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This paper proposes a strategy for the design of a dynamic output-feedback controller for analgesia taking into account the saturation of the input and the quantization of the output. Besides that, the design of this controller takes into account the multiple time scale dynamics in the analgesia model, accelerates the fast dynamics and establishes global stability. The control design is cast into a two-step strategy. The controller is first designed for the fast system and the stability analysis is then performed on the full model to evaluate domains of safe behavior.

INTRODUCTION

Although an adequate hypnotic state (anesthesia) prevents the patient from recalling noxious stimulus, the pain they cause is still felt and viewed via some variations on haemodynamics, respiration, hormonal secretion, etc. This can be extenuated by analgesic drugs which compromise the sympathetic and parasympathetic nervous system. Based on those phenomena, several studies have been concerned with the selection of reliable indicators. [START_REF] De Jonckheere | Heart rate variability analysis as an index of emotion regulation processes: Interest of the Analgesia Nociception Index (ANI)[END_REF]], [START_REF] Balocchi | Heart rate variability in subjects with different hypnotic susceptibility receiving nociceptive stimulation and suggestions of analgesia[END_REF]] proposed an evaluation of the depth of analgesia by analyzing the heart rate variability and introduced the ANI (for Autonomic Nervous Index). Blood pressure, grimaces, electrocardiogram (EEG), the difference of entropy and other indicators were also proposed in [START_REF] Gentilini | A new paradigm for the closed-loop intraoperative administration of analgesics in humans[END_REF]], [START_REF] Mathews | Feasibility study for the administration of remifentanil based on the difference between response entropy and state entropy[END_REF]], [START_REF] Huiku | Assessment of surgical stress during general anaesthesia[END_REF]], [START_REF] Ushiyama | Analysis of heart rate variability as an index of noncardiac surgical stress[END_REF]]. In this work we use the response of the pupil as an indicator, being shown that its area variates according to nociceptive stimulation [START_REF] Mazerolles | La pupillométrie permet-elle de mesurer la profondeur d'anesthésie ?[END_REF]]. Actually, [START_REF] Barvais | Effect site concentrations of remifentanil and pupil response to noxious stimulation[END_REF]] showed that the pupil response to a painful stimulus is a better indicator of the effect site remifentanil concentration than haemodynamics or BIS measurements.

Control of analgesia has been mainly devoted to hypnosis, including the presence of saturation and associated windup effects [START_REF] Zhusubaliyev | Nonlinear dynamics in closed-loop anesthesia: Pharma-cokinetic/pharmacodynamic model under pid-feedback[END_REF]], [START_REF] Van Heusden | Safety, constraints and anti-windup in closed-loop anesthesia[END_REF]]. A few works have concerned analgesia using PIDbased feedback control strategies [START_REF] Soltesz | Individualized PID control of depth of anesthesia based on patient model identification during the induction phase of anesthesia[END_REF]] or model predictive control [START_REF] Gentilini | A new paradigm for the closed-loop intraoperative administration of analgesics in humans[END_REF]]. As many biological systems, the closed-loop controller design of analgesia should consider some physical aspects such as patient variability, positivity constraints, output measurement availability, ... Among these aspects, an important peculiarity is the presence of multiple time scales in the dynamics. Indeed, the dynamics of the evolution of the drug in the patient's body is usually described by a pharmacokinetic model with multiple time scales. We reformulate the problem by separating fast and slow dynamics in order to reduce the control design problem to that one of the fast subsystem (the DoA being directly linked to the states of the fast subsystem) before to analyze the global system in a second step. Moreover, one considers a pupillary sensor as the output of the controlled system. It is a quantized signal corresponding to the smallest magnitude of a stimulus that induces a significant dilatation of the pupil. The global goal is then to control the DoA in an interval fixed a priori, taking into account directly the magnitude limitation of the control signal, that is the limitation of the rate of drug addition (in the current case the remifentanil) intravenously. Therefore, the framework considered here is that one of quantized [START_REF] Tarbouriech | Control design for quantized linear systems with saturations[END_REF]] and saturated systems [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF]].

The main contribution of the paper resides in the approach proposed for the design of a dynamic output-feedback controller of the same order as the fast subsystem through matrix inequalities conditions taking into account the quantized nature of the output and the saturation of the input.

