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Abstract: This paper proposes a strategy for the design of a dynamic output-feedback controller
for analgesia taking into account the saturation of the input and the quantization of the output.
Besides that, the design of this controller takes into account the multiple time scale dynamics in
the analgesia model, accelerates the fast dynamics and establishes global stability. The control
design is cast into a two-step strategy. The controller is first designed for the fast system and
the stability analysis is then performed on the full model to evaluate domains of safe behavior.
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1. INTRODUCTION

Although an adequate hypnotic state (anesthesia) prevents
the patient from recalling noxious stimulus, the pain they
cause is still felt and viewed via some variations on haemo-
dynamics, respiration, hormonal secretion, etc. This can
be extenuated by analgesic drugs which compromise the
sympathetic and parasympathetic nervous system. Based
on those phenomena, several studies have been concerned
with the selection of reliable indicators. [De Jonckheere
et al. (2012)], [Balocchi et al. (2005)] proposed an evalua-
tion of the depth of analgesia by analyzing the heart rate
variability and introduced the ANI (for Autonomic Ner-
vous Index). Blood pressure, grimaces, electrocardiogram
(EEG), the difference of entropy and other indicators were
also proposed in [Gentilini et al. (2002)], [Mathews et al.
(2007)], [Huiku et al. (2007)], [Ushiyama et al. (2008)]. In
this work we use the response of the pupil as an indicator,
being shown that its area variates according to nociceptive
stimulation [Mazerolles (2009)]. Actually, [Barvais et al.
(2003)] showed that the pupil response to a painful stim-
ulus is a better indicator of the effect site remifentanil
concentration than haemodynamics or BIS measurements.

Control of analgesia has been mainly devoted to hypnosis,
including the presence of saturation and associated windup
effects [Zhusubaliyev et al. (2014)], [van Heusden et al.
(2014)]. A few works have concerned analgesia using PID-
based feedback control strategies [Soltesz et al. (2011)]
or model predictive control [Gentilini et al. (2002)]. As
many biological systems, the closed-loop controller design
of analgesia should consider some physical aspects such
as patient variability, positivity constraints, output mea-
surement availability, ... Among these aspects, an impor-
tant peculiarity is the presence of multiple time scales
in the dynamics. Indeed, the dynamics of the evolution
of the drug in the patient’s body is usually described

by a pharmacokinetic model with multiple time scales.
We reformulate the problem by separating fast and slow
dynamics in order to reduce the control design problem
to that one of the fast subsystem (the DoA being directly
linked to the states of the fast subsystem) before to analyze
the global system in a second step. Moreover, one considers
a pupillary sensor as the output of the controlled system.
It is a quantized signal corresponding to the smallest mag-
nitude of a stimulus that induces a significant dilatation
of the pupil. The global goal is then to control the DoA
in an interval fixed a priori, taking into account directly
the magnitude limitation of the control signal, that is the
limitation of the rate of drug addition (in the current case
the remifentanil) intravenously. Therefore, the framework
considered here is that one of quantized [Tarbouriech and
Gouaisbaut (2012)] and saturated systems [Tarbouriech
et al. (2011)].

The main contribution of the paper resides in the approach
proposed for the design of a dynamic output-feedback
controller of the same order as the fast subsystem through
matrix inequalities conditions taking into account the
quantized nature of the output and the saturation of the
input.

2. MODELLING ASPECTS

2.1 The patient model

The model used to describe the circulation of drugs in a pa-
tient’s body, known as Pharmacokinetic/Pharmacodynamic
(PK/PD) model, is based on a classical three-compartment
model [Derendorf and Meibohm (1999)]. It describes the
distribution of the drugs between three compartments
(blood, muscles and fat). The effect of drugs on the patient
is expressed throughout the effect site, which represents
the action of drugs on the brain and is related to the



concentration in the central compartment through a first
order dynamic [Beck (2015)].

