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Abstract: Set theory and invariant sets are the key ingredients used in this paper to address the control
problem of general anesthesia. The paper is dedicated to adapt such tools in order to validate the multi-
phase control law used in practice from the induction phase corresponding to the administration of an
open-loop bolus dose to the maintenance phase of the depth of hypnosis during the surgical operation.
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1. INTRODUCTION

General anesthesia plays an important role to provide surgeons
adequate conditions for operation and avoid discomfort or
pain for the patient while reducing the negative post-operation
effects of anesthesia. In medical practice, anesthesia typically
considers the administering of hypnotic and analgesic drugs
monitored by the anesthetist by examining reliable indicators,
as in particular the bispectral index (BIS). Although dosing
guidelines are provided taking into account the inter-patient
pharmacokinetic and pharmacodynamic variability, automated
closed-loop control (in particular of Propofol addition) using
the BIS has shown to be of great help not only to increase
the control efficiency and but also to preserve the vigilance
of anesthetists for potential critical events (Dumont (2012),
Hemmerling (2009)). Several approaches have been proposed
in the literature, from simple PI control to more complex
adaptive control strategies (Bailey and Haddad (2005), Lemos
et al. (2014), Beck (2015), Zabi et al. (2015), Ionescu et al.
(2008)) and some of them have been validated in clinical
experiments (van Heusden et al. (2014), Absalom and Kenny
(2003)).

Such closed-loop control strategies apply from the initial in-
duction phase (Nascu et al. (2015), Caruso et al. (2009)) but,
generally, do not mimic the medical practice involving the ad-
ministering of an initial bolus dose of drug prior to switching to
the closed-loop control phase. Then, the original contribution
of the paper pertains to mathematically validate the medical
strategy, which reveals to be a multi-phase control law fitting
the complete process from the induction phase corresponding
to the administering of an open-loop bolus dose to the main-
tenance phase of the depth of hypnosis during the surgical
operation. The control methods that we are going to design are
based on set theory and in particular on invariant sets (see, for
example, Blanchini and Miani (2008)), which allow ensuring
that the evolution of a system can be indefinitely maintained
within a given set of the state space. Actually, tools provided
by invariance are particularly suited to manage the constraints,

which result from the objective to maintain a given depth of
hypnosis (constraint on the state or the output of the system)
and to take into account the limitations of drug addition.

The paper is organized as follows. In Section 2, the pharmacoki-
netic and pharmacodynamic model of hypnosis by Propofol
intravenous addition, together with the problem we intend to
solve, are presented. The maintenance phase control design is
addressed in Section 3.2, which guarantees that the depth of
hypnosis is confined in an invariant set during the surgical oper-
ation phase. The induction phase control is then studied in Sec-
tion 3.3 to steer the system trajectories toward the maintenance
invariant set. Finally, the overall control scheme is summarized
in Section 3.4. Numerical application of the control scheme is
provided in Section 4. Concluding remarks end the paper in
Section 5.

Notation. The notation throughout the paper is standard. The
scalars Ai j, i = 1, . . . , I, j = 1, . . . ,J, denote the elements of
matrix A ∈ RI×J . Similarly, the scalars Bi, i = 1, . . . , I, denote
the elements of the vector B ∈ RI . A(i) denotes the ith row of
matrix A. For two sets S1 and S2, S1\S2 denotes the set S1
deprived of S2.

2. DYNAMICAL MODEL OF THE HYPNOSIS
DYNAMICS

2.1 Continuous-time model

The dynamical model used to describe the drug effect during
the patient hypnosis by Propofol intravenous addition is a stan-
dard pharmacokinetic/pharmacodynamic model (Minto et al.
(1997), Schnider et al. (1998), Bailey and Haddad (2005)). It is
based on the three-compartment model expressing the evolution
of the drug concentrations in the blood (xb), in the muscles (xm)
and in the fat (x f ) of the anesthetized patient, associated with
the evolution of the effect-site compartment (the brain) concen-
tration, denoted by the variable Ce f f , considered as a quantifier
of the Propofol effect on the patient depth of hypnosis. The



dynamics of Ce f f is modeled as a first order system with the
Propofol concentration in the blood as the input, that is