MODELLING ASPECTS

The patient model

The model used to describe the circulation of drugs in a patient's body, known as Pharmacokinetic/Pharmacodynamic (PK/PD) model, is based on a classical three-compartment model [START_REF] Derendorf | Modeling of pharmacokinetic / pharmacodynamic (pk/pd) relationships: Concepts and perspectives[END_REF]]. It describes the distribution of the drugs between three compartments (blood, muscles and fat). The effect of drugs on the patient is expressed throughout the effect site, which represents the action of drugs on the brain and is related to the concentration in the central compartment through a first order dynamic [START_REF] Beck | Modeling and control of pharmacodynamics[END_REF]].

In open loop, each constant input rate of the analgesic drug corresponds to a unique equilibrium point [START_REF] Zabi | New approach for the control of anesthesia based on dynamics decoupling[END_REF]]. Thus the following model represents the patient with any desired equilibrium point (u e , x e ) taken as origin ẋan (t) = A an x an (t) + B an u an (t)

(1) with

A an =    -(k 10 + k 12 + a 13 ) k 21 k 31 0 k 12 -k 21 0 0 k 13 0 -k 31 0 k e0 /V 1 0 0 -k e0   
B an = [ 1 0 0 0 ] where, with respect to (u e , x e ), x an = [x 1 x 2 x 3 x 4 ] ,

x 1 (t), x 2 (t), x 3 (t) are the error of masses in grams of the analgesic in the different compartments, x 4 (t) is the error of the effect site concentration and u an (t) is the error of the infusion rate in g/min of the analgesic. Among various existing models, which express the model parameters as functions of the patient characteristics (weight, age, height, ...), we choose for the case of analgesic drugs the model of Minto [START_REF] Minto | Pharmacokinetics and pharmacodynamics of remifentanil.Model application[END_REF]] to define typical patients for numerical simulations. Remark 1. The constraints of positivity on the real system are as follows

x an ≥ -x e ; u an ≥ -u e (2)

The quantized measurement

The pupil size variation in reaction to an electrical pulse of given intensity is inversely proportional to the effect site concentration of drug. In [START_REF] Zabi | Dynamic output-feedback controller design for analgesia guided by the pupil size variation[END_REF]], a second order state space model is proposed to estimate the pupil size variation in % with respect to an electrical stimulation and function of the site-effect drug concentration. The smallest magnitude of stimuli that induces a significant pupil size variation (the DoA) can then be expressed by the output function y = h(x 4 ) [START_REF] Zabi | Dynamic output-feedback controller design for analgesia guided by the pupil size variation[END_REF]].

Actually, this information is only available as a multiple of a constant since it is obtained by means of successive increasing impulsive pulses. By linearizing at the desired equilibrium (u e , x e ), one can express the output equation

y = q(Cx an ) (3) with C = [ 0 0 0 c 4 ]. q(.
) is the uniform quantizer, having as quantization error bound ∆ > 0, defined by [START_REF] Ferrante | Stabilization of continuous-time linear systems subject to input quantization[END_REF]]

q ∆ :    R p → ∆Z p z → ∆sign(z) |z| ∆ (4)

Multiplicity of dynamics

Regardless of patient under consideration, the dynamics of metabolism and circulation of the analgesic drug in the central compartment and at the site effect is ten times faster than in muscles, and even a hundred times faster than in fat. In this case, if one treats the synthesis problem directly for system (1), the synthesis controller would result in accelerating slow dynamics, while the output that we want to control is influenced mainly by the fast dynamics.

Thus, in the following, thanks to the particular structure of the system, we split it into two subsystems, namely a fast subsystem (central compartment (blood), effect site), on which acts the control input, and a slow subsystem (muscles and fat compartments) whose dynamics are influenced only by the state of the fast subsystem.