In open loop, each constant input rate of the analgesic
drug corresponds to a unique equilibrium point [Zabi et al.
(2015)]. Thus the following model represents the patient
with any desired equilibrium point (ue, xe) taken as origin

ẋan(t) = Aanxan(t) +Banuan(t) (1)

with

Aan =

−(k10 + k12 + a13) k21 k31 0
k12 −k21 0 0
k13 0 −k31 0

ke0/V1 0 0 −ke0


Ban = [ 1 0 0 0 ]

′

where, with respect to (ue, xe), xan = [x1 x2 x3 x4]′,
x1(t), x2(t), x3(t) are the error of masses in grams of
the analgesic in the different compartments, x4(t) is the
error of the effect site concentration and uan(t) is the
error of the infusion rate in g/min of the analgesic. Among
various existing models, which express the model param-
eters as functions of the patient characteristics (weight,
age, height, ...), we choose for the case of analgesic drugs
the model of Minto [Minto et al. (1997)] to define typical
patients for numerical simulations.

Remark 1. The constraints of positivity on the real system
are as follows

xan ≥ −xe ; uan ≥ −ue (2)

2.2 The quantized measurement

The pupil size variation in reaction to an electrical pulse
of given intensity is inversely proportional to the effect
site concentration of drug. In [Zabi et al. (2016)], a second
order state space model is proposed to estimate the pupil
size variation in % with respect to an electrical stimulation
and function of the site-effect drug concentration. The
smallest magnitude of stimuli that induces a significant
pupil size variation (the DoA) can then be expressed
by the output function y = h(x4) [Zabi et al. (2016)].
Actually, this information is only available as a multiple
of a constant since it is obtained by means of successive
increasing impulsive pulses. By linearizing at the desired
equilibrium (ue, xe), one can express the output equation

y = q(Cxan) (3)

with C = [ 0 0 0 c4 ]. q(.) is the uniform quantizer, having
as quantization error bound ∆ > 0, defined by [Ferrante
et al. (2015)]

q∆ :

Rp → ∆Zp

z 7→ ∆sign(z)

⌊
|z|
∆

⌋
(4)

2.3 Multiplicity of dynamics

Regardless of patient under consideration, the dynamics
of metabolism and circulation of the analgesic drug in the
central compartment and at the site effect is ten times
faster than in muscles, and even a hundred times faster
than in fat. In this case, if one treats the synthesis problem

directly for system (1), the synthesis controller would
result in accelerating slow dynamics, while the output
that we want to control is influenced mainly by the fast
dynamics.

Thus, in the following, thanks to the particular structure of
the system, we split it into two subsystems, namely a fast
subsystem (central compartment (blood), effect site), on
which acts the control input, and a slow subsystem (mus-
cles and fat compartments) whose dynamics are influenced
only by the state of the fast subsystem.

Let us denote xf = [x1 x4]′ ∈ R2 the fast state vector,
xs = [x2 x3]′ ∈ R2 the slow state vector and u = uan.
System (1) can be written as follows:

ẋf = Afxf +Bfsat(u) +Afsxs (5a)

ẋs = Asfxf +Asxs (5b)

yf = q(Cfxf ) (5c)

3. GENERAL PROBLEM FORMULATION

Consider the following generic continuous-time linear sys-
tem with quantized sensor and saturated input

ẋp = Apxp +Bpsat(u)

y = q(Cpxp)
(6)

where xp ∈ Rn, u ∈ Rm, y ∈ Rp are respectively the state,
the input and the measured output of the plant. q(.) is the
uniform quantizer defined in (4) and sat(.) denotes the
vector-valued saturation function defined as sat(u(i)) =
sign(u(i))min{u0(i), |u(i)|}, i = 1, . . . ,m, u0(i) > 0 being
the level of saturation of the i−th component of u. We
want to design the following n−order dynamic output-
feedback stabilizing controller for (6):

ẋc = Acxc +Bcuc + Ecφ(yc)
yc = Ccxc +Dcuc

(7)

where xc ∈ Rn, uc ∈ Rp, yc ∈ Rm are respectively
the state, the input and the output of the controller.
Denoting the dead-zone element φ(yc) = sat(yc) − yc ∈
Rm, Ecφ(yc) is a static anti-windup term introduced
to alleviate undesirable effects caused by the actuator
saturation [Zaccarian and Teel (2011), Tarbouriech et al.
(2011)]. Matrices Ac, Bc, Cc, Dc and Ec are constant
matrices of appropriate dimensions to be designed. The
interconnection between the plant (6) and the controller
(7) by setting u = yc, uc = y, yields the following closed-
loop system:

ẋp = Apxp +Bpsat(Ccxc +Dcq(Cpxp))

ẋc = Acxc +Bcq(Cpxp) + Ecφ(Ccxc +Dcq(Cpxp))
(8)

By defining the augmented vector state x = [x′p x
′
c]
′ ∈ R2n

and by defining ψ(z) = q(z) − z, the closed-loop system
(8) reads:

ẋ = Ax+Bφφ(Kx+Dcψ(Cx)) +Bψψ(Cx) (9)

with

A =

[
Ap +BpDcCp BpCc

BcCp Ac

]
; Bφ =

[
Bp
Ec

]
K = [DcCp Cc ] ; C = [Cp 0 ] ; Bψ =

[
BpDc

Bc

]
.

Remark 2. Due to the presence of the uniform quantizer,
there is no guarantee on the existence of solutions to the



discontinuous equation (8) in the classical sense [Cortes
(2008)]. To simplify the development of the result below,
we suppose that the Caratheodory solutions to system
(8) exist as in [Tarbouriech and Gouaisbaut (2012)]. More
general solutions as Krasovskii solutions could be studied
by using differential inclusions [Ferrante et al. (2015)].

The problem we intend to solve can then be formulated as
follows:

Problem 1. Design Ac, Bc, Cc, Dc, Ec and characterize
two sets A0, A∞ such that for every initial conditions x(0)
belonging to A0 \A∞, the resulting trajectories of system
(9) converge toward A∞.

Depending on the stability property of the open-loop
matrix Ap, due to the presence of the input saturation,
Problem 1 can be turned in a global context. In this case,
the set A0 corresponds to the whole state space R2n and
A∞ is a global attractor for system (9).

4. MATHEMATICAL PRELIMINARIES

4.1 Preliminary lemmas

The closed-loop system (9) contains nested non-linearities
since φ depends on ψ. To solve Problem 1, we exploit the
sector conditions both for ψ as presented in [Ferrante et al.
(2015)] and for φ as given in [Tarbouriech et al. (2006)].
Let us recall these conditions.

Lemma 1. [Ferrante et al. (2015)] Let z ∈ Rp, and let
S1, S2 ∈ Rp×p be diagonal positive definite matrices. Then
the pair (ψ(z), z) satisfies the following conditions:

ψ′(z)S1ψ(z)− trace(S1)∆2 ≤ 0 (10)

ψ′(z)S2(ψ(z) + z) ≤ 0 (11)

Lemma 2. [Tarbouriech et al. (2006)] Considering a ma-
trix G ∈ Rm×2n, the non-linearity φ(yc) satisfies

φ(yc)
′T (φ(yc) +Dcψ(C̃x) +Gx) ≤ 0 (12)

for any diagonal positive matrix T ∈ Rm×m if x ∈ S(u0)
with

S(u0) =

{
x ∈Rn;∀i ∈ {1, ...,m},
− u0(i) ≤ (K(i) −G(i))x ≤ u0(i)

}
(13)

4.2 Stability analysis results

Conditions for stability analysis purpose of system (8) or
(9) can be proposed based on the use of Lemmas 1 and 2.

Proposition 1. Given Ac, Bc, Cc, Dc, Ec. Assume there ex-
ist a symmetric positive definite matrix P ∈ R2n×2n, three
diagonal positive definite matrices S1, S2 ∈ Rp×p, T ∈
Rm×m, a matrix G ∈ Rm×2n and positive scalars τ1, τ2, η
such that 1

He(PA) + (τ1 − τ2)P PBψ−C ′S2 PBφ−G′T
? −S1 − 2S2 −D′cT
? ? −2T

 < 0

(14)

1 In symmetric matrices, the notation ? stands for symmetric blocks
and He(A) = A′ +A.

[
P K ′(i) −G

′
(i)

? ηu2
0(i)

]
≥ 0 i = 1, ...,m. (15)

η∆2trace(S1)− τ1η + τ2 ≤ 0 (16)

η ≤ 1 (17)

Then by defining the sets

A0 = E(P, η) := {x ∈ R2n : x′Px ≤ η−1} (18a)

A∞ = E(P ) := {x ∈ R2n : x′Px ≤ 1} (18b)

it follows that for any x(0) ∈ A0 \ A∞ the closed-loop
trajectories converge to A∞.