Ċe f f =−k1Ce f f + k2xb,

with k1 and k2 positive scalars. Thus, provided that the drug
concentration in the blood is stable at xb,e, the value of Ce f f
converges exponentially to xb,ek2/k1. Then the overall anesthe-
sia dynamics is given, in continuous-time, by:

ẋ = Acx+Bcu (1)
with

Ac =

−k1 k2 0 0
0−abm−ab f −db amb a f b
0 abm −amb 0
0 ab f 0−a f b

, Bc =

 0
b
0
0

 (2)

and x = [Ce f f xb xm x f ]
T ∈ R4 and u ∈ [0, uM] is the drug

diffusion rate in mg/min. The numerical values determining the
system dynamics are taken from the literature on anesthesia, see
Schnider et al. (1998), Bailey and Haddad (2005):

db =
Cl1
V1

, abm =
Cl2
V1

, ab f =
Cl3
V1

, b = 1

amb =
Cl2
V2

, a f b =
Cl3
V3

, k1 = 0.456, k2 =
k1

V1
where

V1 = 4.27, V2 = 18.9−0.391(age−53), V3 = 238,
Cl1 = 1.89+0.0456(weight−77)−0.0681(LBM−59)

+0.0264(height−177),
Cl2 = 1.29−0.024(age−53),
Cl3 = 0.836,

with lean body mass (LBM)

• for male: LBM = 1.1weight−128
weight2

height2
,

• for female: LBM = 1.07weight−148
weight2

height2
.

It has to be noticed that, as experimental tests prove, the
dynamics of Ce f f and xb are much faster than those concerning
xm and x f . The control objective is to steer the value of Ce f f to
an optimal value, related to the desired patient sleep depth, or
at least to close values, as fast as possible and then to maintain
such a value along the intervention.

The effect-site concentration is related to the value of the
bispectral index BIS, which is an indicator of the degree of
sleep of the patient, through a nonlinear function (Bailey and
Haddad (2005)). The BIS value takes values between 0 and
100, with 100 denoting full wakefulness, and it is a nonlinear
function of Ce f f . It is in practice a sigmoidal function of the
effect-site Ce f f given by

BIS(Ce f f ) = BIS0

(
1−

Cγ

e f f

Cγ

e f f +ECγ

50

)
(3)

with EC50 = 5.6 µg/ml concentration at half maximal effect and
γ = 2.39 (Bailey and Haddad (2005)).

2.2 Equilibria

The desired equilibrium is the one such that BIS = 50 and with
associated Ce f f (50) = EC50 solution to equation (3). The value
of the drug concentration in the blood that maintains the desired
value of EC50 is then

xb,e =
k1

k2
EC50,

and at the equilibrium, one has the unique solution to[ ue
xm,e
x f ,e

]
=−

[ b amb a f b
0 −amb 0
0 0 −a f b

]−1[−ab
abm
ab f

]
xb,e (4)

allowing to define xe =
[
EC50 xb,e xm,e x f ,e

]T and ue.

2.3 Discrete-time model

The control approach based on set theory used in this paper
manipulates discrete-time models. Then, in the following, we
consider the discretized version of the overall dynamic model
(1), denoted as follows:

x+ = Ax+Bu = eActsx+
ts∫

0

eAc(ts−τ)Bcdτ u, (5)

with sampling time ts.
Remark 1. In the continuous-time model (1), the evolution of
drug in the annex compartments (muscles and fat) does not
directly act on the evolution of the drug in the effect-site
compartment. This is not formally the case in the discrete-time
model (5). Furthermore, one can verify numerically that the
direct effect of x3 and x4 on x1 is much smaller than that one
of x2, being A13 and A14 of the order of 10−5.