Let us denote

x f = [x 1 x 4 ] ∈ R 2 the fast state vector, x s = [x 2
x 3 ] ∈ R 2 the slow state vector and u = u an . System (1) can be written as follows:

ẋf = A f x f + B f sat(u) + A f s x s (5a) ẋs = A sf x f + A s x s (5b) y f = q(C f x f ) (5c)

GENERAL PROBLEM FORMULATION

Consider the following generic continuous-time linear system with quantized sensor and saturated input ẋp

= A p x p + B p sat(u) y = q(C p x p ) (6) 
where x p ∈ R n , u ∈ R m , y ∈ R p are respectively the state, the input and the measured output of the plant. q(.) is the uniform quantizer defined in (4) and sat(.) denotes the vector-valued saturation function defined as sat(u

(i) ) = sign(u (i) )min{u 0(i) , |u (i) |}, i = 1, . . . , m, u 0(i) > 0 being
the level of saturation of the i-th component of u. We want to design the following n-order dynamic outputfeedback stabilizing controller for (6):

ẋc = A c x c + B c u c + E c φ(y c ) y c = C c x c + D c u c (7)
where 

x c ∈ R n , u c ∈ R p , y c ∈ R m
= A p x p + B p sat(C c x c + D c q(C p x p )) ẋc = A c x c + B c q(C p x p ) + E c φ(C c x c + D c q(C p x p )) (8) 
By defining the augmented vector state x = [x p x c ] ∈ R 2n and by defining ψ(z) = q(z) -z, the closed-loop system (8) reads:

ẋ = Ax + B φ φ(Kx + D c ψ(Cx)) + B ψ ψ(Cx) (9) with A = A p + B p D c C p B p C c B c C p A c ; B φ = B p E c K = [ D c C p C c ] ; C = [ C p 0 ] ; B ψ = B p D c B c .
Remark 2. Due to the presence of the uniform quantizer, there is no guarantee on the existence of solutions to the discontinuous equation ( 8) in the classical sense [START_REF] Cortes | Discontinuous dynamical systems[END_REF]]. To simplify the development of the result below, we suppose that the Caratheodory solutions to system (8) exist as in [START_REF] Tarbouriech | Control design for quantized linear systems with saturations[END_REF]]. More general solutions as Krasovskii solutions could be studied by using differential inclusions [START_REF] Ferrante | Stabilization of continuous-time linear systems subject to input quantization[END_REF]].

The problem we intend to solve can then be formulated as follows:

Problem 1. Design A c , B c , C c , D c , E c and characterize two sets A 0 , A ∞ such that for every initial conditions x(0) belonging to A 0 \ A ∞ , the resulting trajectories of system (9) converge toward A ∞ .

Depending on the stability property of the open-loop matrix A p , due to the presence of the input saturation, Problem 1 can be turned in a global context. In this case, the set A 0 corresponds to the whole state space R 2n and A ∞ is a global attractor for system (9).

MATHEMATICAL PRELIMINARIES

Preliminary lemmas

The closed-loop system (9) contains nested non-linearities since φ depends on ψ. To solve Problem 1, we exploit the sector conditions both for ψ as presented in [START_REF] Ferrante | Stabilization of continuous-time linear systems subject to input quantization[END_REF]] and for φ as given in [START_REF] Tarbouriech | Stability analysis and stabilization of systems presenting nested saturations[END_REF]].

Let us recall these conditions. Lemma 1. [START_REF] Ferrante | Stabilization of continuous-time linear systems subject to input quantization[END_REF]] Let z ∈ R p , and let S 1 , S 2 ∈ R p×p be diagonal positive definite matrices. Then the pair (ψ(z), z) satisfies the following conditions: [START_REF] Tarbouriech | Stability analysis and stabilization of systems presenting nested saturations[END_REF]] Considering a matrix G ∈ R m×2n , the non-linearity φ(y c ) satisfies

ψ (z)S 1 ψ(z) -trace(S 1 )∆ 2 ≤ 0 (10) ψ (z)S 2 (ψ(z) + z) ≤ 0 (11) Lemma 2.
φ(y c ) T (φ(y c ) + D c ψ( Cx) + Gx) ≤ 0 (12)
for any diagonal positive matrix T ∈ R m×m if x ∈ S(u 0 ) with

S(u 0 ) = x ∈R n ; ∀i ∈ {1, ..., m}, -u 0(i) ≤ (K (i) -G (i) )x ≤ u 0(i) (13) 

Stability analysis results

Conditions for stability analysis purpose of system ( 8) or ( 9) can be proposed based on the use of Lemmas 1 and 2. Proposition 1. Given A c , B c , C c , D c , E c . Assume there exist a symmetric positive definite matrix P ∈ R 2n×2n , three diagonal positive definite matrices

S 1 , S 2 ∈ R p×p , T ∈ R m×m , a matrix G ∈ R m×2n and positive scalars τ 1 , τ 2 , η such that 1   He(P A) + (τ 1 -τ 2 )P P B ψ -C S 2 P B φ -G T -S 1 -2S 2 -D c T -2T   < 0 ( 14 
)
1 In symmetric matrices, the notation stands for symmetric blocks and He(A) = A + A.

