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1 Executive Summary 

Deliverable D4.3 aims at presenting the experimental evaluation of algorithms for online 
network characterization. These algorithms aim at characterizing the network by 
detecting anomalies in real time and in an unsupervised way. 

The first part of this document presents the experimental design exploited to test the 
platform and the algorithms, and provides detailed information about their configuration 
and parameterization. This deliverable is used as a base for the implementation of the 
use case 1 prototype in the context of WP5. Sections 4, 5 and 7 presents the works 
performed on unsupervised network anomaly detection. Section 4 describes the 
generation of a ground truth called SynthONTS for Synthetic Network Traffic 
Characterization of the ONTS Dataset. This ground truth is used to validate the 
unsupervised network anomaly detector presented in section 4. We claim that this ground 
truth is realistic, contains many different anomalies and is exhaustive in the anomaly 
labelling. Section 5 presents the unsupervised network anomaly detector proposed by 
ONTIC. It is an improved version of ORUNADA presented in deliverable D4.2. Section 7 
describes the evaluation deployed to test the unsupervised network anomaly detector 
using the Google cloud platform and more specifically the Google Dataproc and the 
Google Storage. 

The second part of this deliverable addresses three different scenarios related to 
forecasting techniques and detection of anomalies. Section 8 describes our progress in 
network traffic behavior forecasting, as well as the obtained results when applied to the 
ONTS dataset. In particular, we show the application of deep convolutional neural 
networks in order to exploit the temporal nature of this forecasting scenario. Section 9 
presents SLBN++ a proactive congestion control protocol equipped with forecasting 
capabilities that outperforms current proposals. Finally, Section 10 shows preliminary 
results of an approach to detecting anomalous behavior in cloud infrastructure based on 
deep neural networks. 

 



619633 ONTIC. Deliverable 4.3: 

Experimental evaluation of algorithms 
 

11/93 
 

! !

2 Acronyms 

 

Acronym Defined as 

AUC Area Under the Curve 

CORE Common Open Research Emulator 

DAG Directed Associated Graph 

DoS Denial of Service 

DDoS Distributed Denial of Service 

DWT Discrete Wavelet Transform 

EA Evidence Accumulation 

FP False Positive 

FPR False Positive Rate 

FTP File Transfer Protocol 

GCA Grid density-based Clustering Algorithm 

HDFS Hadoop FileSystem  

ICMP Internet Control Message Protocol  

IGDCA Incremental Grid density-based Clustering Algorithm 

UDP User Datagram Protocol 

nbPackets Number of packets 

Nmap  Network Mapper 

NTFF Network Traffic Forecasting Framework 

ONTS ONTIC Network Traffic Characterization DataSet 

ORUNADA Online and Real-time Unsupervised Network Anomaly Detection Algorithm 

PC Principal Component 

PCA Principal Component Analysis 

PCAP Packet CAPture 

PUNADA Parallel and Unsupervised Network Anomaly Detection Algorithm 

PySpark  Spark Python API 

R2L Remote To User 

ROC Receiver Operating Characteristic 

SQL  Structured Query Language 

SynthONTS Synthetic ONTS 

TCP Transmission Control Protocol 

TP True positive 

TPR True Positive Rate 

UDP  User Datagram Protocol  
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U2R User to Root Attacks 

UNADA Unsupervised Network Intrusion Detection Algorithm 

WP Working Package 
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3 Intended Audience  

The intended audience for this deliverable includes all the members of the ONTIC project 
and specifically those involved in: 

 WP4, as they devise the online algorithms. 

 WP2, as they design the provisioning subsystem on top of which the algorithms 
have to run. 

 WP5, as they propose use cases which take benefit of the algorithms presented in 
this deliverable. 

Furthermore, this report could be of interest to any person working in the field of traffic 
pattern evolution, network anomaly detection.  

This deliverable may also be useful for persons willing to gain competences in Spark and 
specifically Spark Streaming and in the google Cloud platform and particularly the Google 
storage and Google Dataproc. 

We recommend reading the deliverable D4.2 “Algorithms Description Traffic pattern 
evolution and unsupervised network anomaly detection” as this deliverable is a follow-up 
of this latter. Furthermore, a solid background in Spark is needed and we recommend 
reading the “D2.3 Progress on ONTIC Big Data architecture”. The data used in the 
deliverable (collect and transformation of the data) is well described in the deliverable 
“D2.4 The Provisioning Subsystem”. 
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4 Ground Truth Generation 
 
A network anomaly detector must be able to detect the network anomalies in any network 
traces with a low number of FPs. To validate the performance of a network anomaly detector, a 
ground truth with a large number of different anomalies included on network traces is 
mandatory. A ground truth in the context of network anomaly detection is a set of network 
traces where all the anomalies are clearly identified and labeled. This later must be realistic 
and contain many different type of anomalies so that the results obtained with this ground truth 
can be generalized. 
 
As pointed out in [1], there is a lack of available ground truths in the field because of the 
sensitive nature of these data and of the difficulties to generate a high-quality ground truth. To 
the best of our knowledge, there are three main complete available ground truths, the KDD99 
ground truth (summary of the DARPA98 traces) [2], the MAWI ground truth [3] and the TUIDS 
dataset [4].  
 
The KDD99 contains multiple weeks of network activity from a simulated Air Force network 
generated in 1998. The recorded network traffic has been summarized in network connections 
with 41 features per connection. It contains 22 different types of attacks which can be classified 
into 4 categories; denial of service, remote to local, user to root and probe. As attacks have 
been hand injected under a highly controlled environment, every label is reliable, which may 
not be case when labels are added to real world network traces using file inspection and 
network anomaly detectors, as it is impossible to know the intention (benign or malicious) 
behind every connection. Although the KDD99 dataset is quite old, it still largely used and 
considered as a landmark in the field. The KDD99 has received many criticisms mainly due to its 
synthetic nature [5] . 
 
On the contrary, the MAWILab dataset is recent and is still being updated. It consists of labeled 
15 minutes network traces collected daily from a trans-Pacific link between Japan and the 
United States [3]. However, the MAWILab ground truth is questionable, as it has been obtained 
by combining the results of four unsupervised network anomaly detectors [6]. Furthermore, 
labels are often not very relevant, for example, many anomalies are labeled as “HTTP traffic”. 
Furthermore, after a manual inspection, some anomalies do not seem to exhibit any strange 
pattern.  
 
The TUIDS (Tezpur University Intrusion Detection System) was created at the end of 2015 [4]. 
The dataset was created using a large university testbed where the normal network traffic is 
generated based on the day-to-day activities of users and especially generated traffic from 
configured servers. The attack traffic is created by launching 22 different types of attack within 
the testbed network in three different subsets: intrusion attempts, scans and DDoS. It can be 
noticed that some of their attacks are quite outdated, like the jolt attack which is only possible 
on very old exploitation systems like Windows 95 or Windows NT 4.0. Nevertheless, this dataset 
seems interesting as it uses a large testbed and a real and rich normal traffic. However, we 
never succeeded in getting this dataset. We sent many e-mails to the authors of the article but 
without success even though they specified that their dataset was available on demand. 
 
In order, to overcome the lack of available datasets, researchers often build their own ground 
truth. We have identified three main techniques used in the literature, the manual inspection of 
network traces [7] [8] [9], the generation of synthetic traces via simulation or network 
emulation [10] [11] and the injection of anomalies in existing network traces [7]. None of these 
methods are perfect. They possess their own drawbacks and they cannot guarantee accurate 
evaluation study; the values of true positives and negatives and false positives and negatives 
cannot be exactly estimated. In manual inspection neither automated algorithms nor human 
domain experts can identify all the anomalies of a trace with complete confidence [10]. 
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Furthermore, due to the fuzzy definition of a network anomaly, it is hard, even for an expert, to 
decide when a flow becomes an anomaly, i.e. when a flow becomes rare enough to be 
considered as an anomaly. On the other hand, to build synthetic traces, normal traffic needs to 
be modeled, however, existing models often fail to catch the complexity of this traffic and the 
generated traffic is often not realistic. The injection of anomalies consists in injecting anomalies 
in existing traffic. Furthermore, the injection must be well tuned to obtain realistic network 
traces. 
 
Due to existing ground truth issues, we decide to generate our own dataset called SynthONTS. 
We generate synthetic anomalies that we inject inside the ONTS dataset. We created SynthONTS 
in two steps: 

1. First, we selected a PCAP file from the ONTS dataset to inject the synthetic anomalies. 
We had to insure that this PCAP has no big anomaly and to identify all the anomalies it 
could possibly contain. To overcome the issues of manual inspection presented above, we 
use a small PCAP file of about 300 seconds in order to be able to make a good inspection 
and we reuse the same PCAP to inject different network anomalies. Furthermore, we 
plan to make these PCAP files available to the community in order to get feedback and 
help us improve the quality of our manual inspection. 

2. Second, we generated the anomalies. To overcome the issues of synthetic anomalies 
presented above, we use an emulator rather than a simulator, therefore it does not rely 
on any model to generate the traffic and the generated anomalies are more realistic. 
Furthermore, the network generated on the emulator is as close as possible from the one 
where the PCAP traces were collected. Therefore, they are not incoherent with the PCAP 
file selected of the ONTS dataset. 

In the following, this section presents the (1) list of generated attacks, (2) the tools used, (3) 
the selected PCAP file and finally the (4) generation of synthetic anomalies.    

4.1 List and description of generated anomalies 

 

We generate three types of anomalies: 

 Network recognition anomalies [12]: The goal is to discover and identify some hosts on a 

targeted network. This is often the first step before an attack. It is therefore very 

important to identify this stage. 

 DoS and DDoS attacks: These attacks aim at disrupting a machine or network resource, so 

that its services become temporarily or indefinitely unavailable to its intended users. In 

the case of a DDoS, the attack is launched by many attackers (machines) whereas there is 

only one attacker (machine) in a DoS. 

 Other type of attacks like brute force attack to discover passwords and gather sensitive 

data. 

4.1.1 Network recognition anomalies 

 

Before launching an attack the attacker needs to discover some information concerning its 
targets. The attacker wants to gather information about its targets like their operating systems, 
their running services, their versions, and their list of open ports. To gather this information, 
they can use scan methods like TCP SYN scan, TCP Connect scan and UDP scan. 
 
TCP SYN scan is the default and most popular scan option. It can be performed quickly, scanning 
thousands of ports per second on a fast network not hampered by restrictive firewalls. It consists 
in sending a large number of SYN packets to the target. For each SYN, the target allocates 
resources for a new TCP connection. The attacker creates many TCP connections and never 
closes them in order to exhaust the victim resources. 

https://en.wikipedia.org/wiki/User_(computing)


619633 ONTIC. Deliverable 4.3: 

Experimental evaluation of algorithms 
 

16/93 
 

! !
Figure1 shows messages exchanger between Penetration Tester/Hacker and a selected target. 
 

 
Figure 1: TCP Syn scan 

 
 

TCP connect scan is very similar to the TCP-SYN scan. The major difference is that the TCP 
connection is fully established. A TCP Connect() scan attempts the three-way handshake with 
every TCP port.  Figure 2 shows the message exchanger between Hacker and Target through 
Internet Network. 

 
Figure 2: TCP connect scan 

 
 

UDP scan works by sending a UDP packet to every targeted port. While most popular services on 
the Internet run over the TCP protocol, UDP services are widely deployed. DNS, SNMP, and DHCP 
(registered ports 53, 161/162, and 67/68) are three of the most common. Because UDP scanning 
is generally slower and more difficult than TCP, some security auditors ignore these ports. This 
is a mistake, as exploitable UDP services are quite common and attackers certainly don't ignore 
the whole protocol. A big challenge with UDP scanning is doing it quickly. Open and filtered 
ports rarely send any response. Closed ports are often an even bigger problem. They usually send 
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back an ICMP port unreachable error. But unlike the RST packets sent by closed TCP ports in 
response to a SYN or connect scan, many hosts rate limit ICMP port unreachable messages by 
default. Linux and Solaris are particularly strict about this. For example, the Linux 2.4.20 kernel 
limits destination unreachable messages to one per second (in net/ipv4/ICMP.c). 
Figure 3 shows the messages exchanger between Hacker and Target. 
 

 
Figure 3: UDP scan 

  
 
NULL scan: In a NULL scan a packet is sent to a TCP port with no flags set. In normal TCP 
communication, at least one bit—or flag—is set. In a NULL scan, however, no bits are set. RFC 
793 states that if a TCP segment arrives with no flags set, the receiving host should drop the 
segment and send an RST. 
 

Xmas scan:  In Xmas scan, the attacker sends TCP packets with the following flags: 

 URG— Indicates that the data is urgent and should be processed immediately 
 PSH— Forces data to a buffer 
 FIN— Used when finishing a TCP session 

The trick in this scan is not the purpose of these flags, but the fact that they are used together. 
A TCP connection should not be made with all three of these flags set. Usually, the host or 

network being scan returns a RST packet. Figure 4 shows the messages exchanger between 
Hacker and Target in the case of NULL or Xmas scan. 
 

a- UDP 
Datagram 
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Hacker 
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Port is open 

a- UDP 
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Target 
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Figure 4: TCP NULL and Xmas flags scan 

 
Ping scan consists in sending an ECHO ping to a target (host discovery) or a network (network 

discovery). If a given address is alive, it returns an ICMP ECHO reply.  
Figure 5 shows the messages exchanger between Hacker and Target. 
 

 
Figure 5: ICMP scan 

 
IP protocol scan allows you to determine which IP protocols (TCP, ICMP, IGMP, etc.) are 
supported by target machines. This isn't technically a port scan, since it cycles through IP 
protocol numbers rather than TCP or UDP port numbers. 

4.1.2 Attacks 

We selected some attacks, based on some articles describing attacks encountered in real life [4] 
[12]. Most attacks are DoS (Denial of Service) and DDoS (Distributed Denial of Service) attacks. 
The main goal of DoS and DDoS is to generate very huge flows of data, in order to generate 
dysfunction and or shutdowns of a selected target. 
We have also some generic attacks, like FTP brute force cracking: the goal is to catch passwords 
used by applications like FTP. 

1.1.1.1. DDoS Attacks 

2. Smurf 
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The Smurf Attack is a distributed denial-of-service attack where an attacker uses a set of 
amplifier hosts to exhaust the resource of a machine (the victim). The attacker sends a large 
numbers of Internet Control Message Protocol (ICMP) packets with the intended victim's spoofed 
source to a set of machines using an IP Broadcast address. These machines are the amplifiers. 
They will, by default, respond by sending a reply to the source IP address (which is the victim). 
If the number of machines on the network that receive and respond to these packets is very 
large, the victim's computer will be flooded with traffic. This can slow down the victim's 
computer to the point where it becomes impossible to work on. Figure 6 presents the 
architecture used to generate a Smurf attack. 
 

 
Figure 6: Smurf attack 

 
3. Fraggle 

A Fraggle attack is a denial-of-service (DoS) attack that involves sending a large amount of 
spoofed UDP traffic to a router’s broadcast address within a network. It is very similar to a Smurf 
Attack, which uses spoofed ICMP traffic rather than UDP traffic to achieve the same goal. Given 
those routers (as of 1999) no longer forward packets directed at their broadcast addresses 
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Figure 7: Fraggle 

4. Syn DDoS  

A SYN flood is a form of denial-of-service attack in which an attacker sends a succession 
of SYN requests to a target's system in an attempt to consume enough server resources to make 
the system unresponsive to legitimate traffic. In the case of a Syn DDoS there are many 
machines performing a SYN DoS targeting the same machine. 
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Figure 8 – SYN DDoS attack 

 

4.1.1.1.  DoS attacks 

5. Syn Flooding 

A SYN flood is a form of denial-of-service attack in which an attacker sends a succession of SYN 
requests to a target's system in an attempt to consume enough server resources to make the 
system unresponsive to legitimate traffic 

6. UDP flood 

A UDP flood attack is a denial-of-service (DoS) attack using the User Datagram Protocol (UDP), a 
sessionless/connectionless computer networking protocol. Using UDP for denial-of-service 
attacks is not as straightforward as with the Transmission Control Protocol (TCP). However, a 
UDP flood attack can be initiated by sending a large number of UDP packets to random ports on 
a remote host. 

7. Brute Force 

The brute-force attack is still one of the most popular password cracking methods. It consists in 

trying many passwords or passphrases with the hope of eventually guessing correctly. The 

attacker systematically checks all possible passwords and passphrases until the correct one is 

found.  It can be used for example to find the password used to secure SSH or FTP sessions. 

4.2 Implementation 
To generate the ground truth, we injected anomalies in real life network traces.  These network 

traces come from the ONTS dataset collected in the context of the ONTIC project. This dataset 

is described in the deliverable D2.4 entitled “Provisioning subsystem. In this section, we 
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describe how we select the ONTS traces where we inject the anomalies. Then, we describe the 

tools used for generating these anomalies. Finally, we present the obtained traces which form 

the ground truth. 

4.3 Selection of the ONTS dataset 
To generate the ground trace, a subset of the ONTS dataset is selected. The selected dataset 
must contain few anomalies which has to be clearly identified. Therefore, we select a small part 
of the ONTS dataset in order to be able to analyze it by hand. 

4.3.1 Visualizing existing traces 

 

 
Figure 4: Time series which displays the number of packets per second in the ONTS dataset 

 
To select a subset of ONTS dataset which has few or no anomaly, we visualized 10 days of PCAP 
traces from the 9 to the 19 of February 2015. We created 17 temporal series of the data: the 
number of different destination ports, the number of different source ports, the number of 
different IP destinations, the number of RST packets, the number of FIN packets, the mean 
packet length, the number of ICMP reply, the number of unreachable ICMP packets, the number 
of ICMP echo packets, the number of time exceeded packets, the number of other types of ICMP 
packets, the number of SYN, the number of acknowledgments, the number of contention window 
reduction flag set to one, the number of URG packets, the number of push packets, the total 
number of packets. In order to process such a quantity of data, we use two servers of 28 cores 
each and process this data using PySpark and SparkSQL. We select PySpark because it allows 
sharing efficiently our findings using Jupyter, which is a python notebook. The Jupyter Notebook 
is a web application that allows creating and sharing documents that contain live code, 
equations, visualizations and explanatory text. We use also SparkSQL to query easily the data 
using SQL (Structured Query Language). Figure 4 displays time series: the number of packets in 
ONTS dataset during 10 days. One point represents one second of data. From this figure, the 
traces captured the 17 of February 2015 between 3PM and 4PM  do not exhibit any peak and 
seems free from huge anomalies. Therefore, we select the dataset to inject anomalies. Figure 5 
displays the number of RST packets and the number of ICMP echo packets per second for the 
selected day. 
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Figure 5: Number of RST packets and ICMP echo packets the 17th of February 2015 

 
We then studied manually the selected PCAP and found that it contained anomalies. This study is 
possible as the selected PCAP is quite small. However, we cannot be totally confident that all 
the anomalies have been found. Using ORUNADA, we found two anomalies that we had not 
detected by hand. Table 1 shows a possible aggregation level with the associated key identifying 
the anomalous flow and the way we found the anomaly (by hand and/ or using our detector). 
Our solution identifies every anomaly detected manually plus two others. After investigation, 
the two anomalies found by our detector are pertinent and may be beneficial to a network 
administrator.  
 