The control objective can be summarized as follows.
Problem 1. Determine a control strategy to control the induc-
tion and maintenance phases of the depth of hypnosis during
surgical operation. In other words, characterize a control law
u(x) for system (5) composed of two successive steps as: (i)
induction phase, which corresponds to (i-1) a high constant
value of drug addition and (i-2) a zero addition of drug; and
(ii) a control loop for the maintenance phase.

Throughout the paper, the first step related to induction phase
is denoted by ui, whereas the second one related to the mainte-
nance one is denoted by ur.

3. CONTROL DESIGN

In order to simplify the presentation of the control design
based on the use of set theory techniques, we start with the
maintenance phase control design.

3.1 Preliminaries on invariant set

Denoting with X ⊆ Rn and U ∈ Rm the state and input con-
straint sets respectively, we recall here the standard definition
of invariant sets for generic nonlinear systems.
Definition 1. (Blanchini and Miani (2008)). The compact con-
vex set Ω⊆Rn with 0∈ int(Ω) is an invariant set for the system
x+ = f (x) if Ω ⊆ X and f (x) ∈ Ω, for all x ∈ Ω. It is a control
invariant set for the controlled system x+ = f (x,u) if Ω⊆X and
for every x ∈Ω there exists u(x) ∈U such that f (x,u(x)) ∈Ω.

Then, every trajectory starting in an invariant set Ω remains
in it. If Ω is a control invariant set then there exists a closed-
loop admissible control that makes Ω invariant. In particular,
the maximal (control) invariant set in X is the set of all the initial
conditions whose trajectories do not violate the constraints
represented by X (and U), see Blanchini and Miani (2008).



3.2 Maintenance phase control design

The constraints on the state and on the input are defined by the
sets

X = {x ∈ R4 : Ce f f (60)≤ x1 ≤Ce f f (40)},
U = {u ∈ R : um ≤ u≤ uM},

(6)

with um = 0.

Linear feedback control and nominal invariant set

The first step of the control design consists in computing
the maximal invariant set in the space (x1,x2) given a linear
feedback control and neglecting the effect of the states x3 and
x4 on x2. The latter assumption is not very reasonable, since it
would mean to neglect the perturbation induced by the fat and
muscle on the blood drug concentration. On the other hand, the
dynamics of x3 and x4 are much slower than those of x1 and x2.
This fact will be used, in Section 3.2.2, to infer and compensate
their perturbing effect. For the moment, then, we consider the
error system

z+ = Azz+Bzv, (7)
where z = (x1−EC50, x2− xb,e), i.e. it is the projection on the
subspace (x1,x2) of the vector x−xe; the input is v = u−ue and
Az ∈ R2×2 and Bz ∈ R2 are the blocks of A and B associated to
the subsystem (x1,x2) of system (5). From (6), the constraints
on z and v are

Z = {z ∈ R2 : Ce f f (60)−Ce f f (50)≤ z1,
z1 ≤Ce f f (40)−Ce f f (50)},

V = {v ∈ R : um−ue ≤ v≤ uM−ue}.
(8)

A local state feedback control law v = Kzz, Kz ∈ R1×2, can be
computed for stabilizing the system (7). The maximal invariant
set Ωz contained in Z ∩ KzV for the system (7) in closed
loop with control v = Kzz can then be computed. Then, Ωz is
exactly the set of initial states of the system z+ = (Az +BzKz)z
whose related trajectories stay in Ωz without violating the input
constraints v = Kzz ∈V .
Remark 2. The states x1 and x2 are assumed to be measured to
realize v = Kzz. If only x1 is available, by means of a measure
of the BIS, then either x2 is reconstructed through an observer
(being the system (7) observable) or a feedback of the state x1
only has to be designed. Notice that, the matrix Az being Schur-
Cohn, a stabilizing local output feedback control can always be
designed.

Then, by controlling system (5) with the feedback control
un(k) = K(x− xe)+ue = [Kz 0 0](x− xe)+ue, (9)

with K ∈ R1×4, one assures that the state (x1,x2) remains in
Ω = Ωz +(EC50, xb,e) in absence of the perturbing effect of x3
and x4. Nevertheless, since such an effect is not negligible in
general (at least during the first minutes, when the state values
are far from the equilibrium), the property of invariance might
be violated unless a perturbation compensation is applied.