P K

(i) -G (i) ηu 2 0(i) ≥ 0 i = 1, ..., m. (15) η∆ 2 trace(S 1 ) -τ 1 η + τ 2 ≤ 0 (16) η ≤ 1 (17)
Then by defining the sets

A 0 = E(P, η) := {x ∈ R 2n : x P x ≤ η -1 } (18a) A ∞ = E(P ) := {x ∈ R 2n : x P x ≤ 1} (18b) it follows that for any x(0) ∈ A 0 \ A ∞ the closed-loop trajectories converge to A ∞ .
The proof is postponed in Section 8.

If matrix A p is Hurwitz, the global asymptotic stability of system ( 8) can be addressed through the following corollary Corollary 1. Given A c , B c , C c , D c , E c . Assume there exist a symmetric positive definite matrix P ∈ R 2n×2n , three diagonal positive definite matrices S 1 , S 2 ∈ R p×p , T ∈ R m×m and a positive scalar τ 1 such that

  He(P A) + τ 1 P P B ψ -C S 2 P B φ -K T -S 1 -2S 2 -D c T -2T   < 0 (19) ∆ 2 trace(S 1 ) -τ 1 ≤ 0 (20) Then for any x(0) ∈ R 2n \ A ∞ with A ∞ defined as in (18b), the closed-loop trajectories converge toward A ∞ .
Proof: It readily follows the proof of Proposition 1 by considering Lemma 1 in global case, that is by setting G = K. Then, in this case, one wants to prove that V < -α(V (x)), α being a K-function, for any x such that x P x ≥ 1.

Control design results

To address Problem 1 and to remove products between decision variables, in particular those involving A c , B c , C c , D c , E c and P , we use similar congruence transformations as proposed in [START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF]]. The following result, for which the proof is postponed in Section 8 can then be stated. Proposition 2. If there exist two symmetric positive definite matrices X, Y ∈ R n×n , three diagonal positive definite matrices

S 1 , S 2 ∈ R p×p , S ∈ R m×m , matrices W ∈ R n×n , R ∈ R n×m , L ∈ R n×p , M ∈ R m×n , N ∈ R m×p , Z ∈ R m×n , Z 1 ∈ R m×n
and positive scalars τ 1 , τ 2 , η such that relations ( 16) and ( 17) hold and

  He(H 1 ) + (τ 1 -τ 2 )H 2 H 3 H 4 -S 1 -2S 2 -N -2S   < 0 (21) H 2 H 5 ηu 2 0(i) ≥ 0 i = 1, ..., m (22) 
where

H 1 = A p Y + B p M A p + B p N C p W XA p + LC p , H 2 = Y I X , H 3 = B p N -Y C p S 2 L -C p S 2 , H 4 = B p S -Z R -Z 1 , H 5 = M (i) -Z (i) C p N (i) -Z 1(i) , i = 1, ..., m. (23) 
Then

E c = U -1 (R -XB p S)S -1 D c = N C c = (M -N C p Y )(V ) -1 B c = U -1 (L -XB p N ) A c = U -1 (W -XA p Y -XB p M -U B c C p Y )(V ) -1 and A 0 = E(P, η), A ∞ = E(P ), where U, V ∈ R n are any nonsingular matrices such that U V = I -XY and P = X U U X with X = U (X -Y -1 ) -1 )U ( 24 
)
are solution to problem 1. Remark 3. Relations of Proposition 2 yet involve some products between decision variables, in particular in the terms (τ 21), or still ητ 1 , η trace(S 1 ) in ( 16). Nevertheless, by fixing τ 1 , τ 2 , τ 3 , S 1 and S 2 , the relations become linear. They can be, for example, selected by performing a grid search over a certain interval.

