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Set theory and invariant sets are the key ingredients used in this paper to address the control problem of general anesthesia. The paper is dedicated to adapt such tools in order to validate the multiphase control law used in practice from the induction phase corresponding to the administration of an open-loop bolus dose to the maintenance phase of the depth of hypnosis during the surgical operation.

INTRODUCTION

General anesthesia plays an important role to provide surgeons adequate conditions for operation and avoid discomfort or pain for the patient while reducing the negative post-operation effects of anesthesia. In medical practice, anesthesia typically considers the administering of hypnotic and analgesic drugs monitored by the anesthetist by examining reliable indicators, as in particular the bispectral index (BIS). Although dosing guidelines are provided taking into account the inter-patient pharmacokinetic and pharmacodynamic variability, automated closed-loop control (in particular of Propofol addition) using the BIS has shown to be of great help not only to increase the control efficiency and but also to preserve the vigilance of anesthetists for potential critical events [START_REF] Dumont | Closed-loop control of anesthesia -a review[END_REF], [START_REF] Hemmerling | Automated anesthesia[END_REF]). Several approaches have been proposed in the literature, from simple PI control to more complex adaptive control strategies [START_REF] Bailey | Drug dosing control in clinical pharmacology[END_REF], [START_REF] Lemos | Robust control of maintenance-phase anesthesia[END_REF], [START_REF] Beck | Modeling and control of pharmacodynamics[END_REF], [START_REF] Zabi | New approach for the control of anesthesia based on dynamics decoupling[END_REF], [START_REF] Ionescu | Robust predictive control strategy applied for propofol dosing using bis as a controlled variable during anesthesia[END_REF]) and some of them have been validated in clinical experiments [START_REF] Van Heusden | Design and clinical evaluation of robust pid control of propofol anesthesia in children[END_REF], [START_REF] Absalom | Closed-loop control of propofol anaesthesia using bispectral index TM : performance assessment in patients receiving computer-controlled propofol and manually controlled remifentanil infusions for minor surgery[END_REF]).

Such closed-loop control strategies apply from the initial induction phase [START_REF] Nascu | Advanced model-based control studies for the induction and maintenance of intravenous anaesthesia[END_REF], [START_REF] Caruso | Control of drug administration during monitored anesthesia care[END_REF]) but, generally, do not mimic the medical practice involving the administering of an initial bolus dose of drug prior to switching to the closed-loop control phase. Then, the original contribution of the paper pertains to mathematically validate the medical strategy, which reveals to be a multi-phase control law fitting the complete process from the induction phase corresponding to the administering of an open-loop bolus dose to the maintenance phase of the depth of hypnosis during the surgical operation. The control methods that we are going to design are based on set theory and in particular on invariant sets (see, for example, [START_REF] Blanchini | Set-Theoretic Methods in Control[END_REF]), which allow ensuring that the evolution of a system can be indefinitely maintained within a given set of the state space. Actually, tools provided by invariance are particularly suited to manage the constraints, which result from the objective to maintain a given depth of hypnosis (constraint on the state or the output of the system) and to take into account the limitations of drug addition.

The paper is organized as follows. In Section 2, the pharmacokinetic and pharmacodynamic model of hypnosis by Propofol intravenous addition, together with the problem we intend to solve, are presented. The maintenance phase control design is addressed in Section 3.2, which guarantees that the depth of hypnosis is confined in an invariant set during the surgical operation phase. The induction phase control is then studied in Section 3.3 to steer the system trajectories toward the maintenance invariant set. Finally, the overall control scheme is summarized in Section 3.4. Numerical application of the control scheme is provided in Section 4. Concluding remarks end the paper in Section 5.

Notation. The notation throughout the paper is standard. The scalars A i j , i = 1, . . . , I, j = 1, . . . , J, denote the elements of matrix A ∈ R I×J . Similarly, the scalars B i , i = 1, . . . , I, denote the elements of the vector B ∈ R I . A (i) denotes the i th row of matrix A. For two sets S 1 and S 2 , S 1 \S 2 denotes the set S 1 deprived of S 2 .

DYNAMICAL MODEL OF THE HYPNOSIS DYNAMICS

Continuous-time model

The dynamical model used to describe the drug effect during the patient hypnosis by Propofol intravenous addition is a standard pharmacokinetic/pharmacodynamic model [START_REF] Minto | Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. i. model development[END_REF][START_REF] Schnider | The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers[END_REF], [START_REF] Bailey | Drug dosing control in clinical pharmacology[END_REF]). It is based on the three-compartment model expressing the evolution of the drug concentrations in the blood (x b ), in the muscles (x m ) and in the fat (x f ) of the anesthetized patient, associated with the evolution of the effect-site compartment (the brain) concentration, denoted by the variable C e f f , considered as a quantifier of the Propofol effect on the patient depth of hypnosis. The dynamics of C e f f is modeled as a first order system with the Propofol concentration in the blood as the input, that is Ċe

f f = -k 1 C e f f + k 2 x b ,
with k 1 and k 2 positive scalars. Thus, provided that the drug concentration in the blood is stable at x b,e , the value of C e f f converges exponentially to x b,e k 2 /k 1 . Then the overall anesthesia dynamics is given, in continuous-time, by: ẋ

= A c x + B c u (1) with A c =    -k 1 k 2 0 0 0-a bm -a b f -d b a mb a f b 0 a bm -a mb 0 0 a b f 0-a f b   , B c =    0 b 0 0    (2) and x = [ C e f f x b x m x f ] T ∈ R 4 and u ∈ [0, u M ]
is the drug diffusion rate in mg/min. The numerical values determining the system dynamics are taken from the literature on anesthesia, see [START_REF] Schnider | The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers[END_REF], [START_REF] Bailey | Drug dosing control in clinical pharmacology[END_REF]: • for male: LBM = 1.1weight -128 weight 2 height 2 ,

d b = Cl 1 V 1 , a bm = Cl 2 V 1 , a b f = Cl 3 V 1 , b = 1 a mb = Cl 2 V 2 , a f b = Cl 3 V 3 , k 1 = 0.456, k 2 = k 1 V 1 where V 1 = 4.
• for female: LBM = 1.07weight -148 weight 2 height 2 .

It has to be noticed that, as experimental tests prove, the dynamics of C e f f and x b are much faster than those concerning x m and x f . The control objective is to steer the value of C e f f to an optimal value, related to the desired patient sleep depth, or at least to close values, as fast as possible and then to maintain such a value along the intervention.

The effect-site concentration is related to the value of the bispectral index BIS, which is an indicator of the degree of sleep of the patient, through a nonlinear function [START_REF] Bailey | Drug dosing control in clinical pharmacology[END_REF]). The BIS value takes values between 0 and 100, with 100 denoting full wakefulness, and it is a nonlinear function of C e f f . It is in practice a sigmoidal function of the effect-site C e f f given by

BIS(C e f f ) = BIS 0 1 - C γ e f f C γ e f f + EC γ 50
(3) with EC 50 = 5.6 µg/ml concentration at half maximal effect and γ = 2.39 [START_REF] Bailey | Drug dosing control in clinical pharmacology[END_REF]).

Equilibria

The desired equilibrium is the one such that BIS = 50 and with associated C e f f (50) = EC 50 solution to equation (3). The value of the drug concentration in the blood that maintains the desired value of EC 50 is then

x b,e = k 1 k 2 EC 50 ,
and at the equilibrium, one has the unique solution to

u e x m,e x f ,e = - b a mb a f b 0 -a mb 0 0 0 -a f b -1 -a b a bm a b f x b,e (4) 
allowing to define x e = EC 50 x b,e x m,e x f ,e T and u e .

Discrete-time model

The control approach based on set theory used in this paper manipulates discrete-time models. Then, in the following, we consider the discretized version of the overall dynamic model (1), denoted as follows:

x + = Ax + Bu = e A c t s x + t s 0 e A c (t s -τ) B c dτ u, (5) 
with sampling time t s .

Remark 1. In the continuous-time model ( 1), the evolution of drug in the annex compartments (muscles and fat) does not directly act on the evolution of the drug in the effect-site compartment. This is not formally the case in the discrete-time model ( 5). Furthermore, one can verify numerically that the direct effect of x 3 and x 4 on x 1 is much smaller than that one of x 2 , being A 13 and A 14 of the order of 10 -5 .

The control objective can be summarized as follows.

Problem 1. Determine a control strategy to control the induction and maintenance phases of the depth of hypnosis during surgical operation. In other words, characterize a control law u(x) for system (5) composed of two successive steps as: (i) induction phase, which corresponds to (i-1) a high constant value of drug addition and (i-2) a zero addition of drug; and (ii) a control loop for the maintenance phase.

Throughout the paper, the first step related to induction phase is denoted by u i , whereas the second one related to the maintenance one is denoted by u r .

CONTROL DESIGN

In order to simplify the presentation of the control design based on the use of set theory techniques, we start with the maintenance phase control design.

Preliminaries on invariant set

Denoting with X ⊆ R n and U ∈ R m the state and input constraint sets respectively, we recall here the standard definition of invariant sets for generic nonlinear systems. Definition 1. [START_REF] Blanchini | Set-Theoretic Methods in Control[END_REF]). The compact convex set Ω ⊆ R n with 0 ∈ int(Ω) is an invariant set for the system

x + = f (x) if Ω ⊆ X and f (x) ∈ Ω, for all x ∈ Ω. It is a control invariant set for the controlled system x + = f (x, u) if Ω ⊆ X and for every x ∈ Ω there exists u(x) ∈ U such that f (x, u(x)) ∈ Ω.
Then, every trajectory starting in an invariant set Ω remains in it. If Ω is a control invariant set then there exists a closedloop admissible control that makes Ω invariant. In particular, the maximal (control) invariant set in X is the set of all the initial conditions whose trajectories do not violate the constraints represented by X (and U), see [START_REF] Blanchini | Set-Theoretic Methods in Control[END_REF].

Maintenance phase control design

The constraints on the state and on the input are defined by the sets

X = {x ∈ R 4 : C e f f (60) ≤ x 1 ≤ C e f f (40)}, U = {u ∈ R : u m ≤ u ≤ u M }, (6) 
with u m = 0.

Linear feedback control and nominal invariant set

The first step of the control design consists in computing the maximal invariant set in the space (x 1 , x 2 ) given a linear feedback control and neglecting the effect of the states x 3 and x 4 on x 2 . The latter assumption is not very reasonable, since it would mean to neglect the perturbation induced by the fat and muscle on the blood drug concentration. On the other hand, the dynamics of x 3 and x 4 are much slower than those of x 1 and x 2 . This fact will be used, in Section 3.2.2, to infer and compensate their perturbing effect. For the moment, then, we consider the error system

z + = A z z + B z v, (7) 
where z = (x 1 -EC 50 , x 2x b,e ), i.e. it is the projection on the subspace (x 1 , x 2 ) of the vector xx e ; the input is v = uu e and A z ∈ R 2×2 and B z ∈ R 2 are the blocks of A and B associated to the subsystem (x 1 , x 2 ) of system (5). From ( 6), the constraints on z and v are

Z = {z ∈ R 2 : C e f f (60) -C e f f (50) ≤ z 1 , z 1 ≤ C e f f (40) -C e f f (50)}, V = {v ∈ R : u m -u e ≤ v ≤ u M -u e }. (8) 
A local state feedback control law v = K z z, K z ∈ R 1×2 , can be computed for stabilizing the system (7). The maximal invariant set Ω z contained in Z ∩ K z for the system (7) in closed loop with control v = K z z can then be computed. Then, Ω z is exactly the set of initial states of the system z + = (A z + B z K z )z whose related trajectories stay in Ω z without violating the input constraints v = K z z ∈ V . Remark 2. The states x 1 and x 2 are assumed to be measured to realize v = K z z. If only x 1 is available, by means of a measure of the BIS, then either x 2 is reconstructed through an observer (being the system (7) observable) or a feedback of the state x 1 only has to be designed. Notice that, the matrix A z being Schur-Cohn, a stabilizing local output feedback control can always be designed.

Then, by controlling system (5) with the feedback control

u n (k) = K(x -x e ) + u e = [K z 0 0](x -x e ) + u e , (9) 
with K ∈ R 1×4 , one assures that the state (x 1 , x 2 ) remains in

Ω = Ω z + (EC 50 , x b,e
) in absence of the perturbing effect of x 3 and x 4 . Nevertheless, since such an effect is not negligible in general (at least during the first minutes, when the state values are far from the equilibrium), the property of invariance might be violated unless a perturbation compensation is applied.

Linear feedback with perturbation compensation

The next step consists in designing a simple compensation of the effect of x 3 and x 4 on x 1 and x 2 , or equivalently, on z 1 and z 2 . From the numerical values given below it can be noticed that A 13 and A 14 are much smaller than A 23 and A 24 and then the direct effect of x 3 , x 4 on z 1 could be assumed negligible for the moment. Moreover the value of B 1 is much smaller than that one of B 2 . Then, we just consider the effect of x 3 and x 4 on z 2 that is

d = d(x 3 , x 4 ) = A 23 (x 3 -x m,e ) + A 24 (x 4 -x f ,e ) (10) bounded in D = {d ∈ R : -A 23 x m,e -A 24 x f ,e ≤ d ≤ 0}.
The bound d ≤ 0 comes from the implicit assumption that the drug concentrations in the muscles and in the fat are never higher than the equilibrium concentration. This assumption, reasonable in general, is always satisfied during a large initial time interval, since x 3 and x 4 start at 0 and slowly increase, due to their dynamics, during a long a time interval.

By defining w 3 = x 3x m,e and w 4 = x 4x f ,e , from (10) it follows that

d(k) = A 23 w 3 (k) + A 24 w 4 (k), (11) 
Therefore, by applying to system (5) the control

u c (k) = [K z 0 0](x(k) -x e ) + u e - d(k) B 2 , (12) 
from ( 7) we can compute the dynamics of z 1 and z 2 as follows:

z 1 (k + 1) = C e f f (k + 1) -EC 50 = A 11 C e f f (k) + A 12 x 2 (k) + A 13 x 3 (k) + A 14 x 4 (k) +B 1 K z z(k) + B 1 u e - B 1 B 2 d(k) -EC 50 = A z + B z K z (1) z(k) +(A 13 - B 1 B 2 A 23 )w 3 (k) + (A 14 - B 1 B 2 A 24 )w 4 (k). (13) 
and

z 2 (k + 1) = x 2 (k + 1) -x b,e = A 22 x 2 (k) + A 23 x 3 (k) + A 24 x 4 (k) +B 2 K z z(k) + B 2 u e -d(k) -x b,e = A 22 z 2 (k) + B 2 K z z(k) = A z + B z K z (2) z(k), (14) 
where the third equality holds from the equilibrium condition (4).

At this step, we consider the following two assumptions: 13), related to the effects of x 3 and x 4 on z 1 , are negligible.

Assumption 1. The terms (A 13 - B 1 B 2 A 23 )w 3 (k) and (A 14 - B 1 B 2 A 24 )w 4 (k) in (
Assumption 1 is reasonable since

A 13 - B 1 B 2 A 23 and A 14 - B 1 B 2 A 24
are related to direct effect of x 3 and x 4 on x 1 , which is null in the continuous-time model ( 1)-( 2). Assumption 2. x 3 (k) < x m,e and x 4 (k) < x f ,e for all k ∈ N.

Assumption 2 can be supposed to hold during the whole anesthesia period, in practice. In fact, the objective of the control being to steer the whole state at x e , the states x 1 and x 2 , whose dynamics are much more rapid than those of x 3 and x 4 , would be driven relatively fast around the equilibrium values of EC 50 and x b,e , by every reasonable control strategy. The drug, then would diffuse slowly in the muscles and the fat, until they also reach the equilibrium. However, due to their slow dynamics, the increasing of x 3 and x 4 would last for a long period before their values could be close to x m,e and x f ,e .

Suppose that u M is large enough and the control smooth enough to avoid excessive excitation of the control action due to surgi-cal perturbations (as intubation, incision). Then, the following proposition can be stated. Proposition 1. Suppose that Assumptions 1 and 2 hold. The system (5) in closed loop with control ( 12) is exponentially stable and does not violate the constraints x ∈ X and u ≥ 0 if the initial state belongs to Ω.

Proof. Since the set Ω z is an invariant set for the system

z + = (A z + B z K z )z, thus, from Assumption 1, if z(0) ∈ Ω z then z(k) ∈ Ω z and K z z(k) ∈ V for all k ∈ N. This implies, first, that x(k) ∈ Ω for all k ∈ N if x(0) ∈ Ω. Moreover, since K z z(k) ∈ V , then K z z(k) ≥ u m -u e = -u e and equivalently [K z 0 0](x(k) - x e ) + u e ≥ 0. Since d(k) < 0 for all k ∈ N, from Assumption 2, then u c (k) > [K z 0 0](x(k) -x e ) + u e ≥ 0 for k ∈ N. 2 
The main problem with the corrected control u c defined in ( 12) is that it is a feedback of the current values of the drug concentrations in the muscles and in the fat that are not available. One solution could be the design of an observer to reconstruct their value on-line. Nevertheless, due to the fact that the dynamics of x 3 and x 4 are consistently slower than those of x 1 and x 2 , then the value of d(k), as defined in (11), can be reasonably considered to be constant between two sampling instants. From (11), by manipulating the dynamics of x 2 , one can write:

d(k -1) = x 2 (k) -A 22 x 2 (k -1) -B 2 u(k -1) -A 23 x m,e -A 24 x f ,e . (15) 
Thus, the control law to be applied during the maintenance phase results in

u r (k) = [K z 0 0](x(k) -x e ) + u e - d(k -1) B 2 , ( 16 
)
where d(k -1) is defined in ( 15) with u(k -1) = u r (k -1). The linear control u r defined in ( 16) is such that, in practice, the set Ω is invariant for system (5) and then, once attained, the state does not leave Ω, despite the perturbation. This implies clearly the constraints satisfaction, i.e. the BIS is maintained between 40 and 60. Moreover the state converges to the equilibrium point x e and then the BIS to 50. The drawback of this control law is that it is effective once the state is inside Ω, while there is not assurance that its application is efficient outside Ω.

One possibility to deal with this problem is to design a simple control law to be applied outside Ω that drives the state in Ω.

Induction phase control

One of the objective is to induce the hypnosis as fast as possible, that means to steer the state within the band BIS ∈ [40,60].

Then, the first part of the control, related to the induction phase, is assumed to be a constant control, with u as high as possible but such that the BIS never reaches values lower than 40.

For this aim we compute the maximal control invariant, denoted Ω c , for the nominal system (7) contained in the band on [40,60]. These points, in fact, are those that can be stirred towards the equilibrium x e by means of an appropriate control input, nonlinear in general, without violating the constraints. Note that the maximal control invariant set Ω c is always greater or equal than the invariant set related to any control law.

z 1 ∈ [C e f f (60) -EC 50 , C e f f (40) -EC 50 ] corresponding to the band on BIS ∈
Let us neglect once more the perturbation due to x 3 and x 4 , for the moment, and recall that the aim of the first part of the induction phase control is to steer as fast as possible x 1 in the band [C e f f (60), C e f f (40)] assuring that no constraint violation eventually occurs. Then, the first part of the induction phase control should be the higher constant value of u, which we denote by u 0 , such that the trajectory reaches Ω 0 = Ω c + (EC 50 , x b,e ). By construction, a state is in the control invariant if and only if it can be maintained indefinitely by an appropriate admissible control. The value of u 0 can be obtained from the shape of Ω 0 , solving

(u 0 , T 0 ) = arg min u,T T s.t. [1 0 0 0] • T 0 e A c (T -τ) B c dτ • u = C e f f (60), [0 1 0 0] • T 0 e A c (T -τ) B c dτ • u = x M 2 , (17) 
with x M 2 = max{x 2 : (x 1 , x 2 ) ∈ Ω 0 }. Now,
what is left to design is a simple control law to be applied once the state is in Ω 0 to steer it in Ω, where the control u r can be applied efficiently. To do that, consider Figure 1, that shows the successors of the vertices of Ω c , by using the data provided in Section 4. Indeed for every vertex p, in red is represented the segment that joins the vertex with A z p, and in black the points A z p + V , with V as in (8), that is the set of all the states in the space z reachable in one step from p. As a test for the control invariance, notice that every vertex can reach the set Ω c through an extremal control action. Moreover, and more interestingly, notice that for states with high value of z 2 , the input to be applied is the smaller one, i.e. v = -u e and equivalently u = u m = 0 , while for states with negative values of z 2 , a large value of u close to u M has to be applied. This is reasonable, since if one wants x 2 to decrease, then the drug deliverance should be stopped, while to increase it the most, u M should be applied. Therefore, the input to apply for x 1 in the band [C e f f (60), C e f f (40)] when x 2 is above the set Ω is u = 0, while it is u = u M if x 2 is below Ω. Summarizing, the following induction phase control has to be applied to make the states (x 1 , x 2 ) reach Ω rapidly avoiding constraints violations:

u i (x) = u o , if x 1 < C e f f (60), 0, if x 2 > x b,e , (x 1 , x 2 ) ∈ Ω 0 \Ω, u M , if x 2 < x b,e , (x 1 , x 2 ) ∈ Ω 0 \Ω, (18) 
recalling that Ω = Ω z +(EC 50 , x b,e ) and Ω 0 = Ω c +(EC 50 , x b,e ),

where Ω z and Ω c are the maximal invariant and control invari-ant sets in the band x 1 ∈ [C e f f (60), C e f f (40)] for the system (7). These sets are depicted in Figure 2.

Finally, we consider the effect of the disturbance due to x 3 and x 4 in the induction phase. Such a disturbance has a beneficial effect when x 1 is in the band [C e f f (60), C e f f (40)] and x 2 > x b,e , which is equivalent to z ∈ Z and z 2 > 0. In fact, since in practice x 3 < x m,e and x 4 < x f ,e , i.e. w 3 < 0 and w 4 < 0, then d is always negative. In particular d starts from its minimum, -A 23 x m,e -A 24 x f ,e , and increases converging to 0, thus d is very small during the first minutes. Therefore, after the first part of the induction phase, if the value of x 2 is high, the effect of d combines with u i in (18) to drive the state (x 1 , x 2 ) in Ω. On the other side, i.e. if z ∈ Z and z 2 < 0, the effect of d is opposite to u i , but the higher margin on the control (u M is the active bound at low values of x 2 ) can easily compensate d. This is because low values of the drug in the blood can be increased quickly by the drug injection.

Overall control scheme

By combining the induction phase control u i defined in ( 18) and the maintenance control law u r defined in ( 16), a solution to Problem 1 can be stated. Indeed, the multi-phase control law, which mimics the medical practice can be defined as follows:

u(x) = u i (x), if (x 1 , x 2 ) / ∈ Ω, u r (x), if (x 1 , x 2 ) ∈ Ω, (19) 
with Ω = Ω z + (EC 50 , x b,e ).

APPLICATION

The application of the control law ( 19) has been simulated for a given patient (female) of 46 years-old, 54 kg and 163 cm. The discretized system (5) obtained with a sampling time of 6 seconds is given by the following data: (20)

The equilibrium corresponding to a target BIS of 50 is then given by: u e = 9.3008[mg/min], x b,e = 23.912[mg],

x m,e = 121.167[mg],

x f ,e = 1332.8 [mg]. The constraints on the state and the bounds on the input are given by the sets

X = {x ∈ R 4 : 4.7262 ≤ x 1 ≤ 6.6354}, U = {u ∈ R : 0 ≤ u ≤ 100}, (21) 
The constraints on z and v are

Z = {z ∈ R 2 : -0.8738 ≤ z 1 ≤ 1.0354}, V = {v ∈ R : -9.3008 ≤ v ≤ 90.6992}, (22) 
and the effect of x 3 and x 4 on z 2 is bounded in

D = {d ∈ R : -1.2243 ≤ d ≤ 0}.
Then, one can check that the terms A 13 -B 1 B 2 A 23 and A 14 -

B 1 B 2
A 24 , are small:

A 13 - B 1 B 2 A 23 = 3.9357 • 10 -8 , A 14 - B 1 B 2 A 24 = 1.0729 • 10 -10 , (23) 
which validate Assumption 1.

The local state feedback control gain K z ∈ R 1×2 is a LQR control computed with parameters Q = diag[15, 1] and R = 1.8. These parameters have been selected after a series of choices to improve the size of the related invariant set.

The overall control u (19) is compared with the control laws u n and u r , as defined in ( 9) and ( 12) applied as soon as x ∈ X.

In Figure 2, the trajectory generated by the control law ( 19) is depicted in black. It can be seen that, after the first part of the induction phase, the state enters the band X (but not in Ω), and then the control is switched off, to make the trajectory drop toward Ω. Once in Ω, the control u r is applied that makes Ω invariant, thus preventing any constraints violation, and steers the state at x e . In blue, the trajectory obtained by using u c (that is an improved version of u n ) when x enters X, is plotted. Notice that this control law, tailored for the states in Ω is not able to prevent the violation of x 2 ≤ 6.6354 and has good behavior only once x ∈ Ω. In red, it is drawn the trajectory obtained by applying u n after entering X. Notice that the presence of the disturbance has beneficial effects in the first instants, indeed, the state drops quickly in the safe region Ω. Nevertheless, not being Ω invariant in presence of perturbation, the trajectory leaves eventually the set and does not converge to the desired x e until the perturbation effect is disappeared. 19), in black, u n as in (9) applied when x ∈ X, in red, and u r as in (16) applied when x ∈ X, in blue. The invariant set Ω is in mild blue and the control invariant set Ω c in light blue.

It is finally worth remarking that, since, as noticed above, the disturbance has beneficial effect during the first instants, the black trajectory reaches Ω although the state is not initially in Ω 0 once in X. This has an important implication: the perturbation effect during the critical instants just after the first part of the induction phase can be neglected with no risk. The control invariant set is still invariant and bigger regions of the state could be aimed at to reach Ω. Thus, the control invariant set is only a bit conservative, there is not risk of constraint violation if considered as first aim of the induction phase.

Figure 3 represents the evolution of the value of the variable BIS and the value of the blood concentration along the trajectory generated by the control law u defined in (19). Then, the BIS is stirred to the desired value of 50 while avoiding the constraints violations. Also the moment of the switch between 0 and u r can be remarked along the trajectory in the band 40 -60. Finally, Figure 4 illustrates the closed-loop time evolution of the state and input u generated with (19). It illustrates both the efficiency of the proposed control strategy and the slow evolution of the state x 3 and x 4 , which will attain their equilibrium value after a long time. 

CONCLUSION

A control strategy based on set theory and invariant sets has been proposed to control the induction and maintenance phases of the depth of hypnosis during surgical operation. The control is formed of a succession of two main steps. First a high constant value of drug addition is used, followed by a zero addition of drug, and second, the control loop is closed when accessing the maintenance phase. The instants of switch between the phases are related to the trajectory entering in the maximal control invariant set and the maximal invariant set.

The proposed control strategy results to mimic the heuristic induction and maintenance phase control commonly adopted by anesthetists.

The extension to parametric uncertain models, to deal with the inter-and intra-patient variability, is one objective of our ongoing research. Moreover, the fact to take into account the surgical perturbation (intubation, incision) and a certain level of performance thanks to the multi-phase control law proposed is also an interesting direction for future work.
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 2 Fig. 2. Comparison between u as (19), in black, u n as in (9) applied when x ∈ X, in red, and u r as in (16) applied when x ∈ X, in blue. The invariant set Ω is in mild blue and the control invariant set Ω c in light blue.

Fig. 3 .

 3 Fig. 3. BIS and x 2 state-space evolution generated with u as (19).

Fig. 4 .

 4 Fig. 4. Time-evolution of the hypnosis induction and maintenance. Top: State evolution in closed-loop. x 1 in blue; x 2 in red; x 3 in yellow and x 4 in purple -Bottom: the input.
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