Linear feedback with perturbation compensation

The next step consists in designing a simple compensation of
the effect of x3 and x4 on x1 and x2, or equivalently, on z1 and
z2. From the numerical values given below it can be noticed
that A13 and A14 are much smaller than A23 and A24 and then
the direct effect of x3, x4 on z1 could be assumed negligible for

the moment. Moreover the value of B1 is much smaller than that
one of B2. Then, we just consider the effect of x3 and x4 on z2
that is

d = d(x3,x4) = A23(x3− xm,e)+A24(x4− x f ,e) (10)
bounded in

D = {d ∈ R : −A23xm,e−A24x f ,e ≤ d ≤ 0}.
The bound d ≤ 0 comes from the implicit assumption that the
drug concentrations in the muscles and in the fat are never
higher than the equilibrium concentration. This assumption,
reasonable in general, is always satisfied during a large initial
time interval, since x3 and x4 start at 0 and slowly increase, due
to their dynamics, during a long a time interval.

By defining w3 = x3 − xm,e and w4 = x4 − x f ,e, from (10) it
follows that

d(k) = A23w3(k)+A24w4(k), (11)
Therefore, by applying to system (5) the control

uc(k) = [Kz 0 0](x(k)− xe)+ue−
d(k)
B2

, (12)

from (7) we can compute the dynamics of z1 and z2 as follows:
z1(k+1) =Ce f f (k+1)−EC50

= A11Ce f f (k)+A12x2(k)+A13x3(k)+A14x4(k)

+B1Kzz(k)+B1ue−
B1

B2
d(k)−EC50

=
(
Az +BzKz

)
(1)z(k)

+(A13−
B1

B2
A23)w3(k)+(A14−

B1

B2
A24)w4(k).

(13)

and
z2(k+1) = x2(k+1)− xb,e

= A22x2(k)+A23x3(k)+A24x4(k)
+B2Kzz(k)+B2ue−d(k)− xb,e

= A22z2(k)+B2Kzz(k)
=
(
Az +BzKz

)
(2)z(k),

(14)

where the third equality holds from the equilibrium condi-
tion (4).

At this step, we consider the following two assumptions:

Assumption 1. The terms (A13 −
B1

B2
A23)w3(k) and (A14 −

B1

B2
A24)w4(k) in (13), related to the effects of x3 and x4 on z1,

are negligible.

Assumption 1 is reasonable since A13−
B1

B2
A23 and A14−

B1

B2
A24

are related to direct effect of x3 and x4 on x1, which is null in
the continuous-time model (1)-(2).
Assumption 2. x3(k)< xm,e and x4(k)< x f ,e for all k ∈ N.

Assumption 2 can be supposed to hold during the whole anes-
thesia period, in practice. In fact, the objective of the control
being to steer the whole state at xe, the states x1 and x2, whose
dynamics are much more rapid than those of x3 and x4, would
be driven relatively fast around the equilibrium values of EC50
and xb,e, by every reasonable control strategy. The drug, then
would diffuse slowly in the muscles and the fat, until they also
reach the equilibrium. However, due to their slow dynamics, the
increasing of x3 and x4 would last for a long period before their
values could be close to xm,e and x f ,e.

Suppose that uM is large enough and the control smooth enough
to avoid excessive excitation of the control action due to surgi-



cal perturbations (as intubation, incision). Then, the following
proposition can be stated.
Proposition 1. Suppose that Assumptions 1 and 2 hold. The
system (5) in closed loop with control (12) is exponentially
stable and does not violate the constraints x ∈ X and u ≥ 0 if
the initial state belongs to Ω.