1 -τ 2 )H 2 , Y C f S 2 in (
A similar result can be provided in the global context of Corollary 1. Corollary 2. Suppose there exist two symmetric positive definite matrices X, Y ∈ R n×n , three diagonal positive definite matrices

S 1 , S 2 ∈ R p×p , S ∈ R m×m , matrices W ∈ R n×n , R ∈ R n×m , L ∈ R n×p , M ∈ R m×n , N ∈ R m×p
and a positive scalar τ 1 such that relation (20) holds and

  He(H 1 ) + τ 1 H 2 H 3 H4 -S 1 -2S 2 -N -2S   < 0 (25) H 2 ≥ 0 (26)
where H 1 , H 2 and H 3 are defined in ( 23) and

H4 = B p S -M R -C p N . Then A c , B c , C c , D c , E c , A ∞
as defined in Proposition 2 are solution to Problem 1 in the global case.

CONTROL OF ANALGESIA

Controller synthesis strategy

Due to the particular form of system (5), we apply now the results of Section 4 considering both conditions in local and global contexts. Actually, global conditions may be used since matrices A f and A s are Hurwitz. However, local conditions may allow to perform faster time response of the closed-loop system. Hence, we propose the following controller design procedure 1) Consider system (5a), (5c) in which the slow part is neglected, and some performance objective β for the time response through the additional condition:

He(H 1 ) + 2βH 2 < 0 (27) Proposition 2 or Corollary 2 may then be applied to design a dynamic output feedback controller of the form (7), solution to Problem 1, where A p , B p , C p are replaced by A f , B f , C f . In this case n = 2, m = p = 1. If conditions of Corollary 2 are infeasible, one can reduce β or switch to the local context and apply Proposition 2.

2) Keeping the controller designed at the above step, the closed-loop system constituted from x f , x c and x s is defined by

ż = Az + B φ φ(Kz + D c ψ(Cz)) + B ψ ψ(Cz) y = q(Cz) (28) 
with z = (x f , x c , x s ) ∈ R 6 and

A = A f + B f D c C f B f C c A f s B c C f A c 0 A sf 0 A s , B ψ = B f D c B c 0 B φ = B f E c 0 , K = [ D c C f C c 0 ] , C = [ C 0 0 ]
Proposition 1 or Corollary 1 is then applied to system (28) by replacing A, B φ , B ψ , C by A, B φ , B ψ , C. If the global conditions of Corollary 1 are found infeasible, one can then switch to the local context and apply Proposition 1.

Optimization issues

The optimization criterion depends on whether one is doing analysis or synthesis, in a local or a global context. In a local context, one seeks both to maximize A 0 and minimize A ∞ . In a global context, since A ∞ = R n , the objective is only minimizing A 0 . The optimization criterion is then given as follow:

(1) Analysis

• Minimize (η -trace(P )) (local).

• Minimize -trace(P ) (global). ( 2) Synthesis [START_REF] Zabi | Dynamic output-feedback controller design for analgesia guided by the pupil size variation[END_REF][START_REF] Ferrante | Stabilization of continuous-time linear systems subject to input quantization[END_REF])

• Minimize (η -trace(X + Y )) (local).

• Minimize -trace(X + Y ) (global).

Alternatively, in the local case, instead of minimizing A ∞ , on can impose that it should be included in a set

P = {x ∈ R 6 : | a k x| ≤ 1} with a k = [0 c 4 /∆ 0 1×2 0 1×2 ]. The inclusion of A ∞ in P reads P a k 1 ≥ 0 (29)
and the optimization criterion becomes to minimize η, which avoids to manage the compromise between both ellipses. Note that in P, one gets q(C f x f ) = C f x f , i.e., ψ = 0.

Numerical evaluation

Let us consider a nominal patient, man, 53 years old, 77 kg, 177 cm and fix the quantization error at ∆ = 5. The time response performance is set as β = 1, such as to get the closed-loop system as twice faster than the open loop system dynamics. With such an objective, we could not Figure 1 shows the estimated sets A 0 and A ∞ issued from the synthesis and analysis procedures, which exhibit the pertinence of our algorithm. Note that, in the global case where A 0 correspond ton R 2n , the physical constraints associated to the analgesia positive system guarantee that x p ≥ -x e as soon as u ≥ -u e . The stripes in Figure 1 correspond to this physical border from where some trajectories are initiated. Fig. 1. A 0 (plain) and A ∞ (dashed) sets projected on the fast system, synthesis (green), analysis (red) and convergent trajectories.