Table 1: Anomalies found manually with our detector 

Classification of the 
anomaly 

Description of the 
anomaly 

Possible aggregation 
level and key for 
identification 

Found 

Network Scan 
UDP scan targeting 
a subnetwork 

IPSrc: 
199.19.109.102 

By hand + ORUNADA  

 Network SYN scan IpSrc: 213.134.49.15 By hand + ORUNADA 

 Network SYN scan  IpSrc: 61.240.144.67 By hand + ORUNADA 

 Network SYN scan  
IpSrc: 
213.134.36.116 

By hand + ORUNADA 

Port scan 
UDP Port scan of a 
machine 

P2P key: 
119.81.198.93-
217.75.228.214 

By hand + ORUNADA  

 
Port scan of a 
machine 

P2P key: 
213.134.39.11 - 
10.10.150.14 

ORUNADA 

Large ICMP 
Large ICMP echo to 
one destination 

P2P key: 
213.164.33.194 - 
8.8.8.8 

By hand + ORUNADA 

 
Large ICMP echo to 
one destination 

P2P key: 
195.22.14.100 - 
213.134.54.133 

By hand + ORUNADA 

 Large ICMP echo to ipSrc key: By hand + ORUNADA 
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a network 213.134.32.141 

Possible Attack 
Large Point Multi-
Point 

ipDst key: 
130.206.201.70 

ORUNADA 

 RST attack 
P2P key: 
149.154.65.158-
213.134.38.86 

By hand + ORUNADA 

 

4.4 Used Tools 

In order to generate the ground truth we used many different tools: CORE, Nmap, Hping3, and 
Wireshark/Tcpdump. We used a network emulator to generate the network architecture. The 
network emulator allows us to build easily any network architecture and offers, therefore, a 
large flexibility. Furthermore and contrary to network simulators, a network emulator does not 
rely on any model to build the network. Therefore, it generates traces equivalent to those we 
could get with a real network platform. 

4.4.1 Common Research Emulator (CORE) 

Core [13] [14] [15] is an open source tool for emulating networks on one or more machines. 
CORE has been developed by a Network Technology research group that is part of the Boeing 
Research and Technology division. We use Core to emulate the Interhost network and the 
machines on the Internet. We have used the last version 4.8 (20150605). 

4.4.2  Domain Information Groper (Dig) 

Dig [16] is a flexible tool for interrogating DNS name servers. It performs DNS lookups and 
displays the answers that are returned from the name server(s) that were queried. Most DNS 
administrators use dig to troubleshoot DNS problems because of its flexibility, ease of use and 
clarity of output. Other lookup tools tend to have less functionality than dig. We have used dig 
9.8.3-P1 for MacOS. 

4.4.3 Network Mapper (Nmap) 

We use Nmap [17] to generate every anomalies of type “Discovery”. Nmap ("Network Mapper") is 
a free and open source utility for network discovery and security. Nmap uses raw IP packets to 
determine what hosts are available on the network, what services (application name and 
version) those hosts are offering, what operating systems (and OS versions) they are running, 
what type of packet filters/firewalls are in use, and dozens of other characteristics. We have 
used Nmap 6.40 for Ubuntu 14.04 LTS and Nmap 7.01 for Ubuntu 16.04 LTS. 

4.4.4 Hping3 

We use Hping3 [18] to generate some of the attacks. Hping3 is a network tool able to send 
custom TCP/IP packets and to display target replies like ping program does with ICMP replies. 
Hping3 handle fragmentation, arbitrary packets body and size and can be used to transfer files 
encapsulated under supported protocols. We used hping3 3.0.0-alpha-2 for Ubuntu 16.04 LTS. 

4.4.5 Nping 

Nping [19] is an open source tool for network packet generation, response analysis and response 
time measurement. Nping can generate network packets for a wide range of protocols, allowing 
users full control over protocol headers. While Nping can be used as a simple ping utility to 
detect active hosts, it can also be used as a raw packet generator for network stack stress 
testing, ARP poisoning, Denial of Service attacks, route tracing, etc.  We used nping 0.7.01 for 
Ubuntu 16.04 LTS. 
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4.4.6  Hydra 

Hydra [20] is a parallelized login cracker which supports numerous protocols to attack. It is very 
fast and flexible, and new modules are easy to add. This tool makes it possible for researchers 
and security consultants to show how easy it would be to gain unauthorized access to a system 
remotely. We used Hydra v8.1 for Ubuntu 16.04 LTS. 

4.4.7  Ncrack 

Ncrack [21]  is a high-speed network authentication cracking tool. Ncrack's features include a 
very flexible interface granting the user full control of network operations, allowing for very 
sophisticated bruteforcing attacks, timing templates for ease of use, runtime interaction similar 
to Nmap's and many more. Protocols supported include RDP, SSH, HTTP(S), SMB, POP3(S), VNC, 
FTP, SIP, Redis, PostgreSQL, MySQL, and Telnet. We used Ncrack 0.5 for Ubuntu 16.04 LTS. 

4.4.8 Wireshark/Tcpdump 

Wireshark [22] and tcdump were used to collect the traffic on CORE, to modify the time of the 
generated attacks so that they are consistent with the ONTS dataset and to check the generated 
ground truth. Tcpdump is a common packet analyzer that runs under the command line. It 
allows the user to display TCP/IP and other packets being transmitted or received over 
a network to which the computer is attached. Distributed under the BSD license, Tcpdump 
is free software. It offers many features to analyze, filter and modify packet traces. As 
Tcpdump, Wireshark is a free and open source packet analyzer. It is used 
for network troubleshooting, analysis, software and communications protocol development. We 
mainly use Wireshak for its graphical user interface and Tcpdump for its speed and lightness. We 
used Wireshark 2.0.x and Tcpdump 4.7.4 for Ubuntu 16.04 LTS. 
 

4.5 Traces generation 

To generate the anomalies, we built different network architecture using CORE. These networks 
are very close to the one used by Interhost. Interhost is a subsidiary of Satec. The ONTS dataset 
was collected at the border of the Interhost network. This border is represented in Figure 6 and 
Figure 7 by the router named Interhost and the four subnetworks of Interhost by the 4 branches 
directly connected to the Interhost router.   

4.5.1 Discovery anomalies 

Figure 8 describes the network built with Core and used to generate the anomalies of type 

“Discovery anomalies”. For every anomaly of type “discovery anomalies” we use the same 

attacker (Devil21 with a green circle on the figure) and the same target which represents a 

SATEC machine  (n15 with a red circle on the figure).  

The commands used to generate these anomalies and the obtained anomalies description is 

described in details in Annex A. 

 

 

https://en.wikipedia.org/wiki/Packet_analyzer
https://en.wikipedia.org/wiki/Command_line
https://en.wikipedia.org/wiki/TCP/IP
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/BSD_license
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Packet_analyzer
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Communications_protocol
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Figure 6: Network used to generate anomalies of type "Discovery anomalies" 

 

 

4.5.2 Attacks 

 

Figure 7 describes the network used to generate the attacks on CORE. Compared to the 
previous network described in Figure 6, a high number of machines are added (only some of 
them are represented in the figure). They are used for amplification attacks like the Smurf 
and Fraggle attack. 

The commands used to generate these anomalies and the obtained traces are described in 

details in Annex B. 
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Figure 7: Network used to generate the attacks on CORE 

 
 
Finally, the most important anomalies generated in this ground truth are presented in Table 2. 
This table displays the tool used to generate the anomaly, the mean byte rate of the anomaly, 
the size of the traces once the anomaly injected. A more detailed description of the anomalies 
generated and the obtained traces is available in Annex C. 
 

Table 2: Descriptions of the some anomalies  

Tool used Anomaly Generated file : 

fusion_SATEC_*.pcap 

Mean Byte 

rate 

Size file 

GBytes 

  Discovery 
anomalies 

      

Nmap Scan OS, 
services and 
open ports for 
1 target 

scan_os_host 51 MBps 1.425 

Nmap Scan OS, 
services and 
open ports for 
sub-network 

scan_os_network 51 MBps 1.428 

  Ports scans       

Nmap TCP SYN scan TCP_SYN_p5T000 51 MBps 1.426 

Nmap TCP CONNECT 
scan 

TCP_Connect_p5000 51 MBps 1.433 

Nmap UDP scan UDP_scan_T5 51 MBps 1.426 

Nmap NULL scan NULL_scan_T4 51 MBps 1.425 

Nmap XmasTree scan XmasTree_scan_T4 51 MBps 1.425 
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  Network scans       

Nmap Ping scan Ping_scan_T4 51 MBps 1.426 

Nmap IP Protocol 
scan 

IP_proto_scan_T4 51 MBps 1.427 

  Attacks       

  DDoS       

hping3 smurf smurf_hping3   15.107 

Nping fraggle fraggle_nping   58.065 

hping3 Syn flooding synflood_ddos_hping3 60MBps 4.233 

  DoS       

hping3 Syn flooding synflood_dos_hping3 64MBps 5.330 

Nping UDP flood udpflood_nping 63MBps 5.192 

  BruteForce       

Ncrack BruteForce brute_force_ncrack_rockyou 52 MBps 1.922 

4.6 Ground truth use and dissemination 

The generated ground truth can be used to validate any unsupervised network anomaly 
detector. Compared to existing ground truth in the field, we claim that the ONTS ground 
truth has many advantages: 

8. It is realistic. Indeed, this ground truth is based on real network traces and the injected 
anomalies were generated taking in considerations the characteristics (architecture, IP 
addresses, nb of routers, etc) of Interhost network. Interhost network is the network 
where the real traces were collected. Therefore, the generated anomalies are 
consistent with the ONTS dataset. 

9. It is exhaustive in its labels. As we manually check the traces, we are quite confident on 
the fact that most of the anomalies are labelled in the traces.  

10. Rich in the number of anomalies generated.  

This ground will be made available on demand. We hope that it will be valuable for many 
persons working in the field of unsupervised network anomaly detection. 
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5 Network Anomaly and Intrusion Detection 
Algorithms 

With the booming in the number of network attacks, the problem of network anomaly detection 
has received increasing attention over the last decades. However, current network anomaly 
detectors are still unable to deal with zero days attack or new network behaviors and 
consequently to protect efficiently a network. Indeed, existing solutions are mainly knowledge-
based and this knowledge must be continuously updated to protect the network. However 
building signatures or new normal profiles to feed these detectors take time and money. As a 
result, current detectors often leave the network badly protected. 

To overcome these issues, a new generation of detectors has emerged which takes benefit of 
intelligent techniques which automatically learns from data and allows bypassing the strenuous 
human input: unsupervised network anomaly detectors. These detectors aim at detecting 
network anomalies in an unsupervised way, i.e. without any previous knowledge on the 
anomalies. They mainly rely on one main assumption [23] [24]: 

“Intrusive activities represent a minority of the whole traffic and possess 
different patterns from the majority of the network activities.” 

A network anomaly can be defined as a rare flow whose pattern is different from most of other 
flows. They are mainly induced by [25]: 

 Network failures and performance problems like server. 

 Network failures, transient congestions, broadcast storms. 

 Attacks like DOS, DDOS, worms, brute force attacks. 

Thus, unsupervised network anomaly detectors exploit data mining algorithms to identify flows 
which have rare patterns and are thus anomalous. A state of the art on network anomaly 
detection can be found in section 6.1 of the deliverable D4.1. Existing unsupervised network 
anomaly detectors mainly suffer from four issues: 

1. Complexity issue: a high complexity which prevents them from being real time. We 
define an application as real time if it is able to process the data as soon as it arrives. To 
overcome this limitation some detectors only process sampled network data, implying 
that the malicious traffic may not be processed and detected [26].  

2. Latency issue due to large time slots to collect the traffic. Indeed, the network traffic 
is usually collected in consecutive equally sized large time-slots on one or many network 
links. The length of a time-slot has to be sufficiently large so that unsupervised network 
anomaly detectors gather enough packets to learn flows patterns. As a result, a 
substantial period of time may elapse between an anomaly occurrence and the process 
of the anomaly [25]. 

3. Detection issue due to a poor description of the incoming traffic. According to the 
granularity and the aggregation level used to describe the incoming traffic, a detector 
does not detect the same anomalies in the data. The way the incoming data is described 
may have a huge impact on the capability of the detector to identify anomalies. Many 
detectors due to their high complexity only describe the traffic using statistics and have 
a coarse view of the data [7]. Some other detectors use only one aggregation level to 
create flows and compute statistics for each flow [27]. In this case, they only have one 
representation of the data and may not be able to detect many different types of 
anomaly. We claim that it is important to describe the traffic using different aggregation 
levels in order to spot most attacks. 
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4. Detection issue due to a lack of temporal information. Most detectors only consider 

the information gathered at a time slot to decide whether there is an anomaly or not. 
However, it may be important to consider the evolution of the data and add temporal 
information. Indeed, a flow that stands out from the others at a time t should not be 
considered as an anomaly if it is always “different”. It may then be just a flow induced 
by a special server on the Internet like the google DNS server. 

 
The unsupervised network anomaly detector presented in this section and named Streaming 
ORUNADA Unsupervised Network Anomaly detector tackles these four different issues.  

 
ORUNADA is an unsupervised network anomaly detector presented in deliverable 4.2 which aims 
at detecting in real time and in a continuous way the anomalies on a network link. ORUNADA 
deals with the first and second issue encountered in actual unsupervised network anomaly 
detectors presented above. To overcome these issues, it relies on a discrete time sliding window 
and an incremental grid clustering algorithm. The discrete time sliding window allows a 
continuous detection of the anomaly whereas the incremental grid clustering algorithm a low 
computational complexity of our solution. The validation of ORUNADA shows that it could detect 
online in less than a second an anomaly after its occurrence on a high rate network link (the 
evaluation was performed on the ONTS dataset). 

In order to solve the issues 3 and 4 described above, we propose an improved version of 
ORUNADA named Streaming-ORUNADA. This later considers multi aggregation level in order to 
spot more anomalies and the evolution of the feature space over time. It is inspired from 
streaming clustering algorithms as it track clusters and outliers over time, hence the name of 
this new detector Streaming-ORUNADA. For the implementation of Streaming-ORUNADA, we take 
advantage of an existing cluster computing framework Spark Streaming, therefore the 
implementation is called Spark-Streaming-ORUNADA and is available on the ontic gitlab at the 
following address https://gitlab.com/ontic/wp5-laascnrs-orunada. 

This section starts with a formal definition of an anomaly. Then, it describes in three steps our 
solution: the data preprocessing step, the incremental clustering step, and the post-processing 
step. Finally, the validation of our solution using the ground truth presented in section 4 is 
presented. Details about the implementation of our algorithm on Spark, the Google Dataproc 
platform used for the validation and the platform parameterization is given in the following 
section, i.e. section 6 of the deliverable. 

5.1 Definition of an anomaly 
An anomaly is usually defined as a flow which is different from the other flows. However, this 
definition is quite vague, that is why we define, in the following, more precisely what we 
consider as an anomaly in our solution.  

First, we make some assumptions about the nature of the anomalies that a network 
administrator wants to be aware of and how these anomalies should appear using clustering 
techniques. First, let’s introduce some concepts of clustering techniques applied to network 
anomaly. Usually the data to partition is represented by a matrix where each line represents a 
flow and each column a statistic. This matrix is called the space or feature space. Each flow 
represents a point of the space and the coordinates of the point are the statistics of the flow. 
The set of points is the space. A clustering algorithm applied on a space (the data matrix) output 
a partition of the feature space. It identifies clusters (group of points which are close to each 
other according to a given distance function) and outliers. An outlier is a point which is isolated. 
The following figure shows the result of a clustering algorithm (a partition of the feature space): 
two clusters and two outliers can be clearly identified. 
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Figure 8: Partition of a space with two clusters and two outliers 
 

 In the following we assume, that any network administrator wants to be aware of rare events 
going on in the network, this event should be rare not only at a given time, but also considering 
the traffic history (see issue 4 of current unsupervised network anomaly detector presents in 
section 5). We define a rare event as either: 

 A flow different from the others which was not different in the past. Indeed, if a flow is 
always rare in the same way (the flow set of statistic stay the same over time), this latter 
may not interest the network administrator. It may be just a flow induced by a particular 
server on the network, like the flow induced by the google DNS server. Such an anomaly 
may appear as a new outlier in a space. 

 A flow different from the others whose statistics suddenly change. Indeed a flow which is 
always different from the other may not be considered as an anomaly. However, if its 
statistics change suddenly, it means that something “special” like an attack or a failure is 
happening on the server. Therefore, such a flow needs to be considered as an anomaly. 
Such a flow may appear as an outlier shifting suddenly in the space. 

 A set of flows which appear or disappear suddenly. This set of flows can be, for example, 
induced by a DDOS. For example, when a server is under a DDOS the number of flows 
targeting this network may increase in a significant way. Therefore, the cluster 
representing the set of flows targeting this network may increase drastically. Such an 
anomaly may appear as a change (increase or decrease) in the size of a cluster or as the 
disappearance or appearance of a new cluster. 

By using clustering techniques, these rare and interesting events for a network administrator can 
be defined in a formal way. To define them, three new parameters (in addition to the clustering 
parameters) are considered:  

1. Thist. This parameter represents the length of the historic in second that is considered. A 
cluster or an outlier is considered as new in a space if it was not present in this space 
during the This last seconds. This value should be set according to the capacity of 
memory of the machine running the detector. It also should not be too long in order to 
adapt to the network traffic changes. 

2. Nclust. This parameter is a threshold, when the number of points of a cluster change (it 
increases or decreases of at least Nclust points) the cluster (and all the flows that it 
contains) can be considered as an outlier.   

3.  . This parameter is a threshold, if a point (flow) moves of a least a distance   during 
the This last seconds. We consider that the flow statistics changed.  

We define formally an anomaly as either: 

1. A flow   which is an outlier in a space S and has never been detected as an outlier in S 
before (i.e. during the last This  seconds). 

2. A flow   detected as an outlier in a space which shifted by a distance of at least   during 
the This last seconds. 

3. A cluster C which disappears  

4. A cluster C which did not exist during the This last seconds. 
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5. A cluster C whose size changes of at least Nclust points during the This last seconds. 

5.2 Data preprocessing 

Before applying any unsupervised network anomaly detectors, the network traces must be 
collected on the network link in time slots. To collect the traffic, our solution relies on a 
discrete time sliding window. This window slides every micro-slot. At each slide, the traffic must 
then be processed in order to compute N data matrix X, one for each aggregation level. Each 
data matrix represents a different summary of the incoming traffic. 
 
To collect the traffic, our solution relies on a discrete time sliding window. This window allows 
generating in a continuous manner N data matrix by micro time slot and thus, to detect in 
continuous the anomalies. Furthermore, each data matrix must be normalized. Many data mining 
techniques used to detect anomalies are sensitive to features that have different range of 
values. Indeed, features with high values often hide features with lower values. Therefore, it is 
very important to normalize the data. Furthermore, this normalization needs to evolve with the 
traffic characteristics. 
 