Proof. Since the set Ωz is an invariant set for the system
z+ = (Az +BzKz)z, thus, from Assumption 1, if z(0) ∈ Ωz then
z(k) ∈ Ωz and Kzz(k) ∈V for all k ∈ N. This implies, first, that
x(k) ∈Ω for all k ∈N if x(0) ∈Ω. Moreover, since Kzz(k) ∈V ,
then Kzz(k) ≥ um− ue = −ue and equivalently [Kz 0 0](x(k)−
xe)+ue ≥ 0. Since d(k)< 0 for all k ∈ N, from Assumption 2,
then uc(k)> [Kz 0 0](x(k)− xe)+ue ≥ 0 for k ∈ N. 2

The main problem with the corrected control uc defined in (12)
is that it is a feedback of the current values of the drug concen-
trations in the muscles and in the fat that are not available. One
solution could be the design of an observer to reconstruct their
value on-line. Nevertheless, due to the fact that the dynamics
of x3 and x4 are consistently slower than those of x1 and x2,
then the value of d(k), as defined in (11), can be reasonably
considered to be constant between two sampling instants. From
(11), by manipulating the dynamics of x2, one can write:

d(k−1) = x2(k)−A22x2(k−1)−B2u(k−1)
−A23xm,e−A24x f ,e.

(15)

Thus, the control law to be applied during the maintenance
phase results in

ur(k) = [Kz 0 0](x(k)− xe)+ue−
d(k−1)

B2
, (16)

where d(k−1) is defined in (15) with u(k−1) = ur(k−1). The
linear control ur defined in (16) is such that, in practice, the set
Ω is invariant for system (5) and then, once attained, the state
does not leave Ω, despite the perturbation. This implies clearly
the constraints satisfaction, i.e. the BIS is maintained between
40 and 60. Moreover the state converges to the equilibrium
point xe and then the BIS to 50. The drawback of this control
law is that it is effective once the state is inside Ω, while
there is not assurance that its application is efficient outside Ω.
One possibility to deal with this problem is to design a simple
control law to be applied outside Ω that drives the state in Ω.

3.3 Induction phase control

One of the objective is to induce the hypnosis as fast as possible,
that means to steer the state within the band BIS ∈ [40, 60].
Then, the first part of the control, related to the induction phase,
is assumed to be a constant control, with u as high as possible
but such that the BIS never reaches values lower than 40.

For this aim we compute the maximal control invariant, de-
noted Ωc, for the nominal system (7) contained in the band on
z1 ∈ [Ce f f (60)−EC50, Ce f f (40)−EC50] corresponding to the
band on BIS ∈ [40, 60]. These points, in fact, are those that
can be stirred towards the equilibrium xe by means of an ap-
propriate control input, nonlinear in general, without violating
the constraints. Note that the maximal control invariant set Ωc
is always greater or equal than the invariant set related to any
control law.

Let us neglect once more the perturbation due to x3 and x4,
for the moment, and recall that the aim of the first part of
the induction phase control is to steer as fast as possible x1

in the band [Ce f f (60), Ce f f (40)] assuring that no constraint
violation eventually occurs. Then, the first part of the induction
phase control should be the higher constant value of u, which
we denote by u0, such that the trajectory reaches Ω0 = Ωc +
(EC50, xb,e). By construction, a state is in the control invariant
if and only if it can be maintained indefinitely by an appropriate
admissible control. The value of u0 can be obtained from the
shape of Ω0, solving

(u0,T0) = argmin
u,T

T

s.t. [1 0 0 0] ·
T∫

0

eAc(T−τ)Bcdτ ·u =Ce f f (60),

[0 1 0 0] ·
T∫

0

eAc(T−τ)Bcdτ ·u = xM
2 ,

(17)

with xM
2 = max{x2 : (x1, x2) ∈Ω0}.