The proof is postponed in Section 8.

If matrix Ap is Hurwitz, the global asymptotic stability
of system (8) can be addressed through the following
corollary

Corollary 1. Given Ac, Bc, Cc, Dc, Ec. Assume there exist
a symmetric positive definite matrix P ∈ R2n×2n, three
diagonal positive definite matrices S1, S2 ∈ Rp×p, T ∈
Rm×m and a positive scalar τ1 such that

He(PA) + τ1P PBψ−C ′S2 PBφ−K ′T
? −S1 − 2S2 −D′cT
? ? −2T

 < 0 (19)

∆2trace(S1)− τ1 ≤ 0 (20)

Then for any x(0) ∈ R2n \ A∞ with A∞ defined as in
(18b), the closed-loop trajectories converge toward A∞.

Proof: It readily follows the proof of Proposition 1 by
considering Lemma 1 in global case, that is by setting
G = K. Then, in this case, one wants to prove that
V̇ < −α(V (x)), α being a K-function, for any x such that
x′Px ≥ 1.

4.3 Control design results

To address Problem 1 and to remove products between
decision variables, in particular those involving Ac, Bc, Cc,
Dc, Ec and P , we use similar congruence transformations
as proposed in [Scherer et al. (1997)]. The following result,
for which the proof is postponed in Section 8 can then be
stated.

Proposition 2. If there exist two symmetric positive defi-
nite matricesX,Y ∈ Rn×n, three diagonal positive definite
matrices S1, S2 ∈ Rp×p, S ∈ Rm×m, matrices W ∈ Rn×n,
R ∈ Rn×m, L ∈ Rn×p, M ∈ Rm×n, N ∈ Rm×p, Z ∈
Rm×n, Z1 ∈ Rm×n and positive scalars τ1, τ2, η such that
relations (16) and (17) hold and

He(H1) + (τ1 − τ2)H2 H3 H4

? −S1 − 2S2 −N ′
? ? −2S

 < 0 (21)

[
H2 H5

? ηu2
0(i)

]
≥ 0 i = 1, ...,m (22)

where



H1 =

[
ApY +BpM Ap +BpNCp

W XAp + LCp

]
, H2 =

[
Y I
? X

]
,

H3 =

[
BpN − Y C ′pS2

L− C ′pS2

]
, H4 =

[
BpS − Z ′
R− Z ′1

]
,

H5 =

[
M(i)

′ − Z(i)
′

C ′pN(i)
′ − Z1(i)

′

]
, i = 1, ...,m.

(23)

Then

Ec = U−1(R−XBpS)S−1

Dc = N

Cc = (M −NCpY )(V ′)−1

Bc = U−1(L−XBpN)

Ac = U−1(W −XApY −XBpM − UBcCpY )(V ′)−1

and A0 = E(P, η), A∞ = E(P ), where U, V ∈ Rn are any
nonsingular matrices such that UV ′ = I −XY and

P =

[
X U

U ′ X̂

]
with X̂ = U ′(X − Y −1)−1)U (24)

are solution to problem 1.

Remark 3. Relations of Proposition 2 yet involve some
products between decision variables, in particular in the
terms (τ1 − τ2)H2, Y C ′fS2 in (21), or still ητ1, η trace(S1)

in (16). Nevertheless, by fixing τ1, τ2, τ3, S1 and S2, the
relations become linear. They can be, for example, selected
by performing a grid search over a certain interval.

A similar result can be provided in the global context of
Corollary 1.