First, this subsection describes the functioning of the discrete sliding window. It then presents 
the N different aggregation levels and their associated features. Finally, it describes an adaptive 
normalization method. 
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6 The discrete time sliding window 
The detection is usually performed on network traffic collected in large time-slots implying long 
period of time between an anomaly occurrence and its detection. To overcome this issue, we 
propose to use a discrete time-sliding window in association with an unsupervised network 
anomaly detector. The proposed method is generic: any sufficiently fast and efficient detector 
can benefit from the proposed solution to reach continuous and real-time detection. 
The traffic has to be collected in large time-slots of length ∆T in order to gather enough packets 
to catch flows patterns. Evaluations presented in [22] showed that time-slots of 15 seconds give 
good results in terms of detection performance (TPR and FPR).  
 
Collected traffic is then aggregated into flows using N different aggregation levels. In the 
following, we decide to use 7 different aggregation levels that will be described later. 

Therefore, our solution outputs 7 different data matrices            . 
 
Every flow is described by a set of features (these features are different according to the 
aggregation level used to generate the flow) stored in a vector. All the vectors generated with 
the same aggregation level are then concatenated in a normalized matrix   ,         is the 
aggregation level. The network anomaly detector processes independently every data matrix. 
The process of consecutive time-slots is illustrated in Figure 9. 

 

 
Figure 9: Computation of the N feature spaces at the end of every time slot (or window) of length ∆T 
 
 To avoid that attacks damage the network, network anomalies have to be rapidly detected. To 
speed up the anomaly detection, we propose to update the N feature spaces and launch the 
detection in a near continuous way, i.e. every micro-slot of length δt seconds. However, if a 
feature space is computed with only the network traffic contained in a micro-slot, it may not 
contain enough information for the detectors to identify flows patterns and thus anomalies. To 
solve this issue, we use a discrete time sliding window of length ∆T. The time window slides 
every micro-slot of length δt. When it slides, the feature space is updated. The feature space is 
the summary of the network traffic collected during the current time-window (see Figure 10). 

 

 
Figure 10: Computation of the N feature spaces at the end of every micro-time slot of length δt 
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A discrete time-sliding window is made up of M micro-slots with           . To speed-up the 
computation of a feature space  , the sliding window associates to each of its M micro-slots a 
micro-feature space   . Each micro-feature space is computed with the packets contained in its 
micro-slot. 
For every aggregation level, the current window stores M micro-feature spaces in a FIFO queue Q 
=                      denotes the micro-feature space computed for one aggregation 
level with the packets contained in the newest micro-slot and     in the oldest. For a given 
aggregation level, when the window slides a new feature space denoted      can be computed 
as follows: 

 

                      
 
where      is the previous feature space and       the new micro-feature space. Finally, the 
FIFO queue is updated,       is added to the FIFO queue and,     is removed. To benefit 
from these feature space updates, we devise a detector algorithm capable of detecting in 
continuous anomalies. To reach this goal this detector is based on a distributed algorithm and 
each parallel task is based on an incremental grid clustering step which has a low complexity. 

6.1.1 Description of the aggregation levels and their associated features  

Incoming packets are collected in consecutive time bins ∆T and aggregated into flows according 
to different aggregation levels. An aggregation level can be described by a filter and a flow 
aggregation key. Incoming packets are first filtered and then grouped into flows according to a 
flow aggregation key. A flow aggregation key specifies a set of fields to inspect in a packet. 
Packets with similar values for these fields are aggregated into flows. Each flow is then 
described by a set of attributes or features. Anomalies identified by a detector may be different 
according to the aggregation level used. Therefore, we apply different aggregation level to the 
incoming traffic. For every aggregation level   at the end of every time bin, it outputs a set of 

flows forming a feature space   . We use seven different aggregation levels. Every aggregation 
level is described in Table 3. This table displays for every level its filter, its flow aggregation key 
and the features used to describe a flow. To compute a feature space, they consider every 
packet of flows in the current time slot (window). Some features are based on the entropy, as 
previous studies showed that the distribution of some traffic features may reveal anomalies [7]. 
For example, for the aggregation level at the IP source, we compute the entropy of the source 
and destination ports and the entropy of the IP destinations. A high entropy of the IP 
destinations and a low entropy of the source ports imply that the distribution of the source ports 
is very sparse while the distribution of the IP destinations is very dense and this may reveal a 
port scan.  

Table 3: Description of the different aggregation levels and associated features 

Aggregation 

level 

Filter Aggregation 

Key 

Features Number of 

Features 

1 TCP 
packets 

TCP socket 
pair 

nbPacketsIP1, nbPacketsIP2, nbSyn, 
nbAck, nbCwr, nbUrg, nbPush, nbRst, 
nbFin, bytesIP1, bytesIP2, land, 
nbChristmasTree, nbMoreFrag 

14 

2 UDP 
packets  

UDP socket 
pair 

nbPacketsIP1, nbPacketsIP2, bytesIP1, 
bytesIP1, land, nbMoreFrag 

6 

3 ICMP 
packets  

pair of IP 
addresses 

nbPacketsIP1, nbPacketsIP2, bytesIP1, 
bytesIP2, land, nbReply, nbEcho, 
nbOther, nbRedirect, nbUnreach, 
nbTimeExceeded,  nbMoreFrag 

12 

4 No pair of IP 
addresses  

nbPacketsIP1, nbPacketsIP2, nbSyn, 
nbAck, nbCwr, nbUrg, nbPush, nbRst, 
nbFin, bytesIP1, bytesIP2, land, 
nbChristmasTree, nbTimeExceeded, 

24 
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nbUnreach, nbEcho, nbRedirect, 
nbReply, entPortIP1, entPortIP2, 
nbICMPOther, nbMoreFrag, 
nbPacketsTCP, nbPacketsUDP 

5 No IP source nbPackets, nbSyn, nbAck, nbCwr, 
nbUrg, nbPush, nbRst, nbFin, bytes, 
nbland, nbChristmasTree, 
nbTimeExceeded, nbUnreach, nbEcho, 
nbRedirect, nbReply, entPortSrc, 
entPortDst, nbICMPOther, nbMoreFrag, 
nbPacketsTCP, nbPacketsUDP, 
entIPSrc, simIPSrc,  

24 

6 No IP 
destination 

nbPackets, nbSyn, nbAck, nbCwr, 
nbUrg, nbPush, nbRst, nbFin, bytes, 
nbland, nbChristmasTree, 
nbTimeExceeded, nbUnreach, nbEcho, 
nbRedirect, nbReply, entPortSrc, 
entPortDst, nbICMPOther, nbMoreFrag, 
nbPacketsTCP, nbPacketsUDP, 
entIPSrc, simIPSrc 

24 

7 No No nbPacketsIP1, nbPacketsIP2, nbSyn, 
nbAck, nbCwr, nbUrg, nbPush, nbRst, 
nbFin, bytesIP1, bytesIP2, land, 
nbChristmasTree, nbTimeExceeded, 
nbUnreach, nbEcho, nbRedirect, 
nbReply,entPortIP1, entPortIP2, 
nbICMPOther, nbMoreFrag, 
nbPacketsTCP, nbPacketsUDP 

24 

 
 
We also use the TCP socket pair and the UDP socket pair as aggregation levels. A socket pair is a 
unique 4-tuple consisting of source and destination IP addresses and port numbers.  
 
Packets are collected on a large network link in consecutive time slots. For every aggregation 
level except for the aggregation level 7, our solution computes a large set of flows at every time 
slot. This set is assumed to be large as our solution is applied on the traffic captured on a large 
network link. However, for the aggregation level 7, only one flow is computed at each time slot. 
This unique flow summarizes the behavior of the entire link. Therefore, our solution is slightly 
different when it processes flows computed at the aggregation level 1, 2, 3, 4, 5, 6 and glows 
generated with the aggregation level 7.  
 
 For the aggregation level 1, 2, 3, 4, 5, 6, flows computed during a time slot are directly 
partitioned using the solution presented thereafter. However, for the aggregation level 7, a 
certain number of time-slots must pass to collect enough flow (one per time slot) to partition 
them. Once a set of N (with N large) flows are collected they can be partitioned. 

6.1.2 Feature space normalization 

In the following, data for each aggregation level is represented by a matrix   of size     where 
each row represents a point (or flow in our case)                 and each column a feature 
(or dimension). To apply data mining techniques, data features must be comparable and 
therefore have the same common domain. Data normalization refers to the creation of shifted 
and scaled versions of every feature. It allows mapping the features values via a transformation 
function in a common domain. After normalization, features values can be compared. As 
explained in [28], normalization may be sensitive to outliers and should be removed for the 
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normalization process. To overcome this issue, we propose a robust normalization method. It 
processes each feature independently and assures that most of the values are in the range      . 
The normalization of a feature takes place in two steps. First, it selects data situated between 
the   and the     percentile and remove the lowest and the largest values and therefore, 
potential outliers. It then computes the feature max and min value.  
In a second step, it applies the maxmin normalization, using the max and the min value 
computed during the first step. Therefore, for a point represented by a vector  , its normalized 
vector is denoted       can be computed as follows: 

       
              

          
 

 
with            and            are respectively a vector made up of the min and max value of 
every feature computed during the first step. The max and min values for every feature are 
stored in order to re-use them to normalize the data obtained in future slots. 
 However, data may evolve in time, therefore they should be recomputed to adapt to network 
changes. These values should be recomputed when an important percentage of the normal data 
do not lie any longer under the max and min value of the feature. We make the assumption that 
an anomaly is a temporal event and should then not last longer than   slots. Therefore, the max 
and min values of a feature should be recomputed if the percentage of data not lying between 
the   and the      percentile for at least   slots is superior to a certain threshold in order to 
ensure that this shift in the feature distribution is not induced by an anomaly. To summarize, 
the max and min value of a feature is recomputed when the percentage of the data lying in the 
  and the      percentile is under a threshold    (for example 90%) during more than   slots 
(for example      equals 60 minutes). 

6.2 The clustering step 
Every feature space (or data matrix X) is then processed independently and partitioned in order 
to identify the clusters and outliers in the data. In order to overcome the curse of 
dimensionality, the feature space is split in different subspaces, each being processed 
independently. The curse of dimensionality phenomena occurs with high dimensions. In high 
dimensions distance becomes meaningless and every point tends to become an outlier. Due to 
this curse, unsupervised network anomaly detectors tend, in high dimensions, to detect every 
flow as an outlier, i.e. as an anomaly. Our solution is a robust and efficient detector which 
addresses this issue by applying subspace clustering and evidence accumulation techniques. It 
divides the whole space in subspaces and partitions each subspace independently. To speed up 
the execution time of the clustering step, it takes advantage of a grid and incremental clustering 
algorithm. Instead of clustering directly points, grid clustering algorithms divide the feature 
space in cells where points are placed and partition the cells. As the number of cells is much 
lower than the number of points, their complexity is lower than usual clustering algorithms 
which cluster points like DBSCAN and K-means. 
 
Among available grid clustering algorithms, GDCA (Grid Density-based Clustering Algorithm) [29] 
offers many advantages; it is a density based grid clustering, able to discover any shape of 
clusters and to identify noise. Our solution takes advantage of both the discrete time-sliding 
window and the incremental grid clustering algorithm IGDCA. Our solution can be divided in 
three steps. The preprocessing step during which each feature space   is updated every micro-
slot and then divided in   two-dimensional subspaces: (         ).Next, the clustering step 
updates the partition of each subspace. To update the partition of a subspace   , IGDCA needs 

as input the points to add   
    and the points to remove   

    from the previous partition   
   . 

Thus, for each subspace, two matrices are provided in order to update its partition. It can be 

noticed that the current subspace   
    can be computed from these two matrices and the 

previous subspace denoted   
    as follows: 
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For every subspace, IGDCA outputs a new partition   
   . Among available grid clustering 

algorithms, DGCA (Density Grid-based Clustering Algorithm) [29] offers many advantages; it can 
discover any shape of clusters and identify outliers. In DGCA, a group of consecutive dense cells 
forms a cluster. For our solution we have slightly modified DGCA. We denote              a   
dimensional space where              are the dimensions of  . Our modified version of GDCA 
takes as input a feature space X of size         made up of k-dimensional points. DGCA can be 
divided into four steps: 

1. The space is divided into non-overlapping rectangular units or cells. The units are 
obtained by partitioning each dimension into intervals of size  . Each unit has the form 
            where               is a right open interval in the partitioning of   . 

2. Points are placed into the cells. Cells containing at least              are marked as 
dense units. A point               belongs to a unit             if              for 
all   . 

3. Set of connected dense units are grouped together to form a cluster. Two k-dimensional 
dense units    and    are connected if they have a common face or if there exists 
another k-dimensional unit   such that    is connected to    and   is connected to   . 
Units                                 have a common face if there are     
dimensions, assume           such that          for all i in          and either     
     or         . 

4. It returns the clusters whose number of points is superior to           . 
5. Points situated in cells which do not belong to any cluster are considered as outliers. Let 

  be the total number of points,   the number of cells,    the number of non-empty 
cells, and    the number of dense cells, DGCA time complexity is then      
            . 

For the sake of comparison, DBSCAN complexity is       and             when used with an 
Rtree index. Therefore, and as usually             holds, DGCA has a lower complexity than 
DBCAN. There is an incremental version of GDCA called IDGCA (Incremental DGCA). IDGCA is able 
to update a feature space partition and, for a given input, outputs the same partition as DGCA. 
IGDCA requires three input parameters (the same as GDCA):   the length used to divide each 
dimension into intervals,             the minimum number of points in a dense unit (or cell) 
and             the minimum number of points to return a cluster. As in GDCA, the space is 
divided into non-overlapping rectangular units or cells. The units are obtained by partitioning 
each dimension into intervals of length   . At each feature space update, IDGCA upgrades the 
previous partition. It takes as inputs the points to add     , the points to remove      and the 
points to update     from the previous partition. At each feature space update, IGDCA upgrades 
the previous partition in five steps: 

1. For each point          , IDGCA identifies its new unit        and its previous unit      

(the unit to which it belonged at the last update). If      is different from     , IGDCA 
removes the point   from       and adds it to      . It then removes every point       
      from its unit and places every point             into its unit. 

2. It then computes two lists: the list of new dense units                   and the list of 
old dense units                    The first list contains the units which are now dense 
and were not dense in the previous partition. The second list contains the units which 
were dense in the previous partition and which are not dense any longer. 

3. Every unit   in                   is then processed and a list of units to re-partition 
              is built. For each unit                     . IDGCA removes   from the 
cluster   to which it belongs. If the unit   has two neighboring units which belong to the 
cluster  , then all the units of the cluster which are still dense are put in l             
and the cluster is removed. Indeed, if the unit has two neighbors belonging to the 
cluster, its removal from the cluster may lead to a division of the cluster into two little 
clusters. Therefore all the units of the cluster which are still dense need to be re-
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partitioned. Once every unit in                   has been processed, the dense units in 
              are grouped to form clusters. Set of connected units forms a cluster. 

4. Every unit   in                   is processed. Each unit can either (1) form a new 
cluster (2) be absorbed by an existing cluster (3) or merge multiple clusters in one. If the 
unit   has no neighboring dense unit, IDGCA creates a new empty cluster to which it adds 
 . If the unit   has at least one dense neighboring unit and this dense neighboring unit(s) 
belong to the same cluster, IDGCA adds   to this cluster. If the unit   has two or more 
neighboring dense units belonging to different clusters, IDGCA merges these clusters in 
one and adds   to this new cluster. 

5. It returns the clusters whose number of points is superior to           . Points which do 
not belong to any of these clusters are considered as outliers. 

Our solution takes advantage of both the discrete time sliding window and the incremental grid 
clustering algorithm IDGCA in order to process efficiently every subspace. 

6.3 Anomaly identification 
Every aggregation level is processed independently using the incremental grid clustering 
presented above. A history of the output of every partition (i.e. one for every subspace of every 
aggregation level) clustering is then made. Our solution stores for every subspace for the last 
Thist last seconds: 

 All the outliers found with the respective unit they belong to. 

 A summary of every cluster. This summary contains a list of the units of the cluster and 
the size (number of points) of the cluster 

Then using the definition of an anomaly presented in section 5.1, it identifies the anomalies 
found in every subspace. Thus, it spots as an anomaly:  

1. Every flow   detected as an outlier in the partition of a subspace and which has never 
been detected as an outlier during the This  last seconds. 

2. Every flow   detected as an outlier in the partition of a subspace and which slides of at 
least a distance   during the This last seconds 

3. Every cluster   which did not exist during the This last seconds. 

4. Every cluster   whose size changes of at least Nclust points during the This last seconds 

The processing of one aggregation level is described in Figure 11. 
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Figure 11: Processing of one aggregation level  

 

6.4 Distributed implementation of our solution using Spark Streaming  
Our solution is implemented in a distributed way. Every aggregation level and every subspace in 
every aggregation level can be performed in parallel. Therefore, to speed up the execution time 
of our solution, our solution is implemented to be distributed on a cluster of servers using Spark 
and more precisely Spark Streaming. We use Spark Streaming as our solution deals with a 
continuous stream of network traffic. 
 

6.4.1 Spark Streaming 

Many applications benefit from acting on data as soon as it arrives. Spark Streaming is Spark’s 
module for processing streaming of incoming data. Much like Spark, it is built on the concept of 
RDDs, Spark Streaming provides an abstraction called DStreams, or discretized streams. A 
DStream is a sequence of data arriving over time. Internally, each DStream is represented as a 
sequence of RDDs arriving at each time step (hence the name “discretized”). DStreams can be 
created from various input sources, such as Flume, Kafka, or HDFS (in our case we use HDFS as 
input source). Once built, they offer two types of operations: transformations, which yield a new 
DStream, and output operations, which write data to an external system. DStreams provide 
many of the same operations available on RDDs, plus new operations related to time, such as 
sliding windows. 

6.4.2 Implementation of the sliding window 

In order to implement the sliding window of our application, our solution takes advantage of the 
windowed computations provided by Spark Streaming. This later allows applying transformations 
over a sliding window of data. Figure 12 illustrates Spark Streaming sliding window principle. 
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Figure 12: Spark Streaming sliding window principle 
 
Any window operation needs to specify two parameters: 

 The window length - The duration of the window (3 batch intervals in Figure 12). It 
represents a time slot in the context of our solution. 

 Sliding interval - The interval at which the window operation is performed (2 batch 
intervals in Figure 12). It represents a micro-slot in the context of our solution. 

Our solution takes advantage of the transformation                       .The reduce value 
obtained with this transformation is calculated incrementally. At each slide, the current 
DStream is reduced taking in consideration the new data that enters the sliding window, and 
“inverse reducing” the old data that leaves the window. 

6.5 Validation of our solution using the ground truth 
To validate our solution, we use the ground truth generated in the context of the ONTIC project 
and presented in section 4. These synthetic traces contain two kinds of network anomalies: 

 Anomalies already existing in the real-life dataset (ONTS dataset) 

 Anomalies artificially injected  
We already showed that there were anomalies in the real-life dataset. These anomalies were 
found by manual inspection and using our detector. Furthermore, in section 4 we showed that 
our solution detects all the anomalies found manually in the traces plus two more. 
To validate our solution, we verify that our detector is able to find the synthetic anomalies built 
with CORE and injected in the traces.  For every anomaly injected in the traces, we identify the 
aggregation level(s) where the anomaly is detected. The results of the validation are displayed 
in Table 4. 
 

Table 4: Results of the validation of our solution using SynthONTS 

Type of 

the 

anomaly  

Anomaly Aggregation level (aggregation key) 

Scan 
 

IP protocol scan  
- Attacker  : 169.254.8.20 
- Target: 217.75.224.0/24 and only 

the machines .1, .70 and .60 exist 

 ipDst 

 P2P 

 ipDst  

 ICMP 

 TCP 

Null scan 

- Attacker: 169.254.8.20 
- Target : 217.75.224.70 

 ipSrc  

 P2P 

 ipDst   

 TCP  

Ping scan 

 Attacker: 169.254.8.20 

 Target: 217.75.224.0/24 and only 

 ICMP 

 P2P 
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The validation shows that our detector is able to detect every anomaly. However, no 
aggregation level can detect every network anomaly. This validation shows that  

 It is very important to use multiple aggregation levels to get different views of the data. 

the machines .1, .70 et .60 exist 

Port scan OS (n10) 

 Attacker : 169.254.8.20 

 Target : 217.75.224.70 
 

 ICMP  

 TCP 

Net scan OS 

 Attacker : 169.254.8.20 

 Target : 217.75.224.0/24 and only 
the machines .1, .70 et .60 exist 

 IPDst 

TCP connect scan 

 Attacker : 169.254.8.20 

 Target : 217.75.224.70 

 TCP 

 P2P 

 IPDst 

TCP Syn scan 

 Attacker : 169.254.8.20 

 Target :217.75.224.70 
 

 TCP 

 P2P 

 IPDst 

UDP scan 

 Attacker : 169.254.8.20 

 Target : 217.75.224.70 
 

 P2P 

 IPDst 

Christmas Tree scan 

 Attacker :169.254.8.20 

 Target : 217.75.224.70 

 P2P 

 TCP 

 IPDst 

DDOS Smurf 

 Attacker: 169.254.8.20 

 Amplifier: 217.75.224.0/24  

 Target: 217.75.224.70 
 

  Flow 

 ipSrc 

 ipDst 

 P2P 

 ICMP 
UDP 

Fraggle  

 Attacker: 169.254.8.20 

 Amplifier: 217.75.224.0/24  

 Target: 217.75.224.70 

 Flow 

 ipSrc 

 ipDst 

 P2P 

 ICMP 

 UDP 

 

DDOS Syn flooding 

 Attacker: 169.254.8.20 

 Amplifier:217.75.224.0/24  

 Target: 217.75.224.70 
 

 Flow 

 TCP 

 IPSrc 

 ipDst 

 P2P 

 

 
DOS 

UDP flood 

 Attacker: 169.254.8.20 

 Target:217.75.224.70 
 

 UDP 

 P2P 

 IPDst 

 IPSrc 

 

DOS Syn flooding 

 Attacker: 169.254.8.20 

 Target: 217.75.224.70 
 

 TCP 

 P2P 

 IPSrc 

 IPDst 

 

Other Other SSH brute force  Not found  
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 Computing only statistics on the entire network (aggregation level 7) which is often done 
to gain time does not allow detecting only huge anomalies. Indeed, these statistics only 
give a coarse view of the network. 
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7 Experimentation and validation on the Google Cloud 
platform 

 

The Google Dataproc allows running powerful and cost-effective Apache Spark and Apache 
Hadoop clusters easily on the Google Platform. Using a simple interface, clusters can be easily 
and quickly created. They can be resized at any time: from three to hundreds of nodes and run 
Spark or Hadoop applications. The Google DataProc also provides the Spark and Hadoop 
ecosystem tools, libraries, and documentation and offers frequently updated and native versions 
of these tools. It provides the latest version of Spark (Spark 2.0.2) and Hadoop (Hadoop 2.7).  
For its ease and flexibility of utilization, its high-quality documentation and its up-to-date Spark 
and Hadoop versions, we decide to run our solution on the Google Dataproc. 

7.1 Cluster configuration 

Our cluster is made up of only one type of machine with 8 vCPU* and 30GB of memory. According 
to the Google Cloud Platform documentation, a vCPU is a virtual CPU, it is implemented as a 
single hardware hyper-thread on whether a 2.6 GHz Intel Xeon E5 (Sandy Bridge), or a 2.5 GHz 
Intel Xeon E5 v2 (Ivy Bridge), or a 2.3 GHz Intel Xeon E5 v3 (Haswell), or a 2.2 GHz Intel Xeon E5 
v4 (Broadwell). We use different number of machines in the cluster according to experiments. 
For every experiment, we specify the number of machines used in the cluster. We could take 
advantage of more powerful machines with more vCPU or more memory. However, using 
machines with 8 vCPU* and 30GB of memory is a good compromise between quality/price.  

7.2 Key performance considerations 

Spark is designed so that default settings work "out of the box" in many cases; however, there 
are many parameters to consider so that a Spark application takes advantage efficiently of the 
cluster of servers. The Google Dataproc relies on Yarn cluster manager to manage the cluster 
resources. YARN is a cluster manager introduced in Hadoop 2.0 that allows diverse data 
processing frameworks to run on a shared resource pool, and is typically installed on the same 
nodes as the Hadoop FileSystem (HDFS). The main advantage of running Spark on YARN allows 
Spark to access HDFS data quickly, on the same nodes where data is stored. This section 
presents some key points (tuning resource allocation, the level of parallelism and the 
serialization) to consider to take advantage of the resources of a cluster when launching a spark 
application using Yarn as a resource manager. 

7.2.1 Tuning resource allocation 

The hardware resources allocation has a significant effect on the completion time of a Spark 
application. The main parameters affecting a Spark application are the amount of memory given 
to each executor, the number of cores for each executor, the total number of executors, and 
the number of local disks to use for scratch data. These parameters can be set using Spark or 
Yarn properties. Spark properties control most application settings and are configured separately 
for each application. These properties can be set directly on a SparkConf object passed to your 
SparkContext. SparkConf. The SparkConf object allows configuring some of the common 
properties (e.g. master URL and application name), as well as arbitrary key-value pairs through 
the set() method. To improve the hardware provisioning of our application, we consider the 
following Spark properties: 

1. The dynamic allocation. Selecting the right number of executors in Spark is a challenging 
task. Therefore, Spark allows dynamic resource allocation. The dynamic resource 
allocation allows a dynamic scaling in the number of executors up and down based on the 
workload. To enable dynamic resource allocation the parameter 
"spark.dynamicAllocation" has to be set to true. By default, it is set to false. However, 
we noticed that Google Dataproc sets it to true by default. By enabling the dynamic 
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allocation, there is no need to configure any longer the number of executors using the 
spark.executor.instances property. 

2. The spark executor memory overhead. It is the amount of off-heap memory (in 
megabytes) to be allocated per executor. The off-heap memory accounts for things like 
VM overheads, interned strings, other native overheads, etc. It can be tuned using the 
spark.yarn.executor.memoryOverhead property. It is set by default to executorMemory * 
0.10, with minimum of 384MB. As our solution needs to cache data due to its incremental 
nature, the off-heap memory must be quite large to fit in memory and runs faster. 

3. The garbage collector used by the executors. Spark default garbage collector is the 
parallel collector. The parallel collector is known to cause unpredictably large pauses 
due to garbage collection. Therefore, we decide to use the Java’s Concurrent Mark- 
Sweep garbage collector as recommended in Spark documentation in the case of Spark 
streaming application. This later consumes more resources overall, but introduces fewer 
pauses. To specify the garbage collector of each executor, Spark allows via the 
spark.executor.extraJavaOptions passing a string of extra JVM options. To modify the 
garbage collector, we set the spark.executor.extraJavaOptions property to -
XX:+UseConcMarkSweepGC. 

4. The executor memory. The heap size of each executor is controlled by the 
spark.executor.memory property. As our application needs to create many objects, one 
per flow, this later needs to be quite important. By default, it is set at 1 GB. 

Furthermore, we also consider the following Yarn properties: 

 The maximum sum of memory used by the containers on each node. This can be set using 
the following YARN properties yarn.nodemanager.resource.memorymb. 

 The maximum sum of cores used by the containers on each node. This can be set using 
the following YARN properties yarn.nodemanager.resource.cpuvcores.  

We noticed that the Google Dataproc computes optimal values for Yarn and Spark properties 
presented above. Figure 13 shows the hierarchy of memory properties in Spark and YARN. A well 
understanding of Yarn and Spark memory allocation can help setting their properties. 

 

 
Figure 13: Spark and Yarn memory allocation 

 
Table 5 shows the value used for Spark properties in order to tune the cluster resources 
allocation, knowing we use machines with 8vCPU and 30GB of RAM. 
 

Table 5: Spark and Yarn properties 

Spark Property Default Value 

spark.dynamicAllocation False True 

spark.executor.memory 1G 20GB 

spark.yarn.executor.memoryOverhead executorMemory * 0.10, 
with minimum of 384MB 

2GB 

spark.executor.extraJavaOptions Non -XX:+UseConcMarkSweepGC 

yarn.nodemanager.resource.cpu-
vcores 

8 16 

yarn.nodemanager.resource.memory-
mb 

8192 MB 50G 
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7.2.2 Level of parallelism 

Out of the box, Spark will infer what it thinks is a good degree of parallelism for RDDs, and this 
may be insufficient for many use cases. Input RDDs typically choose parallelism based on the 
underlying storage systems. For example, HDFS input RDDs have one partition for each block of 
the underlying HDFS file. 
However, our input files are often small (less than one block of HDFS file (by default a block is 
64 MB)). Therefore, by default spark is going to create only one task to process an incoming 
ONTS text file. For a Spark streaming application, we identify four techniques to increase its 
level of parallelism and we consider them all in our solution: 

 Increasing the number of inputDStreams. In our solution, the incoming files are processed 
one by one (one file represents the set of data collected during one micro slot). It 
creates one task per input file. In order to improve parallelism, we decided to split every 
file in smaller files, so that Spark creates multiple tasks which can be processed in 
parallel. Therefore, we decide to create 7 files per micro-slot, each file contains the 
summary of the packets collected during the current micro-slot for one aggregation level. 
As our solution uses 7 aggregation levels, it takes as input at each micro slot 7 test files. 

 For some operations the level of parallelism can be specified like for reduceByKey() , 
updateStateByKey(), reduceByKeyAndWindow(). 

 Use the spark.default.parallelism property. For distributed shuffle operations 
like reduceByKey() and join(), the default number of partitions of a RRD equals the 
largest number of partitions in a parent RDD. For operations like parallelize with no 
parent RDDs, it depends on the cluster manager. This parameters allows to set the 
default number of partitions in RDDs returned by transformations like join(), 
reduceByKey(), and parallelize when not set by user. 

Spark can be explicitly repartitioned the input stream using the function repartition() on a 
Dstream. Spark launches for a RDD as many parallel tasks as there are partitions for this RDD. 

7.2.3 Serialization 

Serialization plays an important role in the performance of any distributed application. Indeed, 
each time Spark is transferring data over the network or spilling data to disk, it needs to 
serialize objects into a binary format. Formats that are slow to serialize objects into, or 
consume a large number of bytes, will greatly slow down the computation. By default, Spark 
uses the Java’s ObjectOutputStream framework. Java serialization is flexible but often quite 
slow, and leads to large serialized formats for many classes. 
Kryo serialization allows faster serialization times and a more compact binary representation, 
but cannot serialize all types of objects “out of the box.” 
In our application, we use the Krio Serialization. To use it, the spark.serializer setting must be 
set to org.apache.spark.serializer.KryoSerializer and all the classes that should be serialized 
with Kryo must be registered. Registering a class for Kry Serialization is quite straight forward. 
Here is an example of registering two classes for Kryo Serialization: 

 

val conf = new SparkConf() 
conf.set("spark.kryo.registrationRequired", "true") 
conf.registerKryoClasses(Array(classOf[MyClass], classOf[MyOtherClass])) 
 

7.3 Multi-Aggreg-ORUNADA stages 
At every micro-slot our solution is made up of one principal job with 8 stages (if the sliding 
window is split in two micro-slots) and three minor jobs for every inputDStream (we got 7 
inputDstream as we have one   per file). It takes as input in every micro-slot text files which 
contain a summary of the packets arrived during the current micro slot on the monitored link.  
The two first stages of the principal job can be skipped thanks to check pointing. Check 
pointing allows storing generated RDDs to a reliable storage (HDFS) and saving information 
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defining the streaming computation for fault-tolerant purposes. Figure 14 displays the job DAG 
(Directed Associated Graph).  A DAG represents the chain of RDD dependencies. Each blue, red 
and grey box represents a transformation on a RDD. We use a grey box for skipped operations, a 
red one for recovery of data from a checkpoint. Some set of operations are “pipelined” in a 
stage. It means that the result of a transformation is directly used as the input of another 
transformation and no data movement is performed.  Two stages are separated by a shuffle 
operation. The shuffle is Spark’s mechanism for re-distributing data so that it’s grouped 
differently across partitions. 

 
Figure 14: Directed Acyclic Graph of Multi-Aggreg-ORUNADA 
 
These 8 stages can be grouped in 4 steps: 

 The first step is made up of two stages. During the first stage, the text file generated 
during the previous micro-slot (and containing the data generated during the previous 
micro-slot) is uploaded and a RDD is generated. This latter is then repartitioned in a 
predefined number of partitions. However, the RDD generated during the previous micro-
slot is stored in a checkpoint. Therefore, there is no need to perform again these two 
stages which can be skipped. That is why these two stages are made up of grey boxes in 
Figure 14. 

 The second step is made up of three stages. The first one reads the incoming text file 
and creates a new RDD. It then repartitions this RDD. The obtained RDD is grouped with 
the RDD computed from the previous text file received during the previous micro-slot 
(stored in a checkpoint). To group these two RDD, our solution takes advantage of the 
reduceByKeyWindow() of the sliding window implemented in Spark Streaming. 

 The third step is made up of the sixth and seventh stages. The sixth stage computes the 
Space, to normalize the data and the different subspaces. The generated RDD is a set of 
subspaces. The seventh stage re-partitions the RDD in order to increase the number of 
partitions and improve parallelization. 

 The fourth step is made up of one stage. During this stage every subspace is partitioned 
using an incremental subspace clustering algorithm and anomalies are identified using 
the method presented in section 295. The result is then saved in HDFS. Furthermore, it 
takes also as entry a checkpoint which contains the partitions computed during the 
previous micro-slot. 

The final RDD generated during the second step from the incoming text file is saved in a 
checkpoint in order to be reused during the next micro-slot. Thus, the two first stages of every 
micro-slot can be skipped. Furthermore, the partitions obtained using the incremental grid 
clustering algorithm, are saved in a checkpoint. Therefore, these partitions can be reused during 
the next micro-slot. In Figure 14, the colors of the DAG obtained with Spark user interface are 
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modified: tasks dedicated to uploading check-points are in red. There is also three other minor 
jobs at each micro-slot which are dedicated to check-pointing tasks: the first one stores the RDD 
induced by the reading of incoming files, the second saves the subspaces partitions and the third 
saves the RDD created for updating the normalization process. 

7.4 Performance tests of our solution implementation using the 
Google DataProc 

We validate the online and real time performance of our algorithm using the Google  DataProc. 
We perform three experiments on the Google DataProc platform. The first one aims at 
evaluating the impact of the level of parallelism. The second aims at evaluating the 
performance of our application using different size of cluster.  

For these evaluations, we use 4 ONTS PCAP files named ONTIC_20150209110843.pcap, 
ONTIC_20150209112128.pcap, ONTIC_20150209113433.pcap and ONTIC_20150209114734.pcap. 
They were collected the 9th of February between 11:08 AM and 00:01 PM and represent of 384 
GB of network data. The following figure displays the number of packets per second in the ONTS 
traces during 10 days. The red circle represents the set of data selected for the evaluations. It 
can be noticed that the load of these selected traces is quite representative of the usual load of 
a working day. For these experiments, we use 3 different sizes of micro-slot 60 seconds, 120 
seconds and 240 seconds. 

 
Figure 15: Time series which displays the number of packets per second in the ONTS traces 

 
7.4.1 Impact of the level of parallelism 

The first experiment aims at evaluating the impact of the level of parallelism of our application 
run time execution. When Spark Streaming runs tasks, Spark can only run 1 concurrent task for 
every partition of an RDD. To modify the level of parallelism, it is possible to play on the number 
of partitions of the data. The number of partitions of a DStream (sequence of RDDs) can be 
modified easily using some Spark functions like repartition() and specify in many Spark functions 
like reduceByKey() , updateStateByKey(), reduceByKeyAndWindow(). 

As our application partitions each subspace independently and in parallel (the clustering is not 
distributed) the maximum level of parallelism equals to the total number of subspaces. We do 
not distribute the clustering step as it is an increment grid clustering algorithm with a low 
complexity. However, it could be possible to distribute it if needed, i.e. if a subspace has many 
points, the subspace could be split in multiple slices and each slice could be partitioned 
independently.  
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Table 6 summarizes the number of features and the number of subspaces per aggregation level. 
From this table we can conclude that the maximum level of number of partitions that should be 
used equals to 1288. 

 

Table 6: Number of subspaces per aggregation level 

Aggregation level Number of features Number of subspaces 

Flow 24 276 

ICMP 13 78 

IPDst 24 276 

IPSrc 24 276 

P2P 24 276 

UDP 6 15 

TCP 14 91 

Total 129 1288 

 

These experiments were performed using 1 master and 3 workers with 8 cores and 30 GB. 
Furthermore, the time window (or time slot is set to 120 seconds). The results of these 
experiments are presented in Table 7. 

 

 
Table 7: Impact of the level of parallelism (number of partitions) on the speed of our application 

Size of the micro-slot Number max of partitions Run-time execution of one 

micro-slot in minutes 

24 cores and 90GB 1 Out of memory issue 

24 cores and 90GB 3 30.4m 

24 cores and 90GB 5 15.5m 

24 cores and 90GB 40 3.2m 

24 cores and 90GB 60 2.9m 

24 cores and 90GB 80 3.2m 

From these results, we can notice that the rune time execution of our solution decreases till 
reaching a limit. Beyond a certain number of partitions the run time execution of our solution, 
increases slightly. These results can be explained by the fact beyond a certain number of 
partitions Spark overhead (serializing, repartitioning which leads to shuffling) is more important 
than the gain of creating a new partition. 

7.4.2 Impact of the size of the cluster 

The second experiment aims at evaluating the impact of the size of the cluster on the speed of 
our application. Once again, the performance of our application should not improve once there 
is more than one core per subspace, i.e. 1288 cores. For this experiment, we also use different 
level of parallelisms (i.e. different number of partitions). For each size of cluster, we display the 
best results obtained with the optimal number of partitions. For this experiment we use a micro 
slot of size 2M and a time slot (or size of the window) of 4m. The results are displayed in Table 
8. 

 

 
Table 8: Impact of the number of cores on the speed of our solution 

Total number of cores for Number max of partitions Run-time execution of one 
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the workers and RAM in the 

cluster 

micro-slot in minutes 

8 cores and 30GB 10 40.5m 

16  cores and 60GB 40 10.2m 

24 and 90GB 60 2.9m 

32 and 120GB 70 3.3m 

40 and 150GB 70 3.5m 

 

Once again we can notice that the rune time execution of our solution decreases till 
reaching a limit. Beyond a certain number of cores the run time execution of our solution, 
increases slightly. These results can be explained by the fact beyond a certain number of 
core Spark overhead (serializing, repartitioning, shuffling) is more important than the gain 
of adding new cores. 

