. Computational issue

Theorem 1 provides a sufficient condition in terms of
matrix inequalities to solve Problem 1. Nevertheless, some
matrix inequalities of Theorem 1 are nonlinear since hav-
ing some products between decision variables, in particular
involving the matrices Ac, Bc, Cc, Dc and Ec and the Lya-
punov matrix P . Then, these conditions are hardly tractable
from a numerical point of view, making in general impossible
to design a suitable controller directly from Theorem 1. In
order to partly linearize the conditions of Theorem 1, we use
the congruence transformation proposed in [19] to propose
a sufficient set of conditions to solve Problem 1.

Proposition 1: If there exist three symmetric positive def-
inite matrices X,Y,Q ∈ Rn×n, three diagonal positive
definite matrices S1, S2 ∈ Rp×p, S ∈ Rm×m, matrices W ∈
Rn×n, R ∈ Rn×m, L ∈ Rn×p, M ∈ Rm×n, N ∈ Rm×p,
Z ∈ Rm×n, Z1 ∈ Rm×n and positive scalars τ1, τ2, τ3, τ4,
τ5, η, δ such that,

He(H1) + (τ1 − τ2)H2 H3 H6 H4

? −S1 − 2S2 −N ′ 0
? ? −2S 0
? ? ? −τ3Q

 < 0

(24)[
He(QAs) + τ4Q QH5

? −τ5H2

]
< 0 (25)

[
H2 H7

? ηu20(i)

]
≥ 0 i = 1, ...,m (26)

and scalar conditions (18), (19) and (20), where

H1 =

[
AfY +BfM Af +BfNCf

W XAf + LCf

]

H2 =

[
Y I
? X

]
, H3 =

[
BfN − Y C ′fS2

L− C ′fS2

]
H4 =

[
Afs
XAfs

]
, H5 =

[
AsfY Asf

]
H6 =

[
BfS − Z ′
R− Z ′1

]
, H7 =

[
M(i)

′ − Z(i)
′

C ′fN(i)
′ − Z1(i)

′

]
i = 1, ...,m.

then

Ec = U−1(R−XBfS)S−1

Dc = N

Cc = (M −NCfY )(V ′)−1

Bc = U−1(L−XBfN)

Ac = U−1(W −XAfY −XBfM − UBcCfY )(V ′)−1

and A0 = E(P, η) := {x ∈ R2n : x′Px ≤ η−1},
A∞ = E(P ) := {x ∈ R2n : x′Px ≤ 1}, As = {xs ∈



Rn : x′sQxs ≤ δ−1} where U, V ∈ Rn are any nonsingular
matrices such that UV ′ = I −XY and

P =

[
X U

U ′ X̂

]
with X̂ = U ′(X − Y −1)−1)U (27)

are solution to problem 1.
Proof: Considering the matrix P defined in (27), one can
define

J =

[
Y V
I 0

]
(28)

which is a nonsingular matrix as U and V are assumed to be
nonsingular. The objective is to rearrange the conditions of
Theorem 1 thanks to adequate changes of variables. Then, by
pre- and post-multiplying condition (15) by diag{J, I, S, I}
and diag{J′, I, S, I}, with S = T−1, one gets


He(JPÃJ′) + (τ1 − τ2)JPJ′ ? ? ?

Bψ
′PJ′ − S2C̃J′ −S1 − 2S2 ? ?

SBφ
′PJ′ −GJ′ −Dc −2S ?
BsPJ′ 0 0 −τ3Q


Let us consider the following changes of variables

[
W L
M N

]
=

[
XAfY 0
? 0

]
+

[
U XBf
0 I

] [
Ac Bc
Cc Dc

] [
V ′ 0
CfY I

]
,

Z1 = G1, Z = G1Y +G2V
′, R = XBfS + UEcS.

with G = [G1 G2]. It turns out, after calculations,
that JPÃJ′ = H1, JPJ′ = H2, JPBψ − JC̃ ′S2 =
H3, JPBφS − JG′ = H6 and JPBs = H4. Then, one
obtains relation (24). By the same way, relation (25) is
obtained by pre- and post-multiplying (16) by diag{I, J}
and diag{I, J′}, by noting that BxJ′ = H5. Relation (26) is
obtained by pre- and post-multiplying (17) diag{J, I} and
diag{J′, I} and by noting J(K ′(i) −G