Now, what is left to design is a simple control law to be applied
once the state is in Ω0 to steer it in Ω, where the control ur
can be applied efficiently. To do that, consider Figure 1, that
shows the successors of the vertices of Ωc, by using the data
provided in Section 4. Indeed for every vertex p, in red is
represented the segment that joins the vertex with Az p, and in
black the points Az p+V , with V as in (8), that is the set of
all the states in the space z reachable in one step from p. As
a test for the control invariance, notice that every vertex can
reach the set Ωc through an extremal control action. Moreover,
and more interestingly, notice that for states with high value of
z2, the input to be applied is the smaller one, i.e. v = −ue and
equivalently u = um = 0 , while for states with negative values
of z2, a large value of u close to uM has to be applied. This
is reasonable, since if one wants x2 to decrease, then the drug
deliverance should be stopped, while to increase it the most,
uM should be applied. Therefore, the input to apply for x1 in the
band [Ce f f (60), Ce f f (40)] when x2 is above the set Ω is u = 0,
while it is u = uM if x2 is below Ω.

-1 -0.5 0 0.5 1

-60

-40

-20

0

20

40

Fig. 1. Maximal control invariant set Ωc in Z and vertices
successors.

Summarizing, the following induction phase control has to be
applied to make the states (x1,x2) reach Ω rapidly avoiding
constraints violations:

ui(x) =

{ uo, if x1 <Ce f f (60),
0, if x2 > xb,e, (x1,x2) ∈Ω0\Ω,
uM, if x2 < xb,e, (x1,x2) ∈Ω0\Ω,

(18)

recalling that Ω=Ωz+(EC50, xb,e) and Ω0 =Ωc+(EC50, xb,e),
where Ωz and Ωc are the maximal invariant and control invari-



ant sets in the band x1 ∈ [Ce f f (60), Ce f f (40)] for the system
(7). These sets are depicted in Figure 2.

Finally, we consider the effect of the disturbance due to x3 and
x4 in the induction phase. Such a disturbance has a beneficial
effect when x1 is in the band [Ce f f (60), Ce f f (40)] and x2 > xb,e,
which is equivalent to z ∈ Z and z2 > 0. In fact, since in
practice x3 < xm,e and x4 < x f ,e, i.e. w3 < 0 and w4 < 0, then
d is always negative. In particular d starts from its minimum,
−A23xm,e − A24x f ,e, and increases converging to 0, thus d is
very small during the first minutes. Therefore, after the first part
of the induction phase, if the value of x2 is high, the effect of d
combines with ui in (18) to drive the state (x1,x2) in Ω. On the
other side, i.e. if z ∈ Z and z2 < 0, the effect of d is opposite to
ui, but the higher margin on the control (uM is the active bound
at low values of x2) can easily compensate d. This is because
low values of the drug in the blood can be increased quickly by
the drug injection.

3.4 Overall control scheme

By combining the induction phase control ui defined in (18)
and the maintenance control law ur defined in (16), a solution
to Problem 1 can be stated. Indeed, the multi-phase control law,
which mimics the medical practice can be defined as follows:

u(x) =
{

ui(x), if (x1,x2) /∈Ω,
ur(x), if (x1,x2) ∈Ω,

(19)

with Ω = Ωz +(EC50, xb,e).

4. APPLICATION

The application of the control law (19) has been simulated for
a given patient (female) of 46 years-old, 54 kg and 163 cm.
The discretized system (5) obtained with a sampling time of 6
seconds is given by the following data:

A =

 0.9554 0.0100 0.0000 0.0000
0 0.9117 0.0064 0.0003
0 0.0325 0.9934 0.0000
0 0.0187 0.0001 0.9997

 ,
B = [ 0.0005, 0.0955, 0.0017, 0.0009 ]

T
.

(20)

The equilibrium corresponding to a target BIS of 50 is then
given by:

ue = 9.3008[mg/min], xb,e = 23.912[mg],
xm,e = 121.167[mg], x f ,e = 1332.8[mg].

The constraints on the state and the bounds on the input are
given by the sets

X = {x ∈ R4 : 4.7262≤ x1 ≤ 6.6354},
U = {u ∈ R : 0≤ u≤ 100}, (21)

The constraints on z and v are
Z = {z ∈ R2 : −0.8738≤ z1 ≤ 1.0354},
V = {v ∈ R : −9.3008≤ v≤ 90.6992}, (22)

and the effect of x3 and x4 on z2 is bounded in
D = {d ∈ R : −1.2243≤ d ≤ 0}.