Corollary 2. Suppose there exist two symmetric positive
definite matrices X,Y ∈ Rn×n, three diagonal positive
definite matrices S1, S2 ∈ Rp×p, S ∈ Rm×m, matrices
W ∈ Rn×n, R ∈ Rn×m, L ∈ Rn×p, M ∈ Rm×n, N ∈ Rm×p
and a positive scalar τ1 such that relation (20) holds andHe(H1) + τ1H2 H3 H̃4

? −S1 − 2S2 −N ′
? ? −2S

 < 0 (25)

H2 ≥ 0 (26)

where H1, H2 and H3 are defined in (23) and

H̃4 =

[
BpS −M ′
R− C ′pN ′

]
.

Then Ac, Bc, Cc, Dc, Ec,A∞ as defined in Proposition 2
are solution to Problem 1 in the global case.

5. CONTROL OF ANALGESIA

5.1 Controller synthesis strategy

Due to the particular form of system (5), we apply now the
results of Section 4 considering both conditions in local
and global contexts. Actually, global conditions may be
used since matrices Af and As are Hurwitz. However, local
conditions may allow to perform faster time response of
the closed-loop system. Hence, we propose the following
controller design procedure

1) Consider system (5a), (5c) in which the slow
part is neglected, and some performance objective β for
the time response through the additional condition:

He(H1) + 2βH2 < 0 (27)

Proposition 2 or Corollary 2 may then be applied to design
a dynamic output feedback controller of the form (7),
solution to Problem 1, where Ap, Bp, Cp are replaced by
Af , Bf , Cf . In this case n = 2,m = p = 1. If conditions of
Corollary 2 are infeasible, one can reduce β or switch to
the local context and apply Proposition 2.

2) Keeping the controller designed at the above
step, the closed-loop system constituted from xf , xc and
xs is defined by

ż = Az + Bφφ(Kz +Dcψ(Cz)) + Bψψ(Cz)

y = q(Cz)
(28)

with z = (xf , xc, xs) ∈ R6 and

A =

[
Af +BfDcCf BfCc Afs

BcCf Ac 0
Asf 0 As

]
,Bψ =

[
BfDc

Bc
0

]
Bφ =

[
B′f E

′
c 0
]′
,K = [DcCf Cc 0 ] , C = [C 0 0 ]

Proposition 1 or Corollary 1 is then applied to system (28)
by replacing A,Bφ, Bψ, C by A, Bφ, Bψ, C. If the global
conditions of Corollary 1 are found infeasible, one can then
switch to the local context and apply Proposition 1.

5.2 Optimization issues

The optimization criterion depends on whether one is
doing analysis or synthesis, in a local or a global context.
In a local context, one seeks both to maximize A0 and
minimize A∞. In a global context, since A∞ = Rn,
the objective is only minimizing A0. The optimization
criterion is then given as follow:

(1) Analysis
• Minimize (η − trace(P )) (local).
• Minimize −trace(P ) (global).

(2) Synthesis (Zabi et al. (2016), Ferrante et al. (2015))
• Minimize (η − trace(X + Y )) (local).
• Minimize −trace(X + Y ) (global).

Alternatively, in the local case, instead of minimizing A∞,
on can impose that it should be included in a set

P = {x ∈ R6 : | a′kx| ≤ 1}
with a′k = [0 c4/∆ 01×2 01×2]. The inclusion of A∞ in P
reads [

P a′k
? 1

]
≥ 0 (29)

and the optimization criterion becomes to minimize η,
which avoids to manage the compromise between both
ellipses. Note that in P, one gets q(Cfxf ) = Cfxf , i.e.,
ψ = 0.

5.3 Numerical evaluation

Let us consider a nominal patient, man, 53 years old, 77
kg, 177 cm and fix the quantization error at ∆ = 5. The
time response performance is set as β = 1, such as to get
the closed-loop system as twice faster than the open loop
system dynamics. With such an objective, we could not



obtain a feasible solution to the global synthesis problem
given in Corollary 2. Then considering the local controller
design problem set in Proposition 2 and setting τ1 = 2,
τ2 = 0.002, η = 0.2, δ = 1 and S2 = 0.002, yields the
following controller[

Ac Bc
Cc Dc

]
=

−4.75 −19.36
0.09 −1.92

1.10
−0.11

3.94 16.48 −1.32

, Ec=

[
−1
0

]
Figure 1 shows the estimated sets A0 and A∞ issued from
the synthesis and analysis procedures, which exhibit the
pertinence of our algorithm. Note that, in the global case
where A0 correspond ton R2n, the physical constraints
associated to the analgesia positive system guarantee that
xp ≥ −xe as soon as u ≥ −ue. The stripes in Figure
1 correspond to this physical border from where some
trajectories are initiated.
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Figures 2 and 3 show the evolution of the DoA error and
the saturated controller output for this patient.
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Fig. 2. DoA error in closed and open loop.