 

7.4.3 Discussion 

The results obtained with spark streaming are not real-time, it takes at least a few minutes to 
process a micro slot. These results can be partially explained as follows: 

1. the small-files problem. HDFS deals with blocks of 64MB and our incoming text files are in 

average of 20 MB. Therefore, our inputs are not well suited to HDFS. 

2. Spark Streaming’s performance can be improved by using larger batches, but larger 

batches moves further away from real-time processing towards stored batch mode, and 

exacerbates the stream processing and real-time, time-based analytics issues. 

3. It consumes a lot of memory and issues around memory consumption are not handled in a 

user friendly Manner. 

4. Spark streaming is mostly used for web application which only does a simple process for 

every batch of data. We think that it is not well suited for our solution. Indeed, our 

solution needs to perform an extensive process at every batch of data. 

Furthermore, Spark Streaming tuning and configuration must be modified according to the size 
of the incoming data and is then not well suited to our use cases. Spark should allow a fast 
distribution of an application over a cluster of servers.   
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8 Network traffic forecasting 

One of the main research interests of the ONTIC consortium has been the possibility of making 
reliable forecasts of the dynamics of network traffic. To this end, during the first two years of 
the project the consortium has devoted efforts to conducting research in the field of time series 
analysis, as well as to producing software for transforming the ONTS traces into an adequate 
form for this purpose. 

Our previous analysis revealed interesting facts about the behavior of the traffic traces collected 
at SATEC-Interhost facilities, such as clear long-term regularities observed in the traffic volume. 

During the last year we have set out to determine the extent to which the behavior of network 
traffic, namely the number of traffic flows crossing the core network of an ISP, can be 
predicted. To this end, we have adopted to main measures: 

 An efficient method to incorporate long-range context into the input data for the 
forecasting models. 

 Aggregation to produce more coarse-grained but more accurate forecasts. 

 The use of state-of-the-art methods for time series analysis. 

The rest of this section is structured as follows: 

 Section 8.1 describes our approach to time series forecasting. 

 Sections 8.2, 8.3 and 8.4 describe the measures we have adopted to improve the quality 
of the forecasts. 

 Section 8.5 describes shows our experimental results. To validate the effectiveness of our 
methods, we have trained and evaluated models over one-week-long subsets of the ONTS 
traces from five different months. 

 Section 8.6 contains our conclusions and possible future research directions.  

8.1 Problem setting 

We consider time series of the form        , where   ,         represents the number of TCP 
connections active at time   in the analyzed network link. We have processed the ONTS data set 
as explained in deliverable D4.2 to obtain time series of a granularity of one second, that is, we 
have one measurement every second for all the processed time periods. Our goal is the 
following: given a set of   consecutive entries,             predict the next one:   .  

A successful method for this task is undoubtedly useful for ISP’s, as it can help in detecting 
anomalous behavior or in adequately provisioning resources so as to optimize costs without 
compromising availability. 

In deliverable D4.2 we described our first models for this purpose and showed the obtained 
results. We trained models to make predictions one, two and four seconds ahead. Even though 
some methods seemed to consistently outperform others, our forecasts of this kind at this scale 
were not much more accurate than what a naïve approach would achieve. We now describe the 
approaches we have taken to try to improve these results. 

8.2 Modeling exponentially wide context efficiently 

One of the reasons of the difficulty of predicting the behavior of network traffic is the lack of 
context. Presumably, to produce the best possible forecasts it is convenient to consider a 
reasonably sized interval of previous data. For instance, we can use the last 60 observations, 
corresponding to the last minute, and make a prediction based on their values. The problem 
with this approach is that we are only taking into account the most immediate events, but 
ignoring the context of long-term dynamics.  

To increase the amount of contextual information one can simply increase the size of the sample 
used to predict. Instead of 60 observations we can take 120. Unfortunately, this approach 
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doubles the dimensionality of the input data, which can have significant impacts on 
computational and statistical efficiency, providing only context for a period twice as long as the 
previous one. 

To tackle this problem we propose the following approach. As we look further back into the 
past, the most relevant elements of the information become more coarse-grained. Therefore, 
we can aggregate data from the distant past and, presumably, obtain almost as much 
information as we would be taking all observations into account. More precisely, we construct 
data instances as follows: 

 
{                           

Where  

       (where   is the set of intervals of consecutive observations) is an 
aggregation function.          for some     computes an aggregation of the values 
ranging from    to    in the given time series. 

   is the size of the forecasting window, that is, the number of observations that we 
use as input in each data instance. 

   is the exponential context degree, which we define as the base-2 logarithm of the 
width of the interval aggregated by  . 

This way we can incorporate exponentially wide time windows with a linear amount of data. As 
an example, consider we want to take a window of length 60 and exponential context degrees of 
1, 2 and 3. Then, a single data instance of our input data will be comprised of the following 
entries. 

                       

                                             

                                             

                                              

 

That is, with 240 data we are modeling the events up to 480 seconds in the past, which would 
require 480 data using all elements of the time series. 

8.3 Coarse-grained long-term forecasts 

Even though, as we showed in deliverable D4.2, the more complex methods such as artificial 
neural networks generally outperformed traditional approaches like ARIMA, they did so only by a 
small margin, and the average errors remained well over what could be deemed noticeably 
beneficial by a network service provider.  

The reason for this is the amount of noise present in the signal sampled at the one-second 
frequency. As shown in deliverable D4.2, the standard deviation of this time series after first-
differencing is most often around 100, which suggests that almost the totality of the changes 
observable in one-second intervals will lie below 300. At this scale, the dynamics of traffic loads 
are strongly subject to the intrinsic randomness of human behavior. This means that the exact 
amount of traffic flows could increase by 50 or drop by 100 in almost equal likelihood, 
depending mainly on unpredictable phenomena. 

To deal with this problem we propose to explore the predictability of our data at wider time 
ranges, by trying to forecast the mean values over a time period. The prospects of this approach 
are supported by both intuition and theory. Intuitively, the behavior of network traffic is 
expected to be more structured in the long term, where randomness plays a lesser part in the 
dynamics. Theoretically, the scale of aggregated observations increases linearly in the number 
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of components, while the standard deviation of Gaussian random variables increases as a 
fractional power. 

We therefore train our models not only to predict the exact value of the time series one or more 
seconds ahead, but also to predict the average value 2, 4, 8, 16, 32 and 64 seconds in advance. 
This of course results in more coarse-grained forecasts and therefore larger absolute errors, but 
as we show in our experiments, the error with respect to the variability of the data is decreased. 
Since the resulting forecasts are done further into the future, this might be very valuable for 
certain applications such as optimized resource provisioning. 

8.4 Convolutional neural networks 

Over the last ten years, research in the field of neural networks has experienced tremendous 
progress. Our preliminary experiments, described in deliverable D4.2, showed a slight advantage 
of neural networks over other models, so the ONTIC consortium has devoted efforts to explore 
these in more depth during the last year of the project. In particular, we have explored the 
applicability of convolutional neural networks. 

Convolutional neural networks were first proposed in the 1990s, but have only recently 
experienced widespread success, due to the availability of big data sets and the emergence of 
efficient techniques to train deep networks. Convolutional networks are adequate for any input 
data in which the topology of the features is meaningful, which is the case, for instance, of 
images, but also of time series. 

In addition to their ability to exploit the topology of the input data, convolutional neural 
networks are efficient thanks to weight-sharing, which helps reduce the number of parameters 
to be estimated. 

The way convolutional networks are employed is depicted in Figure 16. A set of convolutional 
filters, whose number and width are manually chosen, are learned for each exponential sub-time 
series, which act as separate input channels. After traversing all convolutional layers (whose 
number is also manually chosen), the input undergoes the transformations learned by a fully 
connected neural network. The resulting forecast is the value of a single, linear output unit. 

 

 
Figure 16 Convolutional neural networks for network traffic load forecasting 

8.5 Experimental results 

In order to confirm whether our proposed methods yield any improvement in the quality of the 
forecasts, we ran an extensive set of experiments on data extracted from the ONTS data set. 
Our main goals were the following: 

 To determine whether the exponentially wide context helps improve the quality of 
the forecasts. 
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 To determine whether our approach based on convolutional networks offers any 
advantage over regular fully connected networks. 

 To determine if better forecasts can be made at increased time scales. 

In a nutshell, the tests consisted in training the models on data from one time period (training 
set) and evaluating their ability to make predictions on data from a different one (test set). The 
training-test pairs employed are listed in Table 9. 

Table 9 Training-test set pairs for evaluation 

Task Training set Test set 

1 Weekend February Weekend March 

2 Weekend March Weekend April 

3 Weekend April Weekend June 

4 Weekend June Weekend July 

5 Weekend July Weekend February 

6 Weekdays February Weekdays March 

7 Weekdays March Weekdays April 

8 Weekdays April Weekdays June 

9 Weekdays June Weekdays July 

10 Weekdays July Weekdays February 

 

Given the significant differences in the behavior of network traffic during weekdays and 
weekends, we treated these two cases separately. The resulting tasks amount to 10 in total. 

We tested the abilities of the models to make forecasts at different time scales by aggregating 
data as explained in section 8.3. Specifically, we transformed the time series so that each entry 
represents the mean of 1, 2, 4, 8, 16, 32 and 64 steps ahead. 

We evaluated both artificial neural networks (ANN), that is, neural networks with fully 
connected layers, and convolutional neural networks (CNN). ANNs consisted of one hidden layer 
of 60 units. CNNs consisted of the same, plus one convolutional layer with 30 convolutional 
patches of width 15. 

Both networks were trained using the same approach. A random subset containing 10% of the 
data was kept for validation, unused for training. The training process went on until no 
improvement on the validation split was observed for 50 epochs. Afterwards, the weights that 
yielded the best validation error were kept. The network was designed using the keras1 library 
with the Theano deep learning framework as backend. We tune the hyperparameters of our 
convolutional neural network via random search The training was done on an Asus ROG Strix 
Geforce GTX 1080 Gaming 8GB GDDR5X GPU equipped with 2500 CUDA cores and 8GB of RAM. 
The whole process took around 5 or 6 days. 

All layers were slightly regularized using l2-norm penalty terms, 3.61924394389e-08 for fully 
connected layers and 2.47691881529e-08 for convolutional layers (these values were chosen via 
random search). Dropout, which is usually very effective for classification, was problematic for 
this task, so it was not used. 

The input data for each forecast consisted of the 60 previous entries (at a resolution of 1 second 
regardless of the aggregated steps ahead) with an exponential context degree of up to 2 (see 
section 8.2). In the case of ANNs, the input amounted to a180-dimensional vector, while in the 
case of CNNs it consisted of 3 channels of size 60 each. 

                                            
1 https://keras.io/ 
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In addition to ANNs and CNNs, we evaluated a naïve approach, which consisted simply in using 
the last observed value as a prediction. This allowed us to evaluate how much of an 
improvement our methods yield with respect to a straightforward, nearly zero-cost approach. 

8.5.1 ANNs and CNNs at different time scales 

Figure 17-Figure 36 show the mean absolute error (MAE) and the mean squared error (MSE) for 
the three approaches on each task. These plots trigger interesting insights. 

First of all, we can see that at very short-term forecasts, even though ANNs and CNNs tend to 
outperform the naïve approach, their edge is very small. This suggests, as we previously 
hypothesized, that the amount of noise at this time scale is too high, which would render the 
attempts to make reliable forecasts futile. At wider time scales, the improvement yielded by 
ANNs and CNNs is much more significant, suggesting that the use of these models is worth it if a 
network manager were to find their accuracy within acceptable margins for his or her demands. 

Second, certain apparently anomalous events seem to occur. In particular, the MSE attained by 
CNNs looks irregular in certain instances. The reason for this is most likely the fact that CNNs, as 
more complex models, have a stronger variance component built into their predictions. 
Therefore, even if their forecasts are more accurate in general, a few large errors can easily 
cause the MSE to skyrocket due to its quadratic nature. This hypothesis is supported by the fact 
that in those instances, the MAE does not present such anomalous behavior. In all likelihood, 
stronger regularization should be enough to combat this problem, although it remains to be seen 
the effect that would have on the overall error. 

Third, even though, contrary to our expectations, CNNs do not consistently outperform ANNs, a 
closer look at the plots reveals that this seems to be the case mostly for weekend data Figure 
17-Figure 26), whereas in weekdays (Figure 27-Figure 36) CNNs do perform significantly better 
than ANNs, save for some exceptions. The reason for this might be the fact that the ONTS traces 
are more structured during weekdays. On weekends, even though ANNs and CNNs seem to be 
able to capture the structure of the data at wide time scales better than the naïve approach, 
which one of the two ends up being better seems to be bound to the intrinsic randomness of the 
traffic behavior. 

Our conclusions after running these experiments can be summarized as follows. 

 First of all, it is necessary to remark how costly it is to use neural networks. Other 
approaches, while probably less effective, would have taken minutes or hours to train, 
whereas our networks took days using proper -though admittedly not the most powerful 
available- hardware. Even if the whole training process took almost 6 days, the necessary 
prior undertakings, involving hyperparameter search, fine-tuning and the trial of 
different architectures, took months to complete. It is therefore very hard to validate 
hypotheses regarding the hyperparameters and the network architecture. In research, it 
makes it difficult to make progress. In applied domains, users of these methods need to 
ponder whether the investment is really worth it. 

 Very short term forecasts seem to be nearly impossible to improve with respect to naïve 
methods, even using state-of-the-art approaches. 

 Model complexity, if not properly regularized, can be very risky, as it can occasionally 
produce large errors. It is therefore essential to extensively validate hyperparameter 
choices. 

 Convolutional layers seem to help improve forecasts when the input data are sufficiently 
structured. 
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Figure 17 Training: Weekend February 

Test: Weekend March 

 
Figure 18 Training: Weekend February 

Test: Weekend March 

 
Figure 19 Training: Weekend March 

Test: Weekend April 

 
Figure 20 Training: Weekend March 

Test: Weekend April 

 
Figure 21 Training: Weekend April 

Test: Weekend June 

 
Figure 22 Training: Weekend April 

Test: Weekend June 

 

 
Figure 23  Training: Weekend June 

 
Figure 24  Training: Weekend June 
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Figure 25  Training: Weekend July 

Test: Weekend February 

 
Figure 26  Training: Weekend July 

Test: Weekend February 

 

 
Figure 27 Training: Weekdays February 

Test: Weekdays March 

 
Figure 28 Training: Weekdays February 

Test: Weekdays March 

 

 
Figure 29 Training: Weekdays March 

Test: Weekdays April 

 
Figure 30 Training: Weekdays March 

Test: Weekdays April 

 

Test: Weekend July Test: Weekend July 
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Figure 31 Training: Weekdays April 

Test: Weekdays June 

 
Figure 32 Training: Weekdays April 

Test: Weekdays June 

 

 
Figure 33 Training: Weekdays June 

Test: Weekdays July 

 
Figure 34 Training: Weekdays June 

Test: Weekdays July 

 

8.5.2 The effect of context 

To assess whether the exponentially wide context helps improve the quality of the forecasts we 
conducted additional experiments. Specifically, we trained and evaluated networks without the 
added context –that is, just with a number of consecutive past observations as input- on the 
same training-test data pairs as above. 

Due to the significance of noise, the hypothetically beneficial effect of modeling context should 
not be very noticeable in the short term. Therefore, and because of time constraints, we limited 
these experiments to 32 and 64 aggregated time steps. 

 
Figure 35 Training: Weekdays July 

Test: Weekdays February 

 
Figure 36 Training: Weekdays July 

Test: Weekdays February 
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Table 10 Performance of the trained networks with and without context 

Training 
set 

Test set 
Time 
scale 

ANN (no context) CNN (no context) 
ANN (with 
context) 

CNN (with 
context) 

MSE MAE MSE MAE MSE MAE MSE MAE 

Weekend 
February 

Weekend 
March 

32 39303.11 126.97 40662.1 129.9 37903.5 124.8 57499.1 129.6 

64 46273.9 152.1 48706.0 155.4 41936.2 143.9 43144.4 142.6 

Weekend 
March 

Weekend 
April 

32 22661.0 95.4 49707.4 96.4 20371.5 94.0 22519.8 94.6 

64 26752.4 114.9 41887.7 117.9 23682.4 108.4 26903.4 107.7 

Weekend 
April 

Weekend 
June 

32 17562.7 87.8 17092.6 86.0 16281.7 84.7 16196.4 86.8 

64 22559.3 108.5 21875.7 108.3 19451.8 100.2 17961.5 98.5 

Weekend 
June 

Weekend 
July 

32 13847.3 78.9 13764.1 78.5 13789.9 78.1 23126.1 78.3 

64 17407.8 93.7 17045.1 92.9 17291.6 90.7 15497.8 87.9 

Weekend 
July 

Weekend 
February 

32 43610.1 120.0 44209.7 122.7 42350.8 126.5 46731.8 125.0 

64 55008.9 154.4 55829.7 156.4 51812.7 156.7 49347.6 150.5 

Weekdays 
February 

Weekdays 
March 

32 148592.1 218.6 141082.1 207.5 149728.9 220.2 128986.0 196.6 

64 141094.3 255.1 129868.3 247.6 139283.8 251.0 107530.6 218.4 

Weekdays 
March 

Weekdays 
April 

32 69397.0 170.7 66713.7 166.7 70871.1 162.2 78637.7 158.7 

64 71715.9 190.6 75276.1 188.0 72754.7 181.4 60620.6 170.2 

Weekdays 
April 

Weekdays 
June 

32 61423.2 145.7 60361.7 144.0 63049.0 148.7 56967.6 142.8 

64 67395.4 176.9 67131.9 176.9 65618.6 171.7 54387.4 166.4 

Weekdays 
June 

Weekdays 
July 

32 68696.3 153.7 60321.0 148.7 59450.4 146.6 51236.7 135.5 

64 78981.9 190.5 58019.5 165.2 60333.1 169.0 47512.8 150.2 

Weekdays 
July 

Weekdays 
February 

32 166932.5 227.9 141253.3 211.4 143344.0 220.6 130440.5 208.2 

64 181778.9 286.2 139676.4 247.8 137445.9 253.0 119937.0 232.8 

 

Table 10 shows the performance of the two models, with and without exponentially wide 
context in the input data. The best result for each experiment, for both MSE and MAW, is in bold 
font. It is clear that in almost every case the best result is yielded by a model with context. 

It should be noted that increasing the dimensionality of the input data is not always necessarily 
helpful for the learning procedure. Our approach to context modeling, however, seems to offer 
a good trade-off between additional information and statistical efficiency. 

8.6  Conclusions 

In this section we have explored the problem of time series forecasting beyond our initial 
experiments reported in deliverable D4.2. We have investigated the effectiveness of state-of-
the-art methods –convolutional neural networks- (a type of deep neural networks that can 
exploit the temporal nature of the data) and different approaches –exponentially wide context 
and coarse-grained forecasts.  

We have shown that data aggregation can indeed yield significant improvements with respect to 
naïve approaches, and that convolutional networks seem to improve the results when the data 
are sufficiently structured. At the light of the obtained results when CNNs are applied, we 
speculate that weekdays are more structured than weekends, and vice versa, weekends contain 
more randomness than weekdays. Additionally, our efficient approach to context modeling 
seems to enable promising performance improvements as well. 

The main drawback of these methods is the poor efficiency of the training procedure, which can 
be a pivotal element for both research and practical applications. Modern GPU cards help to 
accelerate the training phase but when the problem is complex enough training times remain 
substantial even using these accelerator cards. 

The promising results obtained with convolutional networks motivates further research in this 
direction, as well as collaboration with industrial partners to determine whether these methods 
can be useful in practice. 
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9 Proactive network congestion control and avoidance 
 

Nowadays, end to end host mechanisms such as the TCP congestion control are widely deployed, 
scale to existing traffic loads, and share network bandwidth applying a flow-based fairness. 
However, in a context where it is expected, in the short term, that more than 90 percent of the 
Internet traffic will go through data centers, TCP approach shows two important weaknesses. 

Firstly, data center speeds scale to 100 Gb/s and beyond, and traditional reactive closed-
control-loops congestion control protocols (e.g., TCP) converge slowly to steady sending rates. 
To cope with this issue, some current research works propose the usage of proactive congestion 
control protocols leveraging distributed optimization algorithms to explicitly compute and notify 
sending rates independently of congestion signals [30]. Secondly, TCP cannot isolate data center 
tenants from interfering with each other. A malicious application could get more bandwidth than 
other applications by opening more flows or ignoring congestion control signal using a non-
compliant protocol application. 

Some recent papers ( [31], [32]) propose to deploy rate enforcement points placed in the edges 
of the data center network (e.g., hypervisors) to monitor and control the bandwidth usage of 
applications running on virtual machines. 

Therefore, a combined deployment of proactive congestion control protocols explicitly 
computing sending rates and rate enforcement points placed in the edges of the network can 
establish the right way to mitigate these issues.  

9.1 Scope 

Max-min fairness criterion has gained wide acceptance in the networking community and is 
actively used in traffic engineering and in the modeling of network performance [33] as a 
benchmarking measure in different applications such as routing, congestion control, and 
performance evaluation. A paradigmatic example of this is the objective function of Google 
traffic engineering systems in their globally-deployed software defined WAN, which delivers 
max-min fair bandwidth allocation to applications [34]. As max-min fair criterion is often used in 
traffic engineering as a way of fairly distributing a network capacity among a set of sessions, 
many proactive congestion control protocols calculate sending rates solving a max-min fair 
optimization problem. 

Max min fairness is closely related to max-min and min-max optimization problems that are 
extensively studied in the literature. The basic idea behind the max-min fairness criterion is to 
first allocate equal bandwidth to all contending sessions at each link. If a session cannot use up 
its assigned bandwidth due to constraints arisen elsewhere in its path, then the residual 
bandwidth is distributed among the other sessions. Thus, no session is penalized, and a certain 
minimum quality of service is guaranteed to all sessions. More precisely, max-min fairness takes 
into account the path of each session and the capacity of each link. Thus each session s is 
assigned a transmission rate l_s so that no link is overloaded, and a session could only increase 
its rate at the expense of a session with the same or smaller rate. In other words, max-min 
fairness guarantees that no session s can increase its l_s without causing another session s' to 
end up with a rate l_s' < l_$. 

Many max-min fair algorithms have been proposed, both centralized and distributed (see the 
related work below). Nowadays in network congestion control scenarios, centralized versions can 
be utilized in Software Defined Networks (SDN) based on-site enterprises and cloud data-centers 
(e.g., deploying these algorithms in SDN controllers), but for global Internet deployments only 
distributed algorithms can realistically be applied. 

When ATM networks appeared, many distributed algorithms were proposed to calculate virtual 
circuit max-min fair rates in the Available Bit Rate (ABR) traffic mode ( [35], [36], [37], [38], 
[39], [40] and [41]). These algorithms assign the exact max-min fair rates using the ATM explicit 
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End-to-End Rate-based flow-Control protocol (EERC). In this protocol, each source periodically 
sends special Resource Management (RM) cells. These cells include a field called the Explicit 
Rate field (ER), which is used by these algorithms to carry per-session state information (e.g., 
the potential max-min fair rate of a session). Then, router links are in charge of executing the 
max-min fair algorithm. The EERC protocol, jointly with the former distributed max-min fair 
algorithms, can be considered the first versions of proactive congestion control protocols, as 
they explicitly compute rates independently of congestion signals. In fact, many proactive 
congestion control protocols rely on max-min fair distributed algorithms to compute and 
explicitly notify sending rates to the sessions. 

An alternative approach to attempt converging to the max-min fair rates is using algorithms 
based on reactive closed-control-loops driven by congestion signals. Some research trends have 
proposed this approach to design explicit congestion control protocols. In these proposals, the 
information returned to the source nodes from the routers (e.g., an incremental window size or 
an explicit rate value) allows the sessions to know approximate values that eventually converge 
to their max-min fair rates, as the system evolves towards a steady state. In this case, it is not 
required to process, classify or store per-session information when a packet arrives to the 
router, and it is guaranteed that the max-min fair rate assignments are achieved when 
controllers are in a steady state.  Thus, scalability is not compromised when the number of 
sessions that cross a router link grows. 

For instance, XCP [42] was designed to work well in networks with large bandwidth-delay 
products. It computes, at each link, window changes which are provided to the sources. 
However, it was shown in [43] that XCP convergence speed can be very slow, and short time 
duration flows could finish without reaching their fair rates. RCP [43] explicitly computes the 
rates sent to the sources, what yields more accurate congestion information. Additionally, the 
computation effort needed in router links per arriving packet is significantly smaller than in the 
case of XCP. However, in [44] it was shown that RCP does not always converge, and that it does 
not properly cope with a large number of session arrivals. Unfortunately, all these proposals 
require processing each data packet at each router link to estimate the fair rates, what hampers 
scalability. Moreover, we have experimentally observed that they often take very long, or even 
fail, to converge to the optimal solution when the network topology is not trivial. Additionally, 
they tend to generate significant oscillations around the max-min fair rates during transient 
periods, causing link overshoots. A link overshoot scenario implies, sooner or later, a growing 
number of packets that will be discarded and retransmitted and, in the end, the occurrence of  
congestion problems. 

All these problems are mainly caused by the fact that, unlike implicitly assumed, data from 
different sessions containing congestion signals arrive at different times (due to different and 
variable RTT) and, hence, the rates (based on the estimation of the number of sessions crossing 
each link)  are computed with data which is not synchronously updated. Moreover, when 
congestion problems appear, the variance of the RTT distribution increases significantly 
generating bigger oscillations around the max-min fair rates. 

The main problem with both approaches is that sessions rely in some kind of probe cycles to 
receive their rate assignments. Therefore, if a congestion problem appears in the network, the 
transmission of probe packets can be delayed and so, the sources could receive outdated rates 
calculated a long time before. Moreover, before receiving new rate assignments, sessions are 
utilizing previous rates that can allow the source to inject more packets than the currently 
permitted, which would contribute to increase the congestion problem. To cope with this 
problem we propose a novel solution based on EERC protocols and forecasting techniques that 
provides three key advantages from existing proposals: 

 Session sources can predict in advance their rate assignments during Probe cycles. These 
forecasted rates isolate session sources from emergent congestion problems because 
there is no need to accomplish on time a Probe cycle to update current rate assignments 
(o at least an approximation to them).  
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 Rate predictions allow sources for greater granularity in rate assignments during regular 
Probe cycles. In traditional approaches, sessions are assigned a single value during the 
whole Probe cycle. Our solution considers prediction intervals of a greater granularity 
than regular RTTs and so, during a Probe cycle (one RTT on average) several rate 
predictions will be used. 

 In a realistic Internet scenario, we cannot assume that the network is stable enough (no 
sessions joining or leaving the network) and so, the max-min fair algorithm will never 
converge to the optimal rates. In this context, rate predictions can provide more 
accurate values than the values provided by the EERC protocol when the network in in 
unstable state, and so, sessions can reach a near-optimal max-min fair rate almost from 
their beginning (that is, the sources are rapidly signaled with a nearly optimal rate for 
the initiated flows).  

9.2 Problem setting  

Most EERC protocols work as described in Figure 37. When a session wants to discover its max-
min fair rate assignment, it will perform periodic Probe cycles to discover this rate. A Probe 
cycle starts transmitting a Probe packet (a Join packet the first time) from the session source. 
Upon reception of a Probe packet sent by the source, each router link in the path computes an 
adequate rate as a function of various local parameters and, if necessary, updates the Probe 
packet. When this packet reaches the session destination, it is sent back upstream as a ProbeAck 
packet which is processed and dropped at the source. Although it is not shown in the figure, the 
ProbeAck packet can be processed in each router link in the same way as the Probe packet. In 
fact, this processing tends to accelerate the algorithm convergence. At the end of a Probe cycle, 
the source receives an indication of its max-min fair rate, i.e., the maximum amount of 
bandwidth that can be allocated to the session at every link in its path. This value is computed 
at each router link and the minimum of these values along the session path is returned to the 
source as the rate assignment. 

Following, we describe SLBN [45], a scalable and proactive EERC protocol that was chosen to 
embed our forecasting proposal on it. In SLBN, every protocol packet carries the following fields: 
The session to which this packet belongs (s), the bandwidth computed two Probe cycles ago 
(bw’’), the bandwidth computed in the previous Probe cycle (bw’), the bandwidth being 
computed in this Probe cycle (bw), the set of bottlenecks for this session (B), the latest 
bottleneck that was added to B (b).  

During a Probe cycle, each router link must identify sessions crossing it as saturated or 
unsaturated. A session is identified as saturated if, given the current state at the link, the 
largest amount of bandwidth that can be allocated to the session at this link is at least that of 
the field bw of the protocol packets, and it is identified as unsaturated otherwise. In the 
literature, the set of saturated sessions is denoted by F, and BF is the total bandwidth allocated 
to saturated sessions at this link. The set of unsaturated sessions is denoted by R, and its size by 
NR = |R|. The three variables stored at the routers are BF, NR and N, which is the number of 
sessions that cross the link. In addition, the largest amount of bandwidth that a router link can 
offer to a session at a specific moment is computed and stored in the variable called the 
equitable shared bandwidth (shBW). Each link computes its equitable shared bandwidth using 

the following formula:      
    

  
, where C is the bandwidth of the link. Therefore, shBW is 

the maximum bandwidth that the link can allocate to the unsaturated sessions (the bottleneck 
level of the link). Generally speaking, bottlenecks are links that limit the sessions’ rates and a 
link is a bottleneck if it has at least one unsaturated session. At the end of a Probe cycle, the 
source receives the minimum value of shBW for all the links in its path. Destination nodes simply 
drop Leave packets (used for finalizing the session) and process Join and Probe packet 
upstreaming them back as ProbeAck packets. 
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Figure 37. Probe cycles in an EERC protocol. 

In general, EERC algorithms store in the links the state of each session (whether it is saturated 
or unsaturated). However, to be scalable, SLBN keeps this information in the protocol packets, 
using the fields B (set of bottlenecks) and b (latest bottleneck discovered). To properly compute 
the shBW value in each link it is necessary to keep variables N, BF and NR in a consistent state 
updating them by using the B and b values contained in each EERCP packet. The detail of this 
updating process is shown in the router link pseudo code (Figure 38). 

The way in which SLBN computes the shBW values guarantees that in absence of changes 
(sessions joining and leaving the network), shBW values rapidly converge to the max-min fair 
rates. Convergence speed depends on the RTT values and the number of bottleneck levels. 
Additionally, it must be noted that scalability at links is guaranteed, since only three integer 
variables are used, and therefore, 64 bits for each of them should be enough in practice.  
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Figure 38. Pseudo code of the EERCP router link task. 
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Ideally, a process associated to each link would reveal the max-min fair allocation for each 
session on demand. However, if we consider that the state of the network changes rapidly, it 
becomes apparent that the rate signaled by routers, though optimal in a certain sense, might be 
already outdated when the ProbeACK packet reaches the source node. In addition, max-min fair 
algorithm convergence is strongly affected by RTT (Round-Trip-Time) variability. If local 
congestion appears in some network area, protocols packets could be delayed and so, the Probe 
cycles would need extra time to complete which would also slow down the convergence speed of 
the algorithm. Furthermore, a session is not newly updated until a Probe cycle ends (i.e., when 
a ProbeACK packet reaches the source) and therefore, during this non-negligible period, the 
session utilizes a possibly obsolete rate assignment. Moreover, as each router link can update 
Probe cycle protocol packets at different points in time, this misalignment could generate some 
inconsistencies in the received information at the source. Finally, an incorrect rate assignment 
can allow the source to inject more packets than the currently permitted, which could 
exacerbate an emerging congestion problem. 

In order to alleviate all these problems that are inherent to EERC protocols, we are therefore 
interested in developing a solution that can estimate max-min fair rates that remain up-to-date 
from initiation to completion. Specifically, we are interested in forecasting bottleneck values at 
each link router links to allow computing the max-min fair allocation for each session at 
different instants of time. Therefore, bottleneck values at links can be studied by means of 
simple linear regression models or sophisticated techniques for providing short-term forecasts 
with a certain confidence, like artificial neural networks. 

 

 
Figure 39. SLBN++. Integration of predictions in Probe cycles 
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9.3 Problem solution 

SLBN++, the proposed protocol extends the SLBN protocol to provide it with forecasting 
capabilities in each router link. SLBN++ utilizes a forecasting module in each router link to 
obtain a set of future predictions of the bottleneck value of the link.  

Figure 39 details the way in which the SLBN protocol has been extended to use the future 
predictions of the bottleneck values of links. The minimum value of the future predictions of the 
bottleneck value in each link are stored in the Probe packet and delivered to the session sources 
when a ProbeACK packet is received. Therefore, a session receives the minimum of the shBW 
values computed at links jointly with a set of future predictions of the minimum value of the 
bottleneck value of these links. These predictions can be used as an effective and accurate 
approximation to the rate assignment during the completion of the next Probe cycle.  

As we have considered a realistic network model in which RTTs are around 3.5 milliseconds, the 
granularity of future predictions was setup to 1 millisecond and six predictions (t+1, ..t+6) are 
generated at each link. In a normal scenario, four predictions can be assigned to the source 
during the completion of a Probe cycle (around 3.5 milliseconds). In an emergent congestion 
scenario, Probe cycles could delay more than usual, and so, the rest of the future predictions 
would be utilized in the meanwhile. It should be noted that more than six predictions can be 
generated but as we move away in time, the predictions become less accurate. In addition, the 
source stores a timestamp in the Probe packet to allow links to store each prediction in the 
corresponding time slot and so, avoiding mixing predictions from different instants of time. A 
router link only update a prediction in the probe packet if its value it is smaller than the 
prediction contained in the packet with the same timestamp. Therefore, the source receives the 
minimum prediction value of the bottleneck value at links per timestamp. 

Figure 40 shows the architectural design of the extended SLBN++ protocol. The inputs to the 
forecasting module are the last 20 samples of N, NR, BF, shBW, jointly with C, the bandwidth of 
the link. We store this set of previous samples in order to be able to predict future values based 
on the current trend of them. These samples are stored every 200 microseconds in a FIFO queue 
of size 20 and in addition to a persistent file to be used in posterior retraining processes. The log 
interval of 200 microseconds was chosen experimentally in order to have a sufficient temporal 
granularity when WAN RTTs were considered (around 3.5 milliseconds) and sudden churn 
scenarios (e.g. a huge number of sessions joining and leaving the network in short periods of 
time) want to be detected and predicted in advance. 

When a Probe packet arrives at a network link it is delivered to the SLBN++ driver to be 
processed as shown in the Router link pseudo code in Figure 38. After this processing is done and 
before forwarding the packet to the output link, the forecasting module is activated to compute 
the corresponding predictions of the bottleneck value of this link to store them in the Probe 
packet. The forecasting component is activated getting as input the last 20 values of N, NR, BF 
and shBW. The activated unit consisting of an array of 6 predictors will forecast the bottleneck 
value of this link (i.e., the maximum amount of bandwidth that this link can offer to a session) 
for t+1, t+2 …, t+6 instants of time, considering “t” as the current instant and each forecasting 
step of 1 millisecond. Finally, the resulting predictions are compared against the ones contained 
in the Probe packet and the smaller value is stored in it. Initially, we applied linear regression 
models and in a second phase we trained an Artificial Neural Network to enhance predictions 
and so, the proactive response of the system to avoid congestion problems in the network. 
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Figure 40. Architectural design of SLBN++ 

 
9.4 Forecasting Max-min fair rate assignments 

Before deciding which forecasting technique can be applied, we made an exploratory analysis of 
the data to be predicted in order to identify patterns and trends in these data. We plot the 
evolution of the number of sessions crossing a bottleneck link (i.e. a link that constraints at least 
one session in the network) and the bottleneck values of this link. We chose at random the link 
103-9 from the set of links constraining sessions and run several round of experiments.  

In particular, we were interested to analyze aggressive patterns related with congestion 
problems such us a sudden raise in the number of sessions joining the network. Additionally, the 
effect of a great number of sessions leaving the network in short periods of time was also 
analized in order to be able to predict in advance this effect and reassign the exceeding 
bandwidth among the remaining sessions as soon as possible. Therefore, we setup 10,000 
sessions to join the network in the first millisecond of the simulation and later 15,000 additional 
sessions join the network in the interval from 10 to 25 milliseconds. Finally, 15,000 sessions 
leave the network in the interval from 30 to 45 milliseconds. This experiment models a sudden 
increase or decrease in the number of sessions that are present in the network. Figure 41 plots 
the number of sessions (N) crossing the link 103-9 and Figure 42 shows the values of bottleneck 
values (Mbps) in such a link. In the first figure, it can be observed that values of the variable N 
can be represented by a curve composed by three different sections: a line with positive slope 
(sessions joining the network and crossing link 103-9), a horizontal line (no sessions are joining 
or leaving the network and so, N is a constant value) and a line with negative slope (sessions 
leaving the network and so, not crossing link 103-9 anymore). In the second figure, bottleneck 
values at this link roughly follow the inverse of the former curve, suggesting a linear relation 
between them.  
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In the light of the former analysis we designed our forecasting modules having in mind that three 
different data sections should be considered.  

 

Figure 41. Number of sessions (N) crossing the link 103-9 obtained in different rounds of the 

experiment pre.a01 (15k sessions joining in the interval 10 to 25 and 15k sessions leaving the 
network in the interval 30 to 45). X-axis units are in milliseconds 

 

 

Figure 42. Values of bottleneck values (Mbps) in link 103-9 obtained in different rounds 

of the experiment pre.a01 (15k sessions joining in the interval 10 to 25 and 15k sessions 
leaving the network in the interval 30 to 45). X-axis units are in milliseconds 

 

9.4.1 Training and testing datasets 

As previously commented, each network link stores a sample of the value of its internal state 
variables (N,NR,BF, ShBW and C) in a log file (Figure 43) every 200 microseconds.  

This file can be processed to obtain a dataset file with the adequate format for training and 
testing the forecasting models. Rows in this dataset (Figure 44) contain per link 20 adjacent and 
ordered samples of its N, NR, BF and ShBW variables jointly with the bandwidth of the link. The 
6 labels of each row are the bottleneck values of the link at t0, t1, .., t6. Recall that samples 
are separated by intervals of 200 microseconds and labels and predictions of bottleneck values 
are separated by intervals of 1 millisecond.  

To train and validate the forecasting modules, we generated two datasets: training and a 
testing. We designed a set of 7 experiments combined with 2 initial configurations totaling 14 
different experiments. These experiments were proposed to study the system transient behavior 
when it is exposed to different session churn patterns. Two initial configurations were setup for 
each experiment. In the first initial configuration 1,000 sessions are injected during the first 5 
microseconds and in the second 10,000 sessions are injected during the same period. The goal is 
to observe the system behavior when the network is exposed to churn patterns starting from two 
different levels of network occupancy.  
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These experiments model a set of sessions joining the network during an interval and a second 
set of sessions leaving the network later. Considering different ranges on the number of sessions 
joining and leaving allows analyzing the system behavior when exposed to increases and 
decreases in the number of sessions in the network. In these experiments, 7 different 
experiments were setup, totaling 14 experiments (7 experiments * 2 initial configurations).  

Below, we detail the configuration of each of these experiments: 

 Exp 01: 15,000 sessions join the network during the interval from t=10 to t=25 
milliseconds and later 15,000 sessions leave the network during the interval from 
t=30 to t=45 milliseconds. 

 Exp 02: 7,000 sessions join the network during the interval from t=10 to t=25 
milliseconds and later 7,000 sessions leave the network during the interval from 
t=30 to t=45 milliseconds. 

 Exp 03: 1,000 sessions join the network during the interval from t=10 to t=25 
milliseconds and later 1,000 sessions leave the network during the interval from 
t=30 to t=45 milliseconds. 

 Exp 04: 16,000 sessions join and 1,000 sessions leave the network during the interval 
from t=10 to t=25 milliseconds and later 16,000 sessions leave and 1,000 sessions 
join the network during the interval from t=30 to t=45 milliseconds. 

 Exp 05: 15,000 sessions join and 8,000 sessions leave the network during the interval 
from t=10 to t=25 milliseconds and later 15,000 sessions leave and 8,000 sessions 
join the network during the interval from t=30 to t=45 milliseconds. 

 Exp 06: 10,000 sessions join and 9,000 sessions leave the network during the interval 
from t=10 to t=25 milliseconds and later 10,000 sessions leave and 9,000 sessions 
join the network during the interval from t=30 to t=45 milliseconds. 

 Exp 07: 2,000 sessions join and 1,000 sessions leave the network during the interval 
from t=10 to t=25 milliseconds and later 2,000 sessions leave and 1,000 sessions join 
the network during the interval from t=30 to t=45 milliseconds. 

For obtaining the training dataset, each experiment was run 15 times using as input in each 
round a new set of sessions, and therefore, producing that each simulation was different from 
the rest. In total, we run 210 different simulations that produced around 50,000 labeled samples 
per network link (we only stored samples from the intervals where the sessions were joining and 
leaving). For testing we run 2 times the whole set of experiments obtaining around 7,000 labeled 
samples. Standard error measures (e.g. Mean Squared Errors, MSE) were applied to retrain or 
select the most adequate forecasting modules. 
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Figure 43. Example of a log file. 

 

 

Figure 44. One row of a training dataset for link 8-88  

 

9.4.2 Linear regression 

As a baseline for predictions we trained different linear regression models to predict the 
bandwidth allocation from 1 to 6 steps into the future, as well as the current max-min fair 
value, totaling seven different models.  

Due to the limitations of this model, we had to train three different ones for each of the seven 
cases, depending on whether the trend in the number of sessions crossing the link was 
increasing, stable or decreasing (corresponding to the three curve sections previously identified 
in the exploratory phase). This resulted in reasonable approximations, although it has obvious 
drawbacks for its implementation in the real world, as the need to determine this trend 
automatically has several pitfalls. 

9.4.3 Artificial neural networks 

In addition to the linear regression models, we employed a more complex model, namely 
artificial neural networks (ANN) to try and obtain better forecasts of the bandwidth values. As 
opposed to linear regression, only one network was trained for each of the tasks –i.e. each of the 
predicted time steps.  

We trained different networks, with three and four layers of sizes 160, 80 and 20 and 160, 80, 40 
and 10 respectively, to predict the appropriate bandwidth allocation at each of the considered 
future time steps. All layers are fully connected and contain ReLu activation units, except for 
the output unit, which is linear. This results in seven different models, as with linear regression, 
for each of the different predicted time steps. 

The networks are trained with the Adam optimization algorithm until 200 epochs go by without 
improvement. The model that achieved the best error value in the validation split was kept. As 
expected the more complex network with four hidden layers obtained the best results. 
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In order to adequately tune the networks, we conducted an extensive set of executions to 
search the hyperparameter space via random exploration. This approach is generally held in 
higher regard than grid search due to its proven ability to reveal promising hyperparameter 
choices more quickly than its lattice-like counterpart, as well as the fact that it does not rule 
out any region of the explored space. The found hyperparameters, which were rounded for 
simplicity, are shown in table Table 11. 

Table 11 Employed hyperparameters for the artificial neural network 

Hyperparameter Value 

Dimensionality of the hidden 
layers: 

160, 80, 20 

160, 80, 40, 10 

Activation (intermediate): Rectified linear units 

Activation (output): Linear unit 

Regularization term: L2 norm 

Regularization parameter: 1e-4 

Objective function: Mean squared error 

 

The networks were designed using the keras2 library with the Theano3 deep learning backend. 
The training was done on an ASUS ROG Strix Geforce GTX 1080 GPU equipped with 2560 CUDA 
cores and 8GB of GDDRX VRAM. A set of seven networks took around 30 minutes to train. 

Finally, and in order to incorporate the resulting neural networks into the Java simulation 
environment used for evaluating our congestion control mechanisms, we devised a 
representation format and wrote a Java parser to dynamically load and use the models in real 
time. 

 

9.5 Experiments 

In this section we present the results obtained in the validation of the proposed solution.  

As it is unfeasible to setup a realistic deployment of the proposed solution involving hundreds of 
routers and thousands of nodes connected to a network, we demonstrate this solution by means 
of simulations run on top of a home-made discrete event simulator. Our event simulator is a 
home-made extended version of Peersim [46] modified to be able to run experiments consisting 
of thousands of routers and up to a million of hosts and sessions. Specifically, we extended 
Peersim to allow (a) running simulations with a very large number of routers, hosts and sessions, 
(b) importing Internet-like topologies generated with the Georgia Tech gt-itm tool [39], and (c) 
modelling key network parameters, like transmission and propagation times in the network links, 
processing time in routers and limited size packet in link queues. In addition, a plurality of 
different elements (e.g. sessions, router links, timers, protocol packets) can be modeled in java 
with a fine-grained resolution. Details of this simulator can be found in deliverable D5.6 (Use 
Case #3:Proactive Congestion Detection and Control System)  

To show the benefits of this system we choose at random the session #2793922-2347673 to 
analyse its rate assignments during a set of six different experiments. Four of them were similar 
to the experiments used for training and testing (exp a01, exp04, expa02 and expa05) and the 
other two were new configurations (exp a01-2 and exp a02-).  

                                            
2 http://keras.io/ 
3 http://deeplearning.net/software/theano 
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 Exp 01-2: 11,000 sessions join the network during the interval from t=10 to t=25 
milliseconds and later 11,000 sessions leave the network during the interval from 
t=30 to t=45 milliseconds. 

 Exp 02-: 5,000 sessions join the network during the interval from t=10 to t=25 
milliseconds and later 5,000 sessions leave the network during the interval from 
t=30 to t=45 milliseconds. 

Table 11 summarizes the results of the experiments carried out. We have measured the error of 
each method with respect to the ideal max-min fair allocation: SLBN protocol, ANN (SLBN++ 
using the ANN model as forecasting method) and LR (SLBN++ using a Linear Regression model 
with three stages). We measure the average of the error from t=10 to t=45 milliseconds, which is 
the interval when sessions join and leave the network. The error is calculated every 200 

microseconds in this interval as   
      

   
    . MMF is the max-min fair value and FM is the 

value assigned to the session using the method FM (i.e., SLBN, ANN or LR). Finally, the average 
of these values was computed and shown in Table 11.  

In the light of these results we can summarize that ANN outperforms SLBN, an EERC protocol 
without forecasting capabilities. In addition, the behaviour of SLBN++ when equipped with a 
Linear Regression module is erratic and its results clearly depend on the complexity and nature 
of the experiment. 

 

Table 12. Percentage of average error for SLBN, ANN and LR in different experiments 

Experiment SLBN ANN LR 

A01 8.91 5.05 6.30 

A04 12.05 7.46 9.36 

A02 6.55 5.0 8.46 

A05 7.84 7.36 7.58 

A01-2 8.28 5.02 7.53 

A02- 3.88 3.79 7.60 

 

Following, we detail the behavior of each method (SLBN, ANN and LR) plotting the proposed rate 
assignments to the session #2793922-2347673 in each experiment. Firstly, the structure of the 
experiment is shown and secondly, the behavior of these protocols is shown when sessions are 
joining (left figure, from t=10 to t=25) and leaving (right figure, from t=30 to t=45). Blue points 
are the ideal max-min fair assignments; the red curve represents the assignments proposed by 
SLBN; Green and black curves plot the rate assignments proposed by ANN and LR respectively.  

It can be observed that steps in red curves represent the duration of a probe cycle (around 3.5  
milliseconds) during which no changes are produced in the rate assignment to the session. On 
the contrary, green (ANN) and black (LR) curves have a granularity of 1 millisecond and so, their 
rate assignments can change in the middle of Probe cycles.  
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Figure 45 Experiment a01 (from t=10 to t=25) 

 

Figure 46 Experiment a01 (from t=30 to t=45) 

 

 
Figure 47 Experiment a04 (from t=10 to t=25) 

 

Figure 48 Experiment a04 (from t=30 to t=45) 
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Figure 49 Experiment a02 (from t=10 to t=25) 

 

Figure 50 Experiment a02 (from t=30 to t=45) 

 

 

Figure 51 Experiment a05 (from t=10 to t=25) 

 

Figure 52 Experiment a05 (from t=30 to t=45) 
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Figure 53 Experiment a01-2 (from t=10 to t=25) 

 

Figure 54 a01-2 (from t=30 to t=45) 

 

 

Figure 55 Experiment a02- ((from t=10 to t=25) 

 
Figure 56 Experiment a02-(from t=30 to t=45) 
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9.6 Conclusions 

In this section, we have proposed a new method for congestion control and avoidance based on a 
combined deployment of proactive congestion control protocols explicitly computing sending 
rates and rate enforcement points placed in the edges of the network. The novelty of our 
proposal is that combines a proactive EERC protocol, called SLBN, with forecasting techniques 
providing that the session sources can predict in advance their rate assignments during Probe 
cycles. In this way, session sources are moderately isolated from emergent congestion problems 
because there is no need to accomplish on time a Probe cycle to update current rate 
assignments. 

We have trained and tested two forecasting methods (Linear Regression and ANNs) with a set of 
experiments representing aggressive patterns of sessions joining and leaving the network. We 
run these experiments using a homemade simulator coded in Java. Preliminary results show that 
SLBN equipped with a forecasting module based on ANN outperforms SLBN y SLBN++ equipped 
with Linear Regression models. Therefore, sessions can obtain more accurate rate assignments 
even during Probe cycles, diminishing the injection of extra traffic over the allowed rate and 
hence, avoiding the contribution to congestion problems. However, the obtained results still 
leave room for improvement. We plan to train and evaluate more complex models such as 
convolutional neural networks in order to exploit the temporal an structured nature of the data 
at network links.  

In a second phase, we plan the substitution of simulations by deployments in real networks. 
Perhaps, a controlled environment such as a network laboratory would be enough to corroborate 
the preliminary results obtained up to the date. 

 



619633 ONTIC. Deliverable 4.3: 

Experimental evaluation of algorithms 
 

76/93 
 

! !

10 Detection of anomalies in cloud infrastructure using  
Deep Neural Networks 

 

In the next years, it is expected that more than 90 percent of Internet traffic will go through 
data centers, which now rely strongly on virtualization. Thanks to mature software stacks and to 
the widespread availability of virtualization platforms all over the world, the Cloud paradigm is 
now available for many applications of different kinds in these data centers.  

Despite the advantages of virtualized infrastructure, this new setting poses new management 
challenges, such as optimal virtual machine (VM) placement. Nowadays, virtualization is used in 
Cloud Computing as the sole mechanism to provide performance isolation between multiple 
tenants. In principle, there should be a clear separation between the different tenants on the 
same physical machine. In practice, however, this isolation is far from perfect and many 
resources such as internal networking and memory access resources are shared at some level, 
which can significantly impact performance. 

Noisy neighbor is a term commonly used to describe the situation in cloud computing where 
applications or VMs running on the same cloud node compete for resources such as memory, CPU 
or network bandwidth, resulting in a degradation of performance. 

This problem is very interesting to Cloud infrastructure managers for two reasons. Firstly, it is 
not easy to detect, as performance degradation can happen for different reasons, such as 
increased load on the application itself. Secondly, once detected it is easy to address, as 
relocating one of the machines usually solves the problem. The identification of this problem in 
real time is a critical building block in creating flexible, reliable and autonomous orchestration 
mechanisms for Cloud infrastructure. In Figure 57 it is shown how the application VNF2 deployed 
on several virtual machines may create interferences to another application VNF1. 

 

 

Figure 57. Application VNF2 may create “noise” to application VNF1 

 

The problem of determining whether or not the behavior of a VM is being caused by the 
presence of a noisy neighbor is non-trivial. Based on the available resource monitoring metrics 
(e.g., cpu time, memory usage, I/O bandwidth), a simple thresholding approach or a set of rules 
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would not suffice as can be seen in the example of Figure 58. Therefore, to address this problem 
we propose the use of supervised machine learning methods, and in particular to model it as a 
classification problem. 

 
Figure 58. Noisy Neighbors vs. Normal behaviour 

 

In this section we describe the results of recent efforts of the ONTIC consortium to tackle this 
problem. In particular, we exploit the temporal nature of the metrics collected at virtualized 
cloud infrastructure to design a convolutional neural network architecture able to detect noisy 
neighbors with high reliability.  

We show that deep neural networks, and in particular, convolutional networks outperform state 
of the art machine learning methods (Support Vector Machine and Random Forests), attaining 
high levels of accuracy. We note that significant depth in the architecture was key to achieving 
these results. The developed methods are evaluated using data collected at real virtualized 
infrastructure.  

To the best of our knowledge this is the first proposal to apply machine learning algorithms to 
this problem and in particular by using CNN (Convolutional Neural Networks), a type of deep 
neural networks. This work has been accepted to be presented as a regular paper in the 
European Symposium on Artificial Neural Networks (ESANN) 2017, an international conference 
rated as Core-B. 

10.1 Problem setting 

We set up an environment on real cloud infrastructure to generate and collect a data set 
containing both normal behavior and noisy neighbor events. The resulting records are then 
labelled according to whether or not they correspond to a noisy neighbor, so that a learning 
model can be trained to detect them. 

The environment consists of various physical nodes, where different VMs are instantiated. One or 
more of these VMs offer a service, and the rest act as noisy neighbors, creating load on the same 
physical nodes. A noisy neighbour is defined as (one or more) VMs sharing resources with the 
server under test, thus affecting its performance. In our setting we focused on CPU noise, i.e. 
we try to detect when a VM is suffering interference in its access to CPU resources.  
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Collecting relevant metrics is relatively computationally demanding, so we consider the problem 
of detecting noisy neighbors using a very small number of them collected at the server VM:  

 CPU usage 

 Inbound network  traffic 

 Outbound network traffic.  

We also collected CPU usage of the noise VM(s) to label the data records as noisy neighbors or 
normal behavior.  We emphasize that with these three features, thresholding mechanisms or 
linear classifiers are not effective for detecting noisy neighbors.  

To deal with missing values and inconsistencies in the sampling frequency, we aggregate metrics 
over 30-second periods and take their mean. 

10.2 Convolutional neural networks for noisy neighbour detection 

In order to design an effective classifier for this scenario, we exploit the time-series nature of 
the data. The key observation is that analyzing the data over a sufficiently wide time interval is 
likely to yield more information on whether or not a noisy neighbor is occurring than simply 
taking the last reading into account. A first approach is simply to concatenate various data 
samples together. As we show in the experiments, this simple approach significantly boosts the 
performance of random forests. 

To achieve further improvements, we take advantage of the adequacy of convolutional neural 
networks for data of this kind, and propose the following architecture. Each input sample 
consists of 11 consecutive readings concatenated together (11 worked best on our data, but 
different lengths can be considered). Each of the three input features is fed to the network in a 
separate channel. The resulting data set is thus an NxTxD tensor, where N is the number of data 
points (the total number of records minus the number of concatenated readings), T is the length 
of the concatenated strings of events and D is the number of collected features. Each of the 
resulting tensor records, of dimensionality 1xTxD, is processed by a stack of convolutional layers 
as shown in Figure 59. 

The first convolutional layer uses a set of three-channel convolution filters of size c. We zero-
pad the input data to preserve its dimensionality. Since the dimensionality is relatively low, we 
don't employ subsampling so as to allow for depth. Each of these filters therefore produces a 
vector of length 11, each of whose elements undergoes a non-linear transformation. The 
resulting vectors are further processed by similar convolutional layers, with as many channels as 
convolution filters in the previous layer.  

 

 
Figure 59. Our proposed convolutional network architecture 
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10.3 Experiments 

We perform experiments to evaluate the performance of the proposed model. 

The environment consists of five high performance servers with a proprietary management 
system running on an OpenStack cloud. Two servers are dedicated to management processes, 
while the rest are compute machines.  

An open source voice-over-IP (VoIP) application (Asterisk) is deployed on one of the compute 
machines, in a single virtual machine utilizing one core and 1024 MB of memory. A traffic 
generator, SipP, is deployed on another machine, and configured to initiate calls to a line in 
which the server is playing music-on-hold. The traffic generator creates constant reasonable 
load on the server, e.g. 40\% CPU utilization. In our simulations, we occasionally generate load 
on the server machine to disrupt the performance of the Asterisk server. These instances are 
labelled as noisy neighbors. 

We ran around 100 experiments of the system described above. The metrics were collected 
every 10 seconds approximately, and aggregated into 30 second periods in order to avoid the 
impact of missing values or irregularities in the sampling frequency of the different metrics. 
Each of the resulting data points thus represents the average CPU load, inbound and outbound 
bandwidth of the monitored machine over 30 seconds. The corresponding binary label -
representing the CPU load of the noise machines- determines whether or not the noisy neighbor 
was inflicting load during that period. The resulting data set is comprised of 9169 data instances, 
out of which 3088 correspond to noisy neighbors.  

The network was designed using the keras4 library with the Theano deep learning framework as 
backend, and trained on a GTX 750ti equipped with 640 CUDA cores and 2GB of VRAM. We tune 
the hyperparameters of our convolutional neural network via random search. Interestingly, the 
best performing model is very deep, which suggests that the noisy neighbor phenomenon 
manifests itself in a complex manner even in relatively simple scenarios. 

The best performing model is composed of 6 convolutional layers, each of which learns 32 
convolutional patches of width 5 with zero padding. After the convolutional layers, we stack 6 
fully connected layers. The convolutional layers are regularized using dropout with a probability 
of dropping units of 0.275. Dense layers incorporate l2-norm penalty with lambda=3.75e-5. All 
layers are batch-normalized and use ReLu units for activation (except for the last one, which is 
sigmoidal). 

The model is trained using the Adam optimizer, minimizing cross-entropy loss, with minibatches 
of size 256. We set aside 10% of the data for validation, and keep the model that achieves the 
best F1 score on the validation set. We stop the training when no improvement is achieved on 
the validation set (neither in cross-entropy loss nor in F1 score) for 250 epochs. We compare our 
model with a random forest with 500 trees -no significant improvements were obtained beyond 
that value-, gini index for splitting nodes and no depth limit. We evaluate both models using a 
10-fold cross validation (CV) procedure. The folds are chosen randomly without replacement and 
cover the whole data set (there is no intersection between them). 

For each model we report precision, recall, F1 score and the area under the ROC and precision-
recall curves in Table 13. For each value we report the average and standard deviation obtained 
during the 10-fold CV process. Repeated runs of the same experiment with different randomly 
chosen folds yielded similar results. 

Figure 60 shows the ROC and precision-recall curves for the models that attained the AUC closest 
to the average value. 

These results show that the proposed CNN model consistently outperforms Random forests by a 
noticeable margin. 

                                            
4 https://keras.io/ 
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Table 13. Classification results 

 Random forests (500 trees) CNN 

Precision 0.9461 +/- 0.0062 0.9697 +/- 0.0056 

Recall 0.9406 +/- 0.0079 0.9318 +/- 0.0063 

F1 score 0.9432 +/- 0.0033 0.9502 +/- 0.0032 

AUC-ROC 0.9868 +/- 0.0021 0.9905 +/- 0.00077 

AUC-PR 0.9881 +/- 0.0024 0.9913 +/- 0.0016 

 

 

Figure 60. ROC and precision-recall curves 

10.4 Conclusions 

In this section we have described a promising method to detect the anomaly called noisy 
neighbors -virtual machines negatively impacting each other's performance-, which is a recurring 
problem in cloud infrastructure. To the best of our knowledge this is the first proposal to apply 
machine learning algorithms to this problem and in particular by using CNN deep neural 
networks. We have designed a deep convolutional network architecture to effectively exploit 
the time-series nature of the data. Using monitoring metrics collected at real data center 
infrastructure, we have shown that the proposed convolutional network outperforms well-known 
classifiers (Random Forests and Support Vector Machines). We observe that depth was crucial to 
obtain this result, which motivates further research in the application of deep learning to cloud 
infrastructure management.  

The main drawback of this approach is the computational cost of the training process. A deep 
convolutional network can take as much as 100 times longer to train than models like random 
forests or support vector machines, while the obtained performance is only slightly superior. 
However, we note that these experiments are preliminary in nature, and the employed data 
comes from a simplified scenario. We believe that the more complex behaviors that are likely to 
be observed in real environments will pose harder challenges to classification algorithms, which 
might make the superiority of deep networks more noticeable. This would undoubtedly motivate 
the use and deployment of these methods in real cloud infrastructure. Because of this, we plan 
to conduct experiments on more complex, more realistic data and to develop scalable 
techniques for leveraging deep networks. 
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Annex A : Documentation of WP4 gitlab 

Link to the code repository:  https://gitlab.com/ontic/wp4-laascrns-streaming_orunada 
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Annex B Ground Truth Generation 
 

This annex presents the commands used to generate the different scans and the obtained 
outputs.  

Annex C Scan OS host and ports 
This section presents the commands used to generate the different scans and the obtained 

outputs. First, it introduces the scan which aims at detecting operating systems. Second it 

introduces port scans and finally network scans. For the description of all command lines used 

for the discovery anomalies, we use @Devil21 as the attacker’s address and @n15 as the 

target’s address. All the discovery anomalies command lines are executed from Devil21. All 

traces are captured at the entry point of SATEC network, i.e. Interhost-eth0 (see Figure 6: 

Network used to generate anomalies of type "Discovery anomalies").  

Detection of the operating system on a network (set of live machines) and listening 
services (with version) on open ports 

We used nmap with the following options: 

• -O: enables OS detection 

• -sV: probes openports to determine service/version information 

• -A: enables OS detection, service detection, script scanning and traceroute 

• -4: enables IPv4 scanning  

• -T4: set timing template (4 = aggressive) 

• -n: never do DNS resolution 

The first experiment concerns the discovery of the n15 machine, the second one concerns the 

subnetwork of n15, named n10. 

 Discovery of n15 Discovery of n15‘ network 

Command line nmap –O –sV  -T4  -n -A 4 @n15 nmap –O –sV -T4 –n 
221.75.224.0/20 

File name scan_os_host.pcap scan_os_network.pcap 

File size 219 kBytes 2695 kBytes 

Elapsed time 40.443430 seconds 230.173567 seconds 

Number of 
packets 

2707 37269 

Traffic network 4.364kBytes/s 9.120kBytes/s 

 

Ports scans 

o TCP SYN scan 

We have used Nmap with the following options: 

• -sS: TCP SYN scan sent to specified ports 

• -T4: set timing template (4 = aggressive) 

• -n: never do DNS resolution 

• –p <port range>: only scan specified ports. If no ports are specified, 1000 

default ports are selected among the most used. 

 TCP SYN scan on 1000 ports TCP SYN scan on 5000 ports 
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Command line nmap –sS –T4 @n15 nmap –sS –n –p-5000 –T4 @n15 

File name TCP_SYN_p1000.pcap TCP_SYN_p5T000.pcap 

File size 157 kBytes 1067 kBytes 

Elapsed time 62.744423 seconds 96.432366 seconds 

Number of packets 2221 14817 

Traffic network 1.995 kBytes/s 8.615 kBytes/s 

 

o TCP connect scan 

We have used Nmap with the following options: 

• -sT: TCP CONNECT scan sent to specified ports 

• -T4: set timing template (4 = aggressive) 

• -n: never do DNS resolution 

• –p <port range>: only scan specified ports.  

 TCP CONNECT scan on 5000 ports 

Command line nmap –sT –n –p0-5000 –T4 @n15 

File name TCP_Connect_p5000.pcap 

File size 8003 kBytes 

Elapsed time 45.908829 seconds 

Number of packets 100040 

Traffic network 139 kBytes/s 

 

o UDP Scan 

We have used Nmap with the following options, and some simulated services are started on n15, 

using ncat, on UDP ports 4,6,8,and 10: 

 –Pn: Treat all hosts as online (skip host discovery) 

 –sU: UDP scans 

 –p U :1-501: scans on UDP ports between  1 and 501 numbers 

 –data-length  append random data to sent packets 

 -T4, -T5: set timing template (4 = aggressive; 5=insane) 

 UDP scan on 500 ports , 
aggressive template 

UDP scan on 500 ports , insane 
template 

Command line Nmap –n  -Pn –sU –p U :1-501  –
data-length 8 –T4 @n15 

Nmap –n  -Pn –sU –p U :1-501  –data-
length 8 –T5 @n15 

File name UDP_scan_T4.pcap UDP_scan_T5.pcap 

File size 304 kBytes 1.5 MBytes 

Elapsed time 294.694565 seconds 111.309802 seconds 

Number of packets 3162 18672 

Traffic network 668 Bytes/s 8.544 kBytes/s 

 

o NULL Scan 

We have used Nmap with the following options: 

 –sN: TCP Null scans 

 –n: never do DNS resolution 

 -T4: set timing template (4 = aggressive) 

 TCP Null scan on 1000 ports 

Command line nmap –sN –T4 –n  @n15 
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File name NULL_scan_T4.pcap 

File size 277 kBytes 

Elapsed time 35.259449 seconds 

Number of packets 3957 

Traffic network 6.073 kBytes/s 

 

o XmasTree Scan 

We used Nmap with the following options: 

 –sX: TCP Xmas scans 

 –n: never do DNS resolution 

 -T4: set timing template (4 = aggressive) 

 TCP Xmas scan on 1000 ports 

Command line nmap –sX –T4 –n  @n15 

File name XmasTree_scan_T4.pcap 

File size 276 kBytes 

Elapsed time 36.069348 seconds 

Number of packets 3949 

Traffic network 5.916 kBytes/s 

 

Network scan 

o Ping Scan 

We used Nmap with the following options: 

 –sn: Ping scan (disable port scan) 

 –n: never do DNS resolution 

 -T4: set timing template (4 = aggressive) 

 Ping scan on network n10 

Command line nmap –sn  -T4-n  217.75.224.0/24 

File name Ping_scan_T4.pcap 

File size 1.117 MBytes 

Elapsed time 67.203980 seconds 

Number of packets 16405 

Traffic network 12 kBytes/s 

 

o IP Protocol Scan  

We used Nmap with the following options: 

 –sO: IP protocol scan allows you to determine which IP protocols (TCP, ICMP, 

IGMP, etc.) are supported by target machines 

 –n: never do DNS resolution 

 -T4: set timing template (4 = aggressive) 

 IP protocol scan on network n10 

Command line nmap –sO  -T4-n  217.75.224.0/24 

File name IP_proto_scan_T4.pcap 

File size 1.567 MBytes 

Elapsed time 244.168062 seconds 

Number of packets 24978 

Traffic network  4.783 kBytes/s 
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Annex D Attacks 

This section presents the commands used to generate the different attacks and the obtained 

outputs. First, it introduces DDoS, then DoS and finally the brute force attack. We use Devil21 

(169.254.8.20) as the attacker’s address and n15 (217.75.224.70) as the target’s address. All 

the discovery anomalies command lines are executed from Devil21. All traces are captured 

at the entry point of SATEC network, i.e. Interhost-eth0 (see Figure 7: Network used to 

generate the attacks on CORE) 

DDoS 

o DDoS Smurf  

The goal is to generate a huge attack flow. We used Nmap and then hping3, because the bit rate 

with Nmap was too small. In both cases, the amplification network is  167.254.8.1/24, the target 

is n15 (217.75.224.79) and the attacker is Devil21 (169.254.8.20) 

For nping, we have used the following options: 

 --icmp: probe ICMP echo/request 

 --data-length: data length added to the header of ICMP request packet 

 --rate: number of packets send per second 

 -c: stop after the given number of rounds 

 –S: define the spoof address used by the attacker 

 –e: define the interface used by the attacker 

 

For hping3, we have used the following options, with a target specified with a multicast address 

(167.254.8.255): 

 --icmp: ICMP echo request 

 --flood: sent packets as fast as possible. Don't show replies. 

 –d: datalength added to the header of ICMP request packet 

 -a: spoof address 

 -n: no DNS resolution 

 Smurf attack with nping Smurf attack with hping3 

Command line nping—icmp –data-length 1024 –
rate 1000000 –c 1000000 –S 
@n15 –e eth0 167.254.8.1/24 
(host with 8 cores) 

hping3 -n --icmp --flood -d 1024 -a 
217.75.224.70  167.254.8.255 
 

File name smurf_nping.pcap smurf_hping3.pcap 

File size 1.235 GBytes 13 GBytes 

Elapsed time 231.323230 seconds 93.993063 seconds 

Number of packets 1141906 12645039 

Traffic network 5.261 MBytes/s  143 MBytes/s 

Command line nping—icmp –data-length 1024 –
rate 1000000 –c 1000000 –S 
@n15 –e eth0 167.254.8.1/24 
(host with 28 cores) 

 

File name smurf_nping_bali.pcap  

File size 7.386 GBytes  

Elapsed time 152.237612 seconds  
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Number of packets 6826401  

Traffic network 47 MBytes/s   

 

o DDoS Fraggle 

The goal is to generate a huge attack flow. We have used Nmap and then nping, because the 

byte rate with Nmap was too small. With hping, we have used multicast address for Smurf attack 

with TCP packets, but for sending UDP packets for the Fraggle attack, we encountered a lot of 

problems, solved by nping. In the following the amplification network is  167.254.8.1/24, the 

target is n15 (217.75.224.79) and the attacker is devil1 (169.254.8.20) 

 

For Nmap, we have used the following options: 

 -Pn: skip host discovery 

 -sU: UDP scans 

 -p U:7: specify the UDP port used for this attack 

 - data-length: datalength added to the header of UDP packet 

 -n: no DNS resolution 

 -S: spoof address 

 -e: interface used to send packets 

On 256 machines in the amplifier network, 25 have open UDP servers(simulated with ncat [47]) 

to communicate with target n15, ie about 10% of machines in the amplifier network. 

 

For nping, we have used the following options, with a target network specified as 

167.254.8.1/24: 

 – udp: UDP probe mode 

 –p 7: specify the destination UDP port  

 – data-length: datalength added to the header of UDP packet 

 –delay: Adjust delay between probes 

 –c: stop after N rounds 

 –S: set source address 

 –e: use the specified interface 

 

 

 Fraggle attack with Nmap Fraggle attack with nping 

Command line nmap –n –Pn –sU   –p U :7 –data-
length 8  –T5 –S @n15 –e eth0 
168.254.8.0/24  

nping --udp  -p 7 --data-length 1024 
--delay 0.1ms -c 10000 -S @n15  -e 
eth0 167.254.8.1/24 

File name fraggleT5_nmap.pcap fraggle_nping.pcap 

File size 3.11 MBytes 56 GBytes 

Elapsed time 236.414743 seconds 217.867918 seconds 

Number of packets 28436 7104284 

Traffic network 9.07 kBytes/s 259 MBytes/s 

 

o SYN DDoS 
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For nping, we have used the following options, with the target is n15 (217.75.224.70):  

 – tcp: TCP probe mode 

 –p 80: specify the destination TCP port  

 – data-length: datalength added to the header of UDP packet 

 –c: stop after N rounds 

 – rate: set the number of probes per seconds 

For this attack we used 10 attackers, launching this command simultaneously. 

For hping3, we have used the following options, with the target is n15 (217.75.224.79):  

 – n: no DNS resolution 

 –flood: sent packets as fast as possible. 

 –S: sent TCP/SYN probes 

 –p 80: specify the destination TCP port  

 – d: datalength added to the header of TCP packet 

For this attack we used 10 attackers, launching this command simultaneously. 

 SynFlood attack with nping SynFlood attack with hping3 

Command line nping --tcp -p 80 -c 1000000 --
rate 10000 --data-length 1024 
@n15 

hping3 –n –flood –p 80 –S –d 1024 
@n15 

File name synflood_ddos_nping.pcap synflood_ddos_hping3.pcap 

File size 2.99 GBytes 2.80 GBytes 

Elapsed time 173.219362 seconds 127.105839 seconds 

Number of packets 7247746 4796825 

Traffic network 16 MBytes/s 21 MBytes/s 

 

Annex E DoS 

o Syn flooding 

For nping, we have used the following options, with the target is n15 (217.75.224.70):  

 – tcp: TCP probe mode 

 –p 80: specify the destination TCP port  

 – data-length: data length added to the header of UDP packet 

 –c: stop after N rounds 

 – rate: set the number of probes per seconds 

For this attack we started 6 times this command in batch mode on devil1. 

For hping3, we have used the following options, with the target is n15 (217.75.224.70): 

 – n: no DNS resolution 

 –flood: sent packets as fast as possible. 

 –S: sent TCP/SYN probes 

 –p 80: specify the destination TCP port  

 – d: data length added to the header of TCP packet 

For this attack we started 6 times this command in batch mode on devil1. 

 SynFlood attack with nping SynFlood attack with hping3 

Command line nping –tcp –p 80 –c 5000000 –
rate 4000000 –data-length 1024 

hping3 –n –flood –p 80 –S  -d 1024 
(or 512) @n15 
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@n15 

File name synflood_dos_nping.pcap synflood_dos_hping3.pcap 

File size 1.90 GBytes 3.90 GBytes 

Elapsed time 178.178932 seconds 218.826286 seconds 

Number of packets 7053063 5228385 

Traffic network 10 MBytes/s 17 MBytes/s 

 

o UDP flood 

For nping, we have used the following options, with the target is n15 (217.75.224.79): 

 – udp: UDP probe mode 

 –p 4-55: specify the destination UDP ports  

 – data-length: datalength added to the header of UDP packet 

 –c: stop after N rounds 

 – rate: set the number of probes per seconds 

For this attack we started 6 times this command in batch mode on devil1. 

 UDPFlood attack with nping 

Command line nping --udp  -p 4-55 --data-
length 512 --delay 0.1ms -c 
100000  @n15 

File name udpflood_nping.pcap 

File size 3.76 GBytes 

Elapsed time 151.249305 seconds 

Number of packets 4127343 

Traffic network 24 MBytes/s 

 

Annex F Brute force cracking passwords 

We tried to use 2 different tools: hydra and ncrack. For this kind of attack, we need passwords 

files, and also name-users files. From wiki.skullsecurity.org, we have download 2 passwords 

files: 

500-worst-passwords.txt: This file contains 500 passwords, commonly used for specific user 

accounts such as root, admin, administrator, ... 

rockyou.txt: This file contains approximatively 15 millions of  passwords, commonly used for 

specific user accounts such as root, admin, administrator, manager, supervisor, ..... 

We have built a name-users file containing 42 names: logins-liste.txt 

Those files are used both by Hydra and ncrack. 

For Hydra, we have used the following options: 

 -L: give a file containing a list of user-names 

 -P: give a file containing a list of passwords, used for each login-name 

hydra Brute force with 500-worst-
passwords 

Brute force with rockyou 

Command line hydra –L logins-liste.txt –P 500-
worst-passwords.txt @n15 ssh 

hydra –L logins-liste.txt –P 
rockyou.txt @n15 ssh  

File name brute-force_hydra.pcap brute-force_hydra_rockyou.pcap 
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File size 438 kBytes  

Elapsed time 3480.161030 seconds  

Number of packets 8212  

Traffic network 2.73 kBytes/s  

 

 For ncrack, we have used the following options: 

 -U: give a file containing a list of user-names 

 -P: give a file containing a list of passwords, used for each login-name 

 -T 5: set timing template (5 = insane) 

For this attack we used 7attackers, launching this command simultaneously. 

ncrack Brute force with 500-worst-passwords Brute force with rockyou 

Command 
line 

ncrack –U logins-liste.txt –P 500-worst-
passwords.txt –T5 @n15 :22 

ncrack –U logins-liste.txt –P 
rockyou.txt –T5 @n15 :22  

File name brute_force_ncrack_500worstpasswords.pcap brute_force_ncrack_rockyou.pcap 

File size 238 MBytes 496 MBytes 

Elapsed time 127.496476 seconds 268.258066 seconds 

Number of 
packets 

2558120 5373903 

Traffic 
network 

1.55MBytes/s 1.53 MBytes/s 

 

All the generated traces are obtained between September 2016 and January 2017, but the initial 

traces of SATEC are dated from 2015-02-17 15:35:54. We have to modify the capture dates of 

our traces, in order to merge each file with the chosen SATEC file. 

So, we used wireshark to determine the offset that must be applied in order to start each file at 

the right SATEC date. With editcap we can manage this modification, and then with editmerge, 

we create a new file with each attack-trace file and the selected real SATEC file. 

 