Then, one can check that the terms A13 −
B1

B2
A23 and A14 −

B1

B2
A24, are small:

A13−
B1

B2
A23 = 3.9357 ·10−8,

A14−
B1

B2
A24 = 1.0729 ·10−10,

(23)

which validate Assumption 1.

The local state feedback control gain Kz ∈ R1×2 is a LQR
control computed with parameters Q= diag[15, 1] and R= 1.8.
These parameters have been selected after a series of choices to
improve the size of the related invariant set.

The overall control u (19) is compared with the control laws
un and ur, as defined in (9) and (12) applied as soon as x ∈ X .
In Figure 2, the trajectory generated by the control law (19)
is depicted in black. It can be seen that, after the first part of
the induction phase, the state enters the band X (but not in Ω),
and then the control is switched off, to make the trajectory drop
toward Ω. Once in Ω, the control ur is applied that makes Ω

invariant, thus preventing any constraints violation, and steers
the state at xe. In blue, the trajectory obtained by using uc (that
is an improved version of un) when x enters X , is plotted. Notice
that this control law, tailored for the states in Ω is not able
to prevent the violation of x2 ≤ 6.6354 and has good behavior
only once x ∈ Ω. In red, it is drawn the trajectory obtained by
applying un after entering X . Notice that the presence of the
disturbance has beneficial effects in the first instants, indeed,
the state drops quickly in the safe region Ω. Nevertheless, not
being Ω invariant in presence of perturbation, the trajectory
leaves eventually the set and does not converge to the desired
xe until the perturbation effect is disappeared.
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Fig. 2. Comparison between u as (19), in black, un as in (9)
applied when x ∈ X , in red, and ur as in (16) applied when
x ∈ X , in blue. The invariant set Ω is in mild blue and the
control invariant set Ωc in light blue.

It is finally worth remarking that, since, as noticed above, the
disturbance has beneficial effect during the first instants, the
black trajectory reaches Ω although the state is not initially in
Ω0 once in X . This has an important implication: the perturba-
tion effect during the critical instants just after the first part of
the induction phase can be neglected with no risk. The control
invariant set is still invariant and bigger regions of the state
could be aimed at to reach Ω. Thus, the control invariant set is
only a bit conservative, there is not risk of constraint violation
if considered as first aim of the induction phase.

Figure 3 represents the evolution of the value of the variable
BIS and the value of the blood concentration along the tra-
jectory generated by the control law u defined in (19). Then,
the BIS is stirred to the desired value of 50 while avoiding the
constraints violations. Also the moment of the switch between 0
and ur can be remarked along the trajectory in the band 40−60.
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Fig. 3. BIS and x2 state-space evolution generated with u as
(19).

Finally, Figure 4 illustrates the closed-loop time evolution of
the state and input u generated with (19). It illustrates both the
efficiency of the proposed control strategy and the slow evolu-
tion of the state x3 and x4, which will attain their equilibrium
value after a long time.
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Fig. 4. Time-evolution of the hypnosis induction and mainte-
nance. Top: State evolution in closed-loop. x1 in blue; x2
in red; x3 in yellow and x4 in purple − Bottom: the input.

5. CONCLUSION

A control strategy based on set theory and invariant sets has
been proposed to control the induction and maintenance phases
of the depth of hypnosis during surgical operation. The con-
trol is formed of a succession of two main steps. First a high
constant value of drug addition is used, followed by a zero
addition of drug, and second, the control loop is closed when
accessing the maintenance phase. The instants of switch be-
tween the phases are related to the trajectory entering in the
maximal control invariant set and the maximal invariant set.
The proposed control strategy results to mimic the heuristic
induction and maintenance phase control commonly adopted
by anesthetists.

The extension to parametric uncertain models, to deal with
the inter- and intra-patient variability, is one objective of our
ongoing research. Moreover, the fact to take into account the
surgical perturbation (intubation, incision) and a certain level

of performance thanks to the multi-phase control law proposed
is also an interesting direction for future work.
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