Figures 2 and3 show the evolution of the DoA error and the saturated controller output for this patient. The closed-loop control is applied directly on the patient in a fully awake state. Figure 2 shows that the time response needed to achieve the target interval [-∆, +∆] is less than 3 minutes which is more than twice faster compared to the open loop.
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CONCLUSION

This paper proposed an approach for the synthesis of a dynamic output feedback controller for analgesia taking into account the output quantization, the input saturation with the improvement of the time response performance. The decomposition of the model into a fast and a slow systems allows to focus the control design on the fast subsystem. In order to get the performance wanted, the synthesis of the controller was done locally and in a next step the analysis showed that the results are valid in a global context. This work lets place for future works. In particular, in order to be closer to real-life anesthesia, one could manipulate a sampled output in the control scheme.

Consider, for the closed-loop system (8), the quadratic Lyapunov function V (x) = x P x, P = P > 0. One has then to prove that V (x) < -α(V (x)), α being a Kfunction, for any x such that x P x ≤ η -1 and x P x ≥ 1. In other words, we have to verify by using the S-procedure the following inequality:

V (x) + τ 1 (x P x -1) + τ 2 (η -1 -x P x) < -α(V (x)) (30) Furthermore, by using Lemmas 1 and 2, a sufficient condition to verify (30) is that V (x) + τ 1 x P x -τ 2 x P x -ψ S 1 ψ -2ψ S 1 (ψ + Cx) -2φ T (φ + D c ψ + Gx) < -α(V (x)) (31) and trace(S 1 )∆ 2 -τ 1 + τ 2 η -1 < 0 (32) as long as E(P, η) ⊆ S(u 0 ), which is ensured by satisfying inequality (15). The inequality (31) can be written as ζ Lζ < -α(V (x)), with ζ = [x ψ φ ] and L is the lefthand side matrix of inequality ( 14). Hence, the satisfaction of inequalities ( 14) and ( 16) means that it exists a small enough positive scalar α such that V (x) + τ 1 (x P x -1) -τ 2 (x P x -η -1 ) ≤ -αx x, which in turns gives (30). Moreover, one has to prove that the set A 0 = E(P, η) contains the set A ∞ = E(P ) which holds if η ≤ 1. 22) is obtained by pre-and post-multiplying (15) diag{J, I} and diag{J , I} and by noting J(K (i) -G (i) ) = H 5 .

Proof of

  are respectively the state, the input and the output of the controller. Denoting the dead-zone element φ(y c ) = sat(y c ) -y c ∈ R m , E c φ(y c ) is a static anti-windup term introduced to alleviate undesirable effects caused by the actuator saturation[START_REF] Zaccarian | Modern Anti-windup Synthesis: Control Augmentation for Actuator Saturation: Control Augmentation for Actuator Saturation[END_REF] Teel (2011), Tarbouriech et al. (2011)]. Matrices A c , B c , C c , D c and E c are constant matrices of appropriate dimensions to be designed. The interconnection between the plant (6) and the controller (7) by setting u = y c , u c = y, yields the following closedloop system: ẋp

  obtain a feasible solution to the global synthesis problem given in Corollary 2. Then considering the local controller design problem set in Proposition 2 and setting τ 1 = 2, τ 2 = 0.002, η = 0.2, δ = 1 and S 2 = 0.002, yields the following controllerA c B c C c D c =

  Fig. 2. DoA error in closed and open loop.

  Proposition 2: Considering the matrix P defined in (24), one can define nonsingular matrix as U and V are assumed to be nonsingular. Then, by pre-and post-multiplying condition (14) by diag{J, I, S, I} and diag{J , I, S, I}, withS = T -1 , one gets   He(JP AJ ) + (τ 1 -τ 2 )JP J B ψ P J -S 2 CJ -S 1 -2S 2 SB φ P J -GJ -G 1 , Z = G 1 Y + G 2 V , R = XB p S + U E c S. with G = [G 1 G 2 ]. It turns out, after calculations, that JP AJ = H 1 , JP J = H 2 , JP B ψ -JC S 2 = H3 and JP B φ -JK = H 4 . Then, one obtains relation (21). Relation (