′
(i)) = H7. �

C. Optimization issue

The implicit objective behind Problem 1 is to obtain a
set A0 as large as possible with respect to some practical
constraints and a set A∞ as small as possible. Those sets are
characterized by the same matrix P and the distance between
the two sets is directly related to η. Then we can consider
an optimization problem minimizing both trace(P−1) and η
(see, for example, [5] or [18]). From the definition of P in
(27), it follows that:

P−1 =

[
Y V

V ′ Ŷ

]
with Ŷ = −U−1X(I −XY )′U ′−1. Matrix U may be arbi-
trary chosen as any nonsingular matrix without any influence
on the feasibility of conditions given in Proposition 1. In
particular, by selecting U = X , it follows: trace(P−1) =

trace(Y )+trace(Ŷ ) = 2 trace(Y )− trace(X−1). Then, the
considered optimization problem consists in

min trace(X + Y ) + η (29)

Practical constraints relative to the set A0 are suggested to
guarantee that the DoA remains in the range [−l∆,+l∆], l
being an integer to be chosen, corresponding to some degree
of freedom. This constraint can be represented by:

P = {x ∈ <2n : | a′kx| ≤ 1}

with a′k = [0 l/∆ 0 0]. The inclusion of A0 in P reads[
P ak
? η

]
≥ 0

and, by pre- and post-multiplying this inequality by
diag{J, 1} and diag{J′, 1}, it follows:[

H2 H8

? η

]
≥ 0 (30)

with H8 = Jak = [a′k1Y a′k1]′, a′k1 = [0 l/∆].
Moreover, the relations of Proposition 1 yet involve some

products between decision variables, in particular in the
terms (τ1 − τ2)H2, τ3Q, τ4Q, τ5H2, Y C ′fS2, QH5 in (24)
and (25), or still η(τ3 − τ1), η trace(S1) in (18) and τ4η in
(20). Nevertheless, by fixing τ1, τ2, τ3, τ4, τ5, δ, S1, S2 and
Q, the relations become linear. Hence, except for Q, they
can be selected by performing a grid search over a certain
interval. Regarding the QH5 term, one can proceed in three
steps. First, by considering any symmetric positive matrix Q0

(corresponding to some given perturbation set), we compute
a solution to the optimization problem (29) with respect to
the LMI conditions of the fast system only (18), (19), (24)
and (26). Secondly, considering X , Y solution to the first
step, search for the largest invariant set E(Q) ⊂ E(Q0)
that satisfies the LMIs (20) and (25) associated to the slow
subsystem only. Finally, take the matrix Q solution to the
second step and solve the full optimization problem:

min
X,Y,S,L,W,R,M,N,Z,Z1,η

trace(X + Y ) + η

subject to (24)− (26), (18)− (20), (30)
(31)

IV. NUMERICAL ILLUSTRATION

Consider a nominal patient, man, 53 years old, 77 kg and
177 cm. By considering the quantization error ∆ = 1 which
means that the DoA is given as multiple of 1mA and setting
τ1 = 1.23, τ2 = 0.1, τ3 = 0.3, τ4 = 0.02, τ5 = 0.0485,
δ = 0.3306; S1 = 0.3225 and S2 = 0.002, the following
controller, solution to Problem 1 is obtained:[
Ac Bc
Cc Dc

]
=

 −24.78 −29.19
−0.38 −3.15

0.18
−0.14

22.88 19.34 −0.78

, Ec=

[
−0.11
0.08

]
The initial state (no drug in the patient) is associated to a

DoA = 12.5 mA, which corresponds to a patient awake (pupil
of a patient awake does not react for small stimulation).
The target reference is then set to 40mA, with the objective
to achieve a target interval [−5∆, +5∆]. Figures 2 and 3



show the evolution of the DoA and of the drug infusion
rate, respectively. One can check in Figure 2 that the time
response to reach the target interval is about 4.3 minutes.
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Fig. 2. DoA evolution (yimp)
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Fig. 3. Drug infusion rate (uan = ue + sat(yc))

V. CONCLUSION

The novelty of this work is that, with the introduction of
a new analgesia indicator, we presented a dynamic output
feedback controller for a decoupled model taking into ac-
count the output quantization and the input saturation. The
decomposition of the model into a fast and a slow systems
allows to focus the control design on the fast subsystem,
whereas the slow one is considered as a disturbance. For
the future, the fact that the DoA information is actually a
sampled output, obtained only by performing pulses on the
patient, will have to be taken into account. Moreover, the
synthesized controller guarantees to keep the DoA in the
range [−∆, +∆] but does not address the induction phase
corresponding to the first drug injection produced by the
anesthetist. To finalize the automation of the entire process,
the next step will be to propose a switched control law
inspired by the practice.
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