The closed-loop control is applied directly on the patient in
a fully awake state. Figure 2 shows that the time response
needed to achieve the target interval [−∆, +∆] is less than
3 minutes which is more than twice faster compared to the
open loop.
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7. CONCLUSION

This paper proposed an approach for the synthesis of a
dynamic output feedback controller for analgesia taking
into account the output quantization, the input saturation
with the improvement of the time response performance.
The decomposition of the model into a fast and a slow
systems allows to focus the control design on the fast
subsystem. In order to get the performance wanted, the
synthesis of the controller was done locally and in a next
step the analysis showed that the results are valid in a
global context. This work lets place for future works. In
particular, in order to be closer to real-life anesthesia, one
could manipulate a sampled output in the control scheme.
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8. ANNEX

Proof of Proposition 1 : One has to prove that the trajec-
tories of the closed-loop system (9) initialized in E(P, η) \
E(P ) converge to E(P ).

Consider, for the closed-loop system (8), the quadratic
Lyapunov function V (x) = x′Px, P = P ′ > 0. One

has then to prove that V̇ (x) < −α(V (x)), α being a K-
function, for any x such that x′Px ≤ η−1 and x′Px ≥ 1.
In other words, we have to verify by using the S-procedure
the following inequality:

V̇ (x) + τ1(x′Px− 1) + τ2(η−1 − x′Px) < −α(V (x)) (30)

Furthermore, by using Lemmas 1 and 2, a sufficient
condition to verify (30) is that

V̇ (x) + τ1x
′Px− τ2x′Px− ψ′S1ψ

−2ψ′S1(ψ + Cx)− 2φ′T (φ+Dcψ +Gx) < −α(V (x))
(31)

and
trace(S1)∆2 − τ1 + τ2η

−1 < 0 (32)
as long as E(P, η) ⊆ S(u0), which is ensured by satisfying
inequality (15). The inequality (31) can be written as
ζ ′Lζ < −α(V (x)), with ζ = [x′ ψ′ φ′]′ and L is the left-
hand side matrix of inequality (14). Hence, the satisfaction
of inequalities (14) and (16) means that it exists a small

enough positive scalar α such that V̇ (x) + τ1(x′Px −
1) − τ2(x′Px − η−1) ≤ −αx′x, which in turns gives (30).
Moreover, one has to prove that the set A0 = E(P, η)
contains the set A∞ = E(P ) which holds if η ≤ 1. �

Proof of Proposition 2: Considering the matrix P defined
in (24), one can define

J =

[
Y V
I 0

]
(33)

which is a nonsingular matrix as U and V are assumed
to be nonsingular. Then, by pre- and post-multiplying
condition (14) by diag{J, I, S, I} and diag{J′, I, S, I}, with
S = T−1, one getsHe(JPAJ′) + (τ1 − τ2)JPJ′ ? ?

Bψ
′PJ′ − S2CJ′ −S1 − 2S2 ?

SBφ
′PJ′ −GJ′ −Dc −2S


Let us consider the following changes of variables[

W L
M N

]
=

[
XApY 0
? 0

]
+

[
U XBp
0 I

] [
Ac Bc
Cc Dc

] [
V ′ 0
CpY I

]
,

Z1 = G1, Z = G1Y +G2V
′, R = XBpS + UEcS.

with G = [G1 G2]. It turns out, after calculations, that
JPAJ′ = H1, JPJ′ = H2, JPBψ − JC ′S2 = H3 and
JPBφ − JK ′ = H4. Then, one obtains relation (21).
Relation (22) is obtained by pre- and post-multiplying
(15) diag{J, I} and diag{J′, I} and by noting J(K ′(i) −
G′(i)) = H5. �


