
HAL Id: hal-01476170
https://laas.hal.science/hal-01476170

Submitted on 24 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ONTIC: D5.3: ONTIC Subsystem Integration
Juliette Dromard, Philippe Owezarski, Miguel Angel López, Carlos Area,

Miguel-Ángel Monjas, Alejandro Bascuñana, Martin Vicente, Fernando Arias,
Alberto Mozo, Sandra Gómez, et al.

To cite this version:
Juliette Dromard, Philippe Owezarski, Miguel Angel López, Carlos Area, Miguel-Ángel Monjas, et
al.. ONTIC: D5.3: ONTIC Subsystem Integration. LAAS-CNRS; SATEC; Ericsson Spain; Dell-EMC;
UPM. 2017. �hal-01476170�

https://laas.hal.science/hal-01476170
https://hal.archives-ouvertes.fr

1 / 37

Online Network Traffic
Characterization

ONTIC Subsystem Integration

ONTIC Project
(GA number 619633)

Deliverable D5.3

Dissemination Level: PUBLIC

Authors

Juliette Dromard, Philippe Owezarski

LAAS-CNRS

Miguel Angel López, Carlos Area

SATEC

Miguel-Ángel Monjas, Alejandro Bascuñana

Ericsson Spain

Vicente Martín, Fernando Arias

DellEMC

Alberto Mozo
Sandra Gómez

Bruno Ordozgoiti

UPM

Version

ONTIC_D5.3_2017.02.03_1.0.DOCX

!!

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

2 / 37

! !

Copyright © 2017, ONTIC Consortium
The ONTIC Consortium (http://www.http://ict-ontic.eu/) grants third parties the right to use and

distribute all or parts of this document, provided that the ONTIC project and the document are
properly referenced.

THIS DOCUMENT IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
DOCUMENT, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

http://www.http/ict-ontic.eu/

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

3 / 37

! !

Version History

Version Modification
date

Modified
by

Summary

0.01 2016-10-30 Ericsson Structure proposal

0.10 2016-11-18 CNRS, SATEC Contribution to UC#1

0.20 2016-12-23 Ericsson,
DellEMC

Contribution to UC#2

0.21 2017-01-17 Ericsson Rework and heading sections

0.22 2017-01-18 Ericsson Configuration and parametrization
enhancement

0.3 2017-01-20 Ericsson,
UPM

Restructuring of section 7.2.3. Creation
of Annex A

0.4 2017-02-01 UPM UC#3 contribution

0.5 2017-02-02 Ericsson Ready for QA review

1.0 2017-02-03 SATEC QA Review
Final version

Quality Assurance:

Role Name

Quality Assurance Manager Miguel Ángel López Peña (SATEC)

Reviewer #1 Alberto Mozo (UPM)

Reviewer #3 Panos Georgatsos (ADAPTit)

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

4 / 37

! !

Table of Contents

1 ACRONYMS 7

2 PURPOSE OF THE DOCUMENT 8

3 SCOPE 9

4 INTENDED AUDIENCE 10

5 SUGGESTED PREVIOUS READINGS 11

6 EXECUTIVE SUMMARY 12

7 SUBSYSTEM INTEGRATION 13

7.1 Use case #1 .. 13

7.1.1 Use case description ... 13
7.1.2 Implementation details ... 13
7.1.3 Interworking and data model adaptation ... 15
7.1.4 Configuration and parametrization .. 16
7.1.5 Open issues and future developments .. 17

7.2 Use case #2 .. 17

7.2.1 Use case description ... 17
7.2.2 Implementation details ... 17
7.2.3 Interworking and data model adaptation ... 19
7.2.4 Configuration and parametrization .. 19
7.2.5 Open issues and future developments .. 22

7.3 Use case #3 .. 22

7.3.1 Use case description ... 22
7.3.2 Implementation details ... 24
7.3.3 Interworking and data model adaptation ... 26

7.3.3.1 Simulator 26
7.3.3.2 PCAD (EERCP + MMFA) and FM modules 26

7.3.4 Configuration and parametrization .. 28
7.3.5 Open issues and future developments .. 29

8 REFERENCES 30

ANNEX A QOE DEGRADATION DETECTION 31

A.1 Data source management... 31

A.2 QoE degradation detection ... 34

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

5 / 37

! !

List of figures

Figure 1: Use Case #1 High-level Architecture ... 14
Figure 2: Use Case #2 Overall Schema ... 18
Figure 3: Eleven-grade numeric quality scale proposed by ITU-T (Subjective video quality
assessment methods for multimedia applications) .. 19
Figure 4: Global perspective of the Use Case #3 Simulator. ... 23
Figure 5: Example of a configuration file ... 24
Figure 6: Example of a dataset file. ... 24
Figure 7: Example of an output log file. Each line is generated at periodic intervals.............. 25
Figure 8: Plot examples of the queue size distribution of links in an experiment running several
EERC protocols .. 25
Figure 9. Plot example of the error distribution of rate assignments at sources in an experiment
running BFYZ and BNECK EERC protocols .. 25
Figure 10: Example of a “small.alt” file generated for a Small topology using the gt-itm tool. The
topology is composed of transit (T) and stub (S) nodes. .. 26
Figure 11: Example of an “actions.txt” file. ... 26
Figure 12: UC #3 System Architecture ... 27
Figure 13: Detail of the integration of PCAP and FM modules. .. 28
Figure 14: Diagram of the initialization (handshake) of a TCP connection 31
Figure 15: Clustering (download bandwidth vs. latency) ... 35
Figure 16: Clustering (download bandwidth vs. packet rate) .. 35
Figure 17: UC#2 Perceived quality per cluster ... 36

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

6 / 37

! !

List of tables

Table 1: Acronyms ... 7
Table 2: Initial set of tstat features in UC#2 ... 32
Table 3: Set of UC#2 Tstat features after cleaning .. 32
Table 4: PCA1 Weights ... 33
Table 5: QoE detection variables ... 34
Table 6: Per cluster score ... 36

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

7 / 37

! !

1 Acronyms

Acronym Defined as

ARIMA Autoregressive Integrated Moving Average

CSP Communication Service Provider

DP Data Preprocessing (unit)

EERCP End-to-End Congestion Control Protocol

FC Forecasting (unit)

FM Forecasting Module

GUI Graphic User Interface

ISP Internet Service Provider

MMFA Max-Min Fair Optimization Algorithm

ORUNADA Online and Real-time Unsupervised Network Anomaly Detection Algorithm

PCA Principal Component Analysis

PCAD Proactive Congestion Avoidance Driver

PCAP Packet Capture

QoE Quality of Experience

RTT Round-Trip Time

SNMP Simple Network Management Protocol
TCP Transmission Control Protocol

XML Extensible Markup Language

Table 1: Acronyms

https://es.wikipedia.org/wiki/Simple_Network_Management_Protocol

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

8 / 37

! !

2 Purpose of the Document

Deliverable D5.3 purpose is to provide information about how the algorithms developed in
scientific work packages have been applied in use cases. Although it is possible to assume that
integration should have been straightforward, in general, adaptations, configurations, and
transformations are needed. For instance, the following adaptation could have been needed:

 Interface adaptation: it means not only protocol (many times a specific protocol
wrapper has been designed), but also data model adaptation. Sometimes it has been
also interconnected using other off-the-self systems such as data brokers, cloud
platforms…

 Redesign if the algorithm was designed in a language/technology different from the
one used in the use case.

Also, the following information would be needed in order to fully understand how the algorithms
are run:

 The parameters used in the algorithm implementation within the use case. For
instance, if considering a Spark Streaming-based algorithm, the size of the windows
or the thresholds used.

 The configuration parameters for the platform where the algorithm is run (RAM,
processors…)

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

9 / 37

! !

3 Scope

This document provides information about algorithm usage in the use case prototype
implementation. However, generic details about use case implementation can be found in
corresponding deliverables:

 ONTIC. “Deliverable D5.4. Use Case #1: Network Intrusion Detection” [4].

 ONTIC. “Deliverable D5.5. Use Case #2: Adaptive Quality of Experience Control” [5].

 ONTIC. “Deliverable D5.6. Use Case #3: Proactive Congestion Detection and Control
[6].

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

10 / 37

! !

4 Intended Audience

The intended document audience includes not only all the partners in the ONTIC consortium
(especially those involved in gathering requirements, and in designing, implementing and
validating the prototypes) or the receivers of the project. It also includes any reader interested
in understanding the ONTIC use cases and the business principles that guide the research within
the project.

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

11 / 37

! !

5 Suggested Previous Readings

It is expected that a basic background on Information and Communications Technology (ICT) is
sufficient to address the contents of this document; however, some previous readings are
suggested (mind that in deliverables D5.1 and D5.2, use cases #2 and #3 were swapped):

 ONTIC. “Deliverable D5.1. Use Case Requirements” [2].

 ONTIC. “Deliverable D5.2. Use Case Requirements” [3].

 ONTIC. “Deliverable D5.4. Use Case #1: Network Intrusion Detection” [4].

 ONTIC. “Deliverable D5.5. Use Case #2: Adaptive Quality of Experience Control” [5].

 ONTIC. “Deliverable D5.6. Use Case #3: Proactive Congestion Detection and Control”
[6].

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

12 / 37

! !

6 Executive Summary

Three different use cases has been tested in ONTIC in order to determine the feasibility of the
ONTIC algorithms.

Use case #1 deals with detecting anomalies in real-time in network traffic. This use case consists
of two main components: a detection algorithm implementing unsupervised machine learning
mechanisms, and a dash board for displaying network traffic characteristics in real time as well
as raising the alarms when an anomaly is detected by the detection algorithm. Both components
have been developed. This deliverable shows how they have been integrated in order to appear
as a single system.

UC #2 has overcome the limitations of the ONTS regarding the use case requirements by creating
a reduced labeled dataset made of network traffic traces. Labels are assigned according to the
quality perceived by human viewers when watching videos. After appropriate cleaning and
normalization, an adaptation of the FreeScan procedures are carried out: a clustering model is
extracted from the dataset (considering both a training and a test subset); clusters are mapped
against labels, which are turned into numeric values; finally, the model is applied to new
network traffic traces, and a numeric quality index is associated to each of them; finally, an
average value for time windows is computed for different locations. When the average value
sustainable crosses a threshold, the QoE degradation is thus detected and appropriate alleviation
measures are implemented.

Use Case #3 focus on congestion control. Nowadays, end to end host mechanisms for congestion
control such as TCP are widely deployed, scale to existing traffic loads, and share network
bandwidth applying a flow-based fairness. However, in a context where it is expected, in the
short term, that more than 90 percent of the Internet traffic will go through data centers, TCP
converge slowly to steady sending rates and cannot isolate datacenter tenants from interfering
with each other.

UC #3 proposes a combined deployment of proactive congestion control protocols by explicitly
computing sending rates and rate enforcement points placed in the edges of the network as a
solution to establish the right way to mitigate these issues. The functionalities developed in this
use case contain the following elements: (a) a scalable and distributed max-min fair
optimization algorithm (MMFA) to compute max-min fair rates that iterates rapidly until
converging to the optimal solution, (b) a proactive end-to-end congestion control protocol
(EERCP) that deploys the former max-min algorithm to compute the session sending rates and
enforces the fulfillment of these rates at the edges of the network and (c) a machine learning
component that implements forecasting capabilities in order to provide the sources with
accurate max-min fair assignments while the protocol iterates to convergence. Regarding the
unfeasibility of a realistic deployment, UC#3 will be demonstrated by means of simulations run
on top of a discrete events based simulator.

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

13 / 37

! !

7 Subsystem Integration

7.1 Use case #1: Network Intrusion Detection

7.1.1 Use case description

ONTIC UC #1 designed a new autonomous anomaly detection system based on original
unsupervised machine learning algorithms designed for that purpose. The most important
feature of the anomaly detector is that it does not rely on previously acquired knowledge, it
does not need any training phase or labeled data, and it is expected not to leverage in most of
the cases on a human operator for making a decision on the status of detected anomalies
(legitimate vs. attack or intrusion for instance). It aims also at triggering the appropriate
counter-measures in most cases.

However, based on project research results in WP4, it appears that it would not be possible for
the anomaly detection to autonomously make a decision for all anomalies. The new functionality
that is required, and has been added in the design of the new anomaly detection system is a
network traffic analytic dashboard. It aims at providing the human administrator with the
required elements gained by the detection algorithms in order for her/him to decide whether
the anomaly is legitimate or not, and apply the suited counter-measure.

7.1.2 Implementation details

This system has been designed specifically for the purpose of the ONTIC project, i.e. from
scratch.

Figure 1 represents the high level proof-of-concept architecture showing the PCAP file,
containing traffic traces, as the input to the two subsystems – the Anomaly Detection and the
Network Traffic Dashboard subsystems. The results of the anomaly detection process, as XML
files, are provided to the dashboard as well.

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

14 / 37

! !

Figure 1: Use Case #1 High-level Architecture

The Anomaly Detection subsystem analyses the network traffic that is captured at the PCAP
format and applies the ORUNADA unsupervised anomaly detection algorithm presented in
deliverable D4.2 [1]. When it detects an anomaly, it sends an XML file passing on the
characteristics of the detected anomalies to the dashboard for display purposes. It can also be
used for autonomously launching counter-measures.

The ORUNADA implementation has been carried out in Java (1.8 version).1 ORUNADA detects
anomalies based on traffic inputs in the PCAP files in a continuous way. It also generates
signatures to describe them. ORUNADA outputs on the standard output some information about
ORUNADA's execution. It also creates an XML file for each micro-slot processed (apart for the n
first micro-slots, n equals to the number of micro-slots in a window). This XML structure lists the
anomalous flows found in the PCAP file at the end of each micro-slot considering the packets
contained in the current window. For each anomalous flow it specifies its features, its score of
dissimilarity and its signature.

The Network Traffic Dashboard subsystem implements an ISP/CSP network administration tool
that provides complete online (real-time) and offline (through a forensic analysis tool) traffic
monitoring as well as anomaly detection.

The subsystem relies on both data traffic (PCAP and NetFlow V5) and the XML output of the
Anomaly Detection subsystem. These input sources are processed through the Network Data
Processing Module made up of four functional stages: ingestion, parsing, filtering and storage.
On the other hand, the Visualization Module queries the stored data to display the analytics in
Real-Time on a web user interface.

Such scenario requires the Network Data Processing Module to be supported by a series of
characteristics related to performance and scalability in order to deal with the demands of a

1 Code repository available in https://gitlab.com/ontic-wp4/ORUNADA

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

15 / 37

! !

real deployment, i.e. to monitor a real network link. Some of these characteristics are:
capability for processing high volumes of input data without losses, parallel processing of all
input streams, distributed scalable and highly available system, near Real-Time support (in both
Network Data Processing and Visualization modules). Hence, the Network Data Processing
Module needs to be able to handle an increasing volume of work, which means it should improve
its performance if the input load grows. Obviously, it will also reduce performance by
contracting resource consumption, if necessary.

The point of convergence between the two modules of the dashboard subsystem is the database
where data will be stored and queried. Due to the need of horizontal scaling to clusters of
machines, which is a problem for relational databases, plus the heterogeneity of the data
structures used, and a bunch of fast operations required for near Real-Time processing (like
complex searches), a NoSQL database suits better in this case than a typical relational database.

Elasticsearch2 is a highly scalable full-text search and analytics engine. It allows to store, search,
and analyze big volumes of data quickly and in near Real-Time. Thus it fits as the underlying
engine/technology to power the dashboard subsystem’s needs for storage and analysis.

7.1.3 Interworking and data model adaptation

Taking into account that the prototype environment does not provide a NetFlow input data
source, the decision to integrate a module to generate NetFlow records from the PCAP file (in
real-time) was made. This module works adding a NetFlow data stream as a new input data
source to the dashboard subsystem. The output interface defined for the Anomaly Detection
subsystem is a XML generator (it generates XML files periodically at specified time intervals).
Each XML contains a list of attributes that define the anomalies detected in the period.

The dashboard subsystem receives and processes the XML files as soon as they arrive. Two such
interface means are provided: through files written into a defined file directory or through a
Web Service interface implemented in the dashboard system XMLs files could be sent
continuously to.

The following DTD defines the legal building blocks of the XML's file sent by the LAAS-CNRS to
SATEC. It describes the document structure with a list of legal elements and attributes. The DTD
is associated with the XML document by means of a document type declaration (DOCTYPE):

2 https://www.elastic.co/

https://en.wikipedia.org/wiki/Horizontal_scaling#Horizontal_and_vertical_scaling
https://en.wikipedia.org/wiki/Cluster_computing

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

16 / 37

! !

<!DOCTYPE UNADA SYSTEM "/path/to/file.dtd">
<?xml version="1.0" standalone="yes" ?>
<!DOCTYPE UNADA[
<!ELEMENT UNADA (signaturesOfAnomalies*,points*)>
<!ELEMENT points (point+)>
<!ELEMENT point (val*)>
<!ELEMENT val (#PCDATA)>
<!ELEMENT signaturesOfAnomalies (signatureOfAnAnomaly*)>
<!ELEMENT signatureOfAnAnomaly (rule+)>
<!ELEMENT rule EMPTY >
<!ATTLIST UNADA start CDATA #REQUIRED>
<!ATTLIST UNADA end CDATA #REQUIRED>
<!ATTLIST UNADA file CDATA #REQUIRED>
<!ATTLIST UNADA aggreg CDATA #REQUIRED>
<!ATTLIST UNADA totalSize CDATA #REQUIRED>
<!ATTLIST UNADA totalNbPackets CDATA #REQUIRED>
<!ATTLIST point id CDATA #REQUIRED>
<!ATTLIST val dim CDATA #REQUIRED>
<!ATTLIST signatureOfAnAnomaly dissim CDATA #REQUIRED>
<!ATTLIST signatureOfAnAnomaly mainIPs CDATA #REQUIRED>
<!ATTLIST signatureOfAnAnomaly point CDATA #REQUIRED>
<!ATTLIST signatureOfAnAnomaly possAnom CDATA #REQUIRED>
<!ATTLIST rule dim CDATA #REQUIRED>
<!ATTLIST rule type CDATA #REQUIRED>
<!ATTLIST rule value CDATA #REQUIRED>
]>

Additionally, in order to provide the results of Use Case #1 to the network administrators a
Graphical User Interface (GUI) has been developed as well. This GUI is a web-based
application with the following features:

 It is a network traffic analytic dashboard application.

 It provides different views to show details about: traffic, flows and anomalies

 It works in both Online mode (real-time) and off-line mode (forensic mode)

 It enables select time periods and export data of that period.

 It can send message alerts to other systems in form of SNMP Traps.

7.1.4 Configuration and parametrization

ORUNADA takes 3 mandatory arguments plus 4 optional ones. The three mandatory
arguments are:

 The path to the pcap file to analyze.

 The direction of the aggregation. You have to specify whether the aggregation is
made at the IP source 'src' or at the IP destination 'dst'.

 The mask of the aggregation. You need to specify if it is '8', '16', '24', '32'.

The four optional arguments are:

 Time of a slot in seconds;

 Nb of micro-slots in a slot;

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

17 / 37

! !

 For computing the size of the intervals for IGDCA. Each dimension has a different size
of interval. This value is set as a percentage of the maximum distance between every
pair of points for each dimension. To fix them, you need to specify this percentage
and specify a value between 1 and 99.");

 For computing the minimum number of points to form a cluster in IGDCA. This number
is set as a percentage of the whole number of points. To fix it, you need to specify
this percentage and specify a value between 1 and 99."); If you don't provide the four
optional arguments, some defaults ones are used.

The dashboard is a web application that does not need any special parametrization.

7.1.5 Open issues and future developments

The ORUNADA algorithm has been implemented and assessed. It exhibits real-time performance
when applied to ONTS traffic. It also exhibits high detection accuracy on all ground truths that
we used for testing it. ORUNADA then fits the ONTIC objectives. Future work will be related to
the relations established by ONTIC with the H2020 EBDEAVOUR project, Indeed, IBM Zürich, one
of the ENDEAVOUR partners, is interested by ORUNADA for its own purpose. The same evaluation
with IBM traffic has to be run as for the ONTS traffic in ONTIC.

The open lines identified for dashboard further progress include:

 Analysing new input data sources supplying additional information about anomalies
such as SNMP traps and logs from network appliances, anomaly signatures from data
bases, etc.

 Prospecting, selecting and integrating of a real-time network traffic capturing system
to be integrated as part of the product.

 Development of interfaces for integrating real-time network traffic capturing systems
such as the ONTS Provisioning System developed by the project or other commercially
available systems.

 Designing and implementing new analytics processes taken into account the new data
sources.

7.2 Use case #2: Adaptive Quality of Experience Control

7.2.1 Use case description

Use Case #2 deals with the detection on QoE degradation situations and the subsequent
actuation to alleviate the degradation situation. A specific type of service, Video, has been
selected for this proof-of-concept, and a test-bed has been devised to assess the feasibility
of the overall schema. As the ONTS dataset does not carry application-level information, a
smaller, labeled dataset has been generated by the partners so that it can be used to train
the clustering model the algorithms rely upon. New network traces generated by users’
traffic are matched against the model and assigned to a cluster. Depending on the weights
of the labels in each cluster, traces are given a numeric value, which helps to assess the
degradation of QoE.

7.2.2 Implementation details

As outlined in the previous section, Use Case #2 aims to detect degradations in the QoE
perceived in video services. The implementation of this use case relies on an adaptation of
FreeScan. The algorithm as such has been implemented in Python and customized to the

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

18 / 37

! !

requirements of the use case, as domain-specific constraints apply (for instance, the
location segmentation or the use of time windows to continuously monitor the QoE
indicators and to report end-of-degradation events).

The overall procedure is outlined in the figure below:

Figure 2: Use Case #2 Overall Schema

Use Case #2 relies on capturing network traces and using them to detect QoE degradation
situations. This task is carried out by the Network Trace Forwarder and is based on Tstat
[1], which aggregates the actual network traces into flows. The output of Tstat is a set of
CVS files where each row corresponds to a different flow and each column is associated to
a specific observed measure in the flow. In order to train the model, DellEMC has manually
labeled a network trace dataset, where each flow is given a ‘good’, ‘medium’, ‘bad’ label.
Once the clusters have been found, clusters are examined in order to determine whether
they have a straightforward relationship to the QoE labels. As QoE labels are categorical
variables, each of them is assigned a numeric value and, depending on the label share in
each cluster, a QoE value is assigned to each cluster.

The numeric values are defined according to the eleven-grade numeric quality scale
proposed by ITU-T [11]. ‘Excellent’ (9) has been mapped to “Good”, ‘Fair’ (5) to
“Medium”, and ‘Poor’ (3) to “Bad”. People on charge of labelling was illustrated with the
meaning of the label during the training phase.

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

19 / 37

! !

Figure 3: Eleven-grade numeric quality scale proposed by ITU-T (Subjective video quality
assessment methods for multimedia applications)

When the model is trained, it is applied to each new network trace and a QoE numeric
value is therefore assigned to the trace. When the average value of this QoE indicator for a
given time window goes below a threshold for more than a predefined time, an alarm is
issued and a mitigation plan is applied so that the degradation situation is alleviated. The

computation of this indicator, video_qoe, is done in 30-second windows. Computation is
repeated every 15 seconds, considering the last 30-second window.

A detailed description of network traces, model build and QoE degradation detection can
be found in Annex A.

7.2.3 Interworking and data model adaptation

The centralized Analytics Function that implements the ONTIC algorithms plays the role of
message broker consumer and receives the networks traces as plain text according to the
Tstat format. The outcome of the Analytics Function implements the IF3-2bis, with payload
described in Annex C.2 in deliverable D5.6 [5].

7.2.4 Configuration and parametrization

For simplicity and according to the teams’ capabilities, Python has been the selected
programming language to implement the ONTIC algorithms. The Analytics Function
implementation is based on Spark 1.6.0 using Python (PySpark) and takes advance of Spark
Streaming, an extension of the core Spark API that enables scalable, high-throughput,
fault-tolerant stream processing of live data streams. The clustering model the algorithm

relies upon is trained by means of the pyspark.mllib.clustering module from the

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

20 / 37

! !

pyspark.mllib package.3 Once the model has been trained, it is loaded by the Spark
Streaming logic (see below). The model is used only to classify incoming traffic, but not to
determine when QoE trespasses a threshold. Auxiliary logic to so has been developed.

Provided that the model is loaded and is made available to logic deployed in Spark
Streaming, a Spark Context is created and a Streaming Context is associated to it. The
Streaming Context is connected to the Kafka message broker and it is subscribed to the
network traces available in the ‘analytics-input’ topic.

The parameters in the configuration file are the following ones:

{

 "kafkaLocation":"kafka:9092",

 "kafkaLocationForPGF":"kafka:9092",

 "dataTopic":"analytics-input",

 "pgfTopic":"analytics-to-rest",

 "checkpointKafka":"checkpoint",

 "streamBatchSize":9,

 "windowSize":36,

 "execTime": 18,

 "model_path": "model"

}

Spark Streaming follows a micro-batch schema. The size of the batch is configured by

means of streamBatchSize, in seconds. windowSize is the window length, the duration of

the window when performing windowed computations. execTime is the sliding interval, the
interval at which the window operation is performed. Both parameters must be multiples

of the batch interval of the source stream (streamBatchSize).

The code below summarizes the adaptation of the ONTIC algorithms to be executed on
Spark Streaming. First we load the configuration parameters, create the Spark
StreamingContext (the main entry point for all streaming functionality), associate it to

Kafka to receive data and get a DStream object (discretized stream, a high-level Spark
abstraction representing a continuous stream of data), and load the trained model:

Configuration load
with open('project.conf') as data_file:
 config = json.load(data_file)

Create SparkContext() and StreamingContext(), with batch size from
configStreaming.
sc = SparkContext()
ssc = StreamingContext(sc, config["streamBatchSize"])

Kafka topic where streaming is reading and checkpoint definition.
kafkaParams = {"metadata.broker.list": config["kafkaLocation"]}

Connect to Kafka in order to get the network traces from the Network Trace
Forwarding
while True:
 try:

3 https://spark.apache.org/docs/1.6.0/api/python/pyspark.mllib.html

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

21 / 37

! !

 directKafkaStream = KafkaUtils.createDirectStream(ssc,
 [config["dataTopic"]],
 kafkaParams)
 break
 except Exception as e:
 print "Error: Waiting for kafka...".format(e)
 time.sleep(5)

ssc.checkpoint(config["checkpointKafka"])
qoe_model = KMeansModel.load(sc, config["model_path"])

Next, the sequence of operations to be performed to the network traces is defined.

Transformation functions are defined in a separated file (dataformatfunctions.py), which is

imported as the dft module. These transformations are applied to the DStream object in three
different steps (variable selection within the network trace, string to float transformation, and
indicator generation from the features in network traces).

init = directKafkaStream.map(lambda x:x[1])
init = init.map(dft.str_to_list)
KPIs = init.map(dft.get_dimensions)/
 .map(dft.to_float)/
 .map(dft.kpi_generation)

To get the group shares, the information is extracted from the DStream object and it is
summarized on a Python dictionary to send it later to the PGF-Adaptor.

groups = init.map(lambda x : x[0])
groups = groups.map(lambda group:(group,1))\
 .reduceByKeyAndWindow(lambda a,b : a+b,
 lambda a,b : a-b,
 config["windowSize"],
 config["execTime"]
)\
 .reduce(dft.to_array)\
 .map(dft.get_percentages)

With regard to the computation of the qoe_video indicator, the clustering model is applied to
the KPIs obtained in previous steps. Thus, we obtain the cluster the traces are assigned to
calculate the average value in the micro-batch.

Data is tagged depending on the cluster it belongs
result1 = KPIS.map(qoe_model.predict)

KPI is calculated depending on how many sessions are tagged as good
result = result1.map(lambda tag: (tag, 1))\
 .reduceByKeyAndWindow(lambda x,y : (x+y),
 lambda x,y : x-y,
 config["windowSize"],
 config["execTime"]
)\
 .reduce(dft.toArray)
result = result.map(dft.get_summary) \

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

22 / 37

! !

 .union(groups) \
 .reduce(dft.to_json)

The last step is passing on the information to the PGF Adaptor by means of the Kafka message
broker. It is the PGF Adaptor the entity that decides if the data obtained is sensitive enough to
raise an alert.

result.foreachRDD (lambda x :sendkafka(x,
 config["kafkaLocationForPGF"],
 config["pgfTopic"])
)

Note that the steps above only instruct Spark Streaming to set up the computation it will
perform when it is started, and no real processing has started yet. To start the processing, the
Spark Streaming Context has to be actually started and wait for its termination.

ssc.start()
ssc.awaitTermination()

7.2.5 Open issues and future developments

Future developments will address two different areas: first of all, the application of the same
techniques to other types of (video) services. The main challenge involved here lies in the need
to manually label large amounts of network traffic traces to be able to subsequently detect QoE
degradations. It is assumed that a degradation in a specific set of services has the same root
cause and therefore no labeling for every type of services is needed. On the other hand, the
adaptation and configuration of the ONTIC algorithms to include domain-specific constraints and
to provide further flexibility.

7.3 Use case #3: Proactive Congestion Detection and Control

7.3.1 Use case description

Nowadays, in the Internet, end to end host mechanisms for congestion control such as TCP are
widely deployed, scale to existing traffic loads, and share network bandwidth applying a flow-
based fairness. However, in a context where it is expected, in the short term, that more than 90
percent of the Internet traffic will go through data centers, TCP converge slowly to steady
sending rates and cannot isolate datacenter tenants from interfering with each other.

In this scenario, UC #3 proposes a combined deployment of proactive congestion control
protocols explicitly computing sending rates and rate enforcement points placed in the
edges of the network as a solution to establish the right way to mitigate these issues. This
use case aims to meet two complementary requirements: First, to detect in advance
congestion problems that could occur in the network links by means of advanced
forecasting mechanisms, and second, to avoid these congestion problems predicting max-
min fair sending rates and assigning them to network sessions.

The functionalities developed in this use case contains the following elements: (a) a scalable and
distributed max-min fair optimization algorithm (MMFA) to compute max-min fair rates that
iterates rapidly until converging to the optimal solution, (b) a proactive end-to-end congestion
control protocol (EERCP) that applies the former max-min algorithm to compute the session
sending rates and enforces the fulfillment of these rates at the edges of the network and (c) a
machine learning component that implements forecasting capabilities.

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

23 / 37

! !

EERCP and MMFA components are an extension of the SLBN protocol, a proactive EERC
protocol that is also scalable. We extended SLBN to be able to transport and manage rate
max-min fair rate predictions. Regarding the forecasting module, in a first phase we
trained and tested a linear regression model and later a more complex and powerful deep
neural network architecture based on Convolutional Neural Networks was integrated.
Moreover, the design of this forecasting component is agnostic of the specific technique to
be used (e.g. time series, ARIMA, linear regression, neural networks) and so, depending on
the problem complexity, different models can be trained and plugged in. A detailed
description of this use case can be found in deliverable D5.6. [6]

We demonstrate the proposed solution by means of simulations since nowadays it is
unfeasible, at least in a first phase, to setup a realistic deployment of new congestion
control solutions involving hundreds of routers and thousands of nodes connected to a
network.

Figure 4: Global perspective of the Use Case #3 Simulator.

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

24 / 37

! !

7.3.2 Implementation details

Regarding the unfeasibility of a realistic deployment for congestion control solutions, UC#3
will be demonstrated by means of simulations run on top of an extended version of
Peersim,[12] a P2P discrete event simulator. We thoroughly modified and extended
Peersim in order to (a) run experiments consisting of thousands of routers and up to a
million of hosts and sessions, (b) import Internet-like topologies generated with the
Georgia Tech gt-itm tool;[13] and (c) model different network elements not present in
Peersim such us transmission and propagation times in the network links (e.g., LAN or WAN
configurations), processing time in routers and limited size packet in link queues. Figure 4
shows a global perspective of the set of extensions we added to Peersim in order to setup
the required scenario to demonstrate this use case. Specifically, the EERCP, MMFA and FM
modules are implemented in EdgeRouter and EdgeHost components. A detailed description
of the use case implementation can be found in deliverable D5.6. [6]

The proposed simulator accepts as input a configuration file (Figure 5) in which we define
the parameters that describe the simulation to be run. In addition, the simulator generates
as output dataset files (Figure 6) for retraining and testing the forecasting model and text
files containing logs and statistics (Figure 7). The latter can be processed with graphical
tools in order to plot the protocol behavior. We show in Figure 8 some plots of the
distribution of the queue size of router links and in Figure 9 the accuracy in the rate
assignments, both of which were obtained from an output log file.

Figure 5: Example of a configuration file

Figure 6: Example of a dataset file.
Lines are generated at periodic intervals. Fields are
as follow: time_stamp, link identification (node_src,
node_dst), N, R, BF, shBW and C

619633 ONTIC. Deliverable D5.1: Use Cases Requirements

25 / 37

! !

Figure 7: Example of an output log file. Each line is generated at periodic intervals.
Several percentiles of the session rate assignment errors are show. In addition, other

statistical values (e.g., RTTs and ACK packets) are included in each line.

Figure 8: Plot examples of the queue size distribution of links in an experiment running several
EERC protocols

Figure 9. Plot example of the error distribution of rate assignments at sources in an
experiment running BFYZ and BNECK EERC protocols

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

26 / 37

! !

7.3.3 Interworking and data model adaptation

7.3.3.1 Simulator

From a global perspective the simulator is a standalone application coded in Java and so, it
can be executed on top of a Java Virtual Machine. Therefore, the system has no
interconnection with other systems except with the gt-itm tool for importing network
topologies and the traffic pattern generator for importing the actions.txt file. Both tools
generate text files in order to ease the import procedure. Figure 10 shows an example of
the file “small.alt”, generated with the gt-itm tool, and describing a Small topology.
Figure 11 shows an example of the actions.txt file.

Figure 10: Example of a “small.alt” file generated

for a Small topology using the gt-itm tool.
The topology is composed of transit (T) and stub (S)

nodes.

Figure 11: Example of an “actions.txt” file.
Fields are as follow: timestamp, o/c (open or close)

and session id (src_node, dst_node)

7.3.3.2 PCAD (EERCP + MMFA) and FM modules

In a real deployment, the following components are proposed: a proactive EERC protocol
(EERCP), a distributed max-min fair algorithm (MMFA) and a forecasting module (FM). Said
functional components are deployed in network routers and in particular they are
instantiated in each a router link. Additionally, in a realistic environment, enforcement
points (EF) will be deployed in the edges of the network (e.g., in the edge routers that are
connected with hosts) in order to monitor and control that all hosts observe the assigned
bandwidth rates. Hosts run a simplified version of the EERCP.

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

27 / 37

! !

From an architectural perspective (Figure 12), EERCP and MMFA are integrated in a single
component named Proactive Congestion Avoidance Driver (PCAD) that integrates both
functionalities. Each router link runs an instance of this driver jointly with the Forecasting
Module. These three components interwork with the switching, forwarding and link layers
present in a typical router. When an EERC protocol packet is received in a link, it is
delivered to the PCAD module. After processing the packet, the PCAD send it to the routing
plane to decide the output link where it should be forwarded.

Figure 12: UC #3 System Architecture

PROACTIVE

CONGESTION

DRIVER

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

28 / 37

! !

Figure 13: Detail of the integration of PCAP and FM modules.

The Forecasting Module (FM) is comprised of two modules: A Data Preprocessing (DP) unit
and a Forecasting (FC) unit that are connected sequentially. The DP unit collects
periodically N, NR, BF and shBW values from EERCP. These values are stored in a log file to
be used later for subsequent training and testing of the model. These values are also
stored to be utilized as input to the forecasting algorithms. These algorithms will compute
future predictions of the max-min fair rates each time a Probe packet arrives at a router
link. Figure 13 details the integration of PCAP (EERCP+MMFA) with the FM module. When a
protocol packet arrives at a network link it is delivered to the PCAP module to be
processed. After this processing is done and before forwarding the packet to the output
link, PCAP activates the FM module to generate the corresponding predictions of the
bottleneck value of this link. The Model Selector units decides which Forecasting unit
should be activated (up, down or plain). After that, the activated unit generates the
bottleneck predictions that are stored in the packet. Finally, the packet is forwarded to
the output link.

7.3.4 Configuration and parametrization

The simulator accepts as input a configuration file in which we define the parameters that
describe the experiment to be run. Figure 5 shows an example of this file. Three different
time intervals can be defined:

(1) from 0 to tLimitJoinInit;

(2) from tInitMix with a duration of tDurationMix; and

(3) from tInitMix2 and with a duration of tDurationMix2.

At each interval different number of sessions joining and leaving can be configured
(numSesJoinInit, numSesClose, NumSesOpen, numSesClose2 and NumSesOpen2). With these

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

29 / 37

! !

parameters the simulator creates an “actions.txt” file (Figure 11) to be used during the
simulation. The network topology (topology=Small, Medium or Big), WAN/LAN configuration
(lan_wan= true, false) link speeds (velHost, velStub and velTransit) and packet sizes (are
also configured in this file. In addition, we can define the log intervals (cyclesStep) and
finalization conditions. For example, a time limit (totalSteps) or the protocol convergence
to max-min fair rates (stopWhenStabilized = true, false).

The PCAD does not need to be configured with any parameter to run. Finally, the
initialization of the Forecasting module (FM) is done within the class constructor method
for the corresponding algorithm. In the case of the Linear Regression module, the
initialization procedure reads the linear regression coefficients for each forecasting model
(up, down and plain) and network link (e.g., the files u-p-103-9, d-p-103-9, p-p-103-9 for
link 103-9). Each file contains the linear regression coefficients (80 values = 20 samples* 4
variables -N, NR, BF and shBW-) for each predictor (e.g. 4 predictors, t+1, t+2, t+3 and t+4
in the example of the Figure 13).

7.3.5 Open issues and future developments

Next steps will consider a more realistic deployment in a network laboratory with real
routers and hosts. In addition, we plan to train and test more complex forecasting
algorithms. We think that Convolutional neural networks with a multilayer architecture can
take advantage of the temporal nature of the data available in this use case. Since we have
recently obtained promising results applying CNNs for predicting the number of sessions
crossing a network link (research work done in Wp4) we are encouraged to apply this type
of deep neural networks in the domain of this use case.

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

30 / 37

! !

8 References

[1] ONTIC. “Deliverable D4.2. Algorithms Description.” Internet: http://www.ict-ontic.eu/,
Feb. 2015.

[2] ONTIC. “Deliverable D5.1. Use Case Requirements.” Internet: http://www.ict-ontic.eu/,
Feb. 2014 [Dec. 1, 2015].

[3] ONTIC. “Deliverable D5.2. Progress on Use Cases.” Internet: http://www.ict-ontic.eu/,
Feb. 2016 [March. 31, 2016].

[4] ONTIC. “Deliverable D5.4. Use Case #1: Network Intrusion Detection.” Internet:
http://www.ict-ontic.eu/, Jan. 2017 [Jan. 28, 2017].

[5] ONTIC. “Deliverable D5.5. Use Case #2: Adaptive Quality of Experience Control.” Internet:
http://www.ict-ontic.eu/, Jan. 2017 [Jan. 28, 2017].

[6] ONTIC. “Deliverable D5.6. Use Case #3: Proactive Congestion Detection and Control.”
Internet: http://www.ict-ontic.eu/, Jan. 2017 [Jan. 28, 2017].

[7] Telecommunication Networks Group - Politecnico di Torino. “Tstat: TCP STatistic and
Analysis Tool. 3.1.1.” http://tstat.polito.it/ (2016)

[8] Seufert, Michael, Florian Wamser, Pedro Casas, Ralf Irmer, Phuoc Tran-Gia, and Raimund
Schatz. "YouTube QoE on mobile devices: Subjective analysis of classical vs. adaptive video
streaming." In 2015 International Wireless Communications and Mobile Computing
Conference (IWCMC), pp. 43-48. IEEE, 2015.

[9] Casas, Pedro, Raimund Schatz, Florian Wamser, Michael Seufert, and Ralf Irmer. "Exploring
QoE in Cellular Networks: How Much Bandwidth do you Need for Popular Smartphone
Apps?." In Proceedings of the 5th Workshop on All Things Cellular: Operations, Applications
and Challenges, pp. 13-18. ACM, 2015.

[10] Casas, Pedro, Michael Seufert, and Raimund Schatz. "YOUQMON: a system for on-line
monitoring of YouTube QoE in operational 3G networks." ACM SIGMETRICS Performance
Evaluation Review 41, no. 2 (2013): 44-46.

[11] Recommendation ITU-T "P. 910: Subjective video quality assessment methods for
multimedia applications." International Telecommunication Union, Geneva (2008).

[12] Montresor, A., & Jelasity, M. (2009). “Peersim: A scalable p2p simulator.” In H.
Schulzrinne, K. Aberer, & A. Datta (Eds.), Peer-to-Peer Computing (pp. 99-100). IEEE.

[13] Zegura, E. W., Calvert, K. L., & Bhattacharjee, S. (1996). “How to model an
internetwork.” In INFOCOM (pp. 594-602).

http://www.ict-ontic.eu/XXX
http://www.ict-ontic.eu/XXX
http://www.ict-ontic.eu/XXX
http://www.ict-ontic.eu/XXX
http://www.ict-ontic.eu/XXX
http://www.ict-ontic.eu/XXX
http://tstat.polito.it/

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

31 / 37

! !

Annex A QoE Degradation Detection

A.1 Data source management

Use Case #2 relies on capturing network traces and using them to detect QoE degradation
situations. This task is carried out by the Network Trace Forwarder and is based on Tstat
[1], which aggregates the actual network traces into flows. The output of Tstat is a set of
CVS files where each row corresponds to a different flow and each column is associated to
a specific observed measure in the flow. When useful, columns are grouped according to
C2S - Client-to-Server and S2C - Server-to-Client traffic directions. A TCP flow is
considered to start when the first SYN segment from client to server is observed, and is
considered to be finished when either:

 the FIN/ACK or RST segments are observed;

 no data packet has been observed (from both sides) for a default timeout of 10
seconds after the opening SYN segment, or 5 min after the last data packet.

Figure 14: Diagram of the initialization (handshake) of a TCP connection4

Tstat discards all the connections for which the usual TCP three-way handshake is not
properly observed. Then, in case a connection is correctly closed the flow information is

stored in a file named log_tcp_complete, otherwise in log_tcp_nocomplete. If properly

configured, Tstat can produce a log_video_complete file which logs every TCP video
connection that has been tracked. In the UC #2 test-bed a basic trace forwarding
procedure that mimics the way off-the-shelf DPI product work. In short, the Tstat output
files are constantly monitored and every time a new row (a new record) is recorded, the
trace information is forwarded to the Analytics Function.

The dataset provided by DellEMC comprises traces of 333 533 TCP sessions. In the next
paragraphs, data cleaning and the feature selection procedure will be outlined.

Each recorded session is characterized by means of 144 tstat columns (features). There is
one additional column which passes on the perceived QoE level (Good-Medium-Bad) of each

session: c_qoe_observed.205.

4 Caos, Tcp-handshake, CC BY-SA 3.0

https://commons.wikimedia.org/wiki/File:Tcp-handshake.png
https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://creativecommons.org/licenses/by-sa/3.0/legalcode

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

32 / 37

! !

In a first cleaning 11 rows were removed due to format errors, as not all fields were filled.
In a second round of data cleaning 74 features were also removed. All these features
carried the same value for all available sessions or are time-related values (the names and

indices of every feature are those assigned by Tstat; only c_qoe_observed.205 is a new
feature, assigned after a process carried out by humans):

c_ip.1 c_ttl_max.51 c_win_scl.75 http_req_cnt.119

c_port.2 yt_itag.62 c_sack_opt.76 http_res.121

s_ip.15 yt_id16_46.61 c_mss.78 c_tls_SNI.124

c_pkts_ooo.12 s_ttl_min.57 c_pkts_fs.88 s_tls_SCN.125

s_port.16 vd_type_cont.59 c_pkts_reor.89 c_npnalpn.126

first.29 vd_type_pay.60 c_pkts_dup.90 s_npnalpn.127

last.30 s_ttl_max.58 c_pkts_unk.91 c_tls_sesid.128

c_first.32 vd_dur.63 c_pkts_fc.92 c_last_handshakeT.129

s_first.33 vd_rate_tot.64 c_pkts_unfs.94 s_last_handshakeT.130

c_last.34 vd_width.65 c_syn_retx.95 c_appdataT.131

s_last.35 vd_height.66 s_f1323_opt.96 c_appdataB.133

c_first_ack.36 yt_id11.67 s_tm_opt.97 s_appdataT.132

s_first_ack.37 yt_seek.68 s_win_scl.98 s_appdataB.134

c_isint.38 yt_red_mode.69 s_sack_opt.99 fqdn.135

s_isint.39 yt_red_cnt.70 s_mss.101 dns_rslv.136

c_iscrypto.40 yt_stream.72 s_win_min.105 req_tm.137

s_iscrypto.41 yt_mobile.71 s_win_0.106 res_tm.138

http_t.44 c_f1323_opt.73 s_pkts_fc.115

c_ttl_min.50 c_tm_opt.74 s_syn_retx.118

Table 2: Initial set of tstat features in UC#2

As a result of the data cleaning process, the following features are selected for analysis:

c_pkts_all.3 s_pkts_data.22 s_rtt_min.53 s_mss_max.102

c_rst_cnt.4 s_bytes_all.23 s_rtt_max.54 s_mss_min.103

c_ack_cnt.5 s_pkts_retx.24 s_rtt_std.55 s_win_max.104

c_ack_cnt_p.6 s_bytes_retx.25 s_rtt_cnt.56 s_cwin_max.107

c_bytes_uniq.7 s_pkts_ooo.26 c_sack_cnt.77 s_cwin_min.108

c_pkts_data.8 s_syn_cnt.27 c_mss_max.79 s_cwin_ini.109

c_bytes_all.9 s_fin_cnt.28 c_mss_min.80 s_pkts_rto.110

c_pkts_retx.10 durat.31 c_win_max.81 s_pkts_fs.111

c_bytes_retx.11 con_t.42 c_win_min.82 s_pkts_reor.112

c_syn_cnt.13 p2p_t.43 c_win_0.83 s_pkts_dup.113

c_fin_cnt.14 c_rtt_avg.45 c_cwin_max.84 s_pkts_unk.114

s_pkts_all.17 c_rtt_min.46 c_cwin_min.85 s_pkts_unrto.116

s_rst_cnt.18 c_rtt_max.47 c_cwin_ini.86 s_pkts_unfs.117

s_ack_cnt.19 c_rtt_std.48 c_pkts_rto.87 http_res_cnt.120

s_ack_cnt_p.20 c_rtt_cnt.49 c_pkts_unrto.93 c_pkts_push.122

s_bytes_uniq.21 s_rtt_avg.52 s_sack_cnt.100 s_pkts_push.123

Table 3: Set of UC#2 Tstat features after cleaning

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

33 / 37

! !

In order to reduce the dimensionality of the dataset, a Principal Component Analysis (PCA)
procedure is carried out (using the R language). This procedure is equivalent to the that of
FreeScan. Once the dataset is cleaned and normalized, the 20 features with higher weights
with regard to the first principal component are shown in the following table:

Variable PCA1 Weight

0.2825937 s_pkts_all.17

0.2825766 s_ack_cnt.19
0.2441062 c_pkts_all.3

0.2441014 c_ack_cnt.5
0.2391385 s_pkts_unk.114

0.2354672 c_rtt_cnt.49
0.227788 s_ack_cnt_p.20

0.2262491 c_pkts_data.8
0.221656 c_bytes_all.9

0.2215922 c_bytes_uniq.7
0.1812075 c_ack_cnt_p.6

0.1743395 s_pkts_data.22
0.165843 s_bytes_all.23

0.1651281 s_bytes_uniq.21
0.1640106 s_rtt_cnt.56

0.1592224 s_pkts_push.115
0.1534585 s_cwin_max.99

0.1372518 c_cwin_max.76
0.1137737 c_mss_max.71

0.1121032 s_pkts_retx.24

Table 4: PCA1 Weights

The use of 20 variables is still too computationally costly and therefore, some domain
knowledge will be used in order to get a manageable set of variables. The most important

variable, according to the PCA analysis, is s_pkts_all.17. It logs the total number of
packets observed from the server. If we consider this variable and the number of

retransmitted segments (s_pkts_retx.24), also with a high weight with regard to PCA1,
we can obtain the Packet Loss Rate.

s_pkts_all.17 can be also used to compute the ratio of duplicated or out-of-sequence

packets. It can be carried out considering s_pkts_unk.114 (number of segments not in
sequence or duplicate which are not classified as specific events as observed from the
server), with a high weight with regard to PCA1 as well.

Another variable relevant to the domain is the bandwidth. It can be obtained as the ratio
between the number of bytes transmitted in the payload, as observed from the server

(s_bytes_all.23), with a high PCA weight as well, and the flow duration (durat:31).

Finally, s_rtt_avg:52 is also selected. Although it is the 66th variable considering its
PCA1 weight, is a relevant KPI when considering the domain. It records the network
latency. That is, the average time taken for a packet for going from source to destination.

Actual analysis will consider a number of Key Performance Indicators, which are not used
as such, as suggested by the state-of-the-art [8][9][10]. They are derived from some of the
features of the dataset.

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

34 / 37

! !

Variable Description Formula

Packet Loss
Rate

Ratio between the number of retransmitted
segments from the server and the total number
of packets observed from the server

s_pkts_retx. 24

s_pkts_all. 17

Packet Rate Ratio between the number of segments not in
sequence or duplicated and the total number of
packets observed from the server

s_pkts_unk. 114

s_pkts_all. 17

Latency Average RTT computed by measuring the time
elapsed between the data segment and the
corresponding ACK

s_rtt_avg:52

Download
Bandwidth

Ratio between the payload and the flow duration
(from first to last packet)

s_bytes_all. 23

durat: 31

Table 5: QoE detection variables

A.2 QoE degradation detection

QoE degradation detection is carried out by continuously matching the network traces
against a clustering model trained with the Dell EMC dataset over appropriate windows and
with given thresholds to decide the degradation has started/ended. For a given location, a

numeric value, video_qoe. is computed. For each new network trace, distance to the
cluster centroids is computed and a cluster is assigned. As the clusters have been given a
numeric score as well, the flow is therefore assigned a QoE score. The average of the flows
score over a rolling windows is computed and whenever said average goes bellow a given

threshold, an alarm is issued. If video_qoe goes above the threshold for a sustained time,
the alarm is cancelled.

Two separate processes are used to detect QoE degradation: the training of the model and
the application of said model to incoming network traces.

In order to train the model, the implementation performs feature selection over the

training dataset. Only s_bytes_all.23, durat.31, s_pkts_retx.24, s_pkts_all.17,

s_pkts_unk.114, s_rtt_avg.52, and c_qoe_observed.205 are extracted. Next, data
cleaning, normalization, and computation of the four new features is carried out according
to the formulae in the previous section. See code in Python 2.7 with pandas:

training dataset load and filtering
columns = ['s_pkts_retx.24', 's_pkts_all.17', 's_pkts_unk.114', 's_rtt_avg.52',
's_bytes_all.23', 'durat.31', 'c_qoe_observed.205']
df = pd.read_csv("log_video_complete_all.csv", sep = "," , usecols=columns)

cleaning
df = df[(df['durat.31'].isnull() == False) &
 (df['s_pkts_all.17'].isnull() == False) &
 (df['s_pkts_unk.114'].isnull() == False) &
 (df['s_pkts_unk.114'] != 0.0) &
 (df['s_rtt_avg.52'] < 100.0)
]

KPI extraction and generation of new dataframe
kpi_df = pd.DataFrame()
kpi_df['download_bw'] = df['s_bytes_all.23'] / df['durat.31']
kpi_df['packet_loss_rate'] = df['s_pkts_retx.24'] / df['s_pkts_all.17']
kpi_df['packet_rate'] = df['s_pkts_unk.114'] / df['s_pkts_all.17']
kpi_df['latency'] = df['s_rtt_avg.52']

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

35 / 37

! !

kpi_df['labels'] = df['c_qoe_observed.205']

normalization
kpi_df['download_bw'] = kpi_df['download_bw'] / kpi_df['download_bw'].max()
kpi_df['latency'] = kpi_df['Latency'] / kpi_df['Latency'].max()

K-means clustering is finally carried out on the new dataset (considering only the four new

features defined in previous section; labels is not considered in the clustering procedure).
The Elbow method is used to find the K in the K-means implementation. Five is the optimal
figure. In the figures above, two cluster plots (with two features each) are shown. The first
one shows the clustering just plotting the download bandwidth and the latency; the second
one shows the download bandwidth and the packet rate:

Figure 15: Clustering (download bandwidth vs. latency)

Figure 16: Clustering (download bandwidth vs. packet rate)

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

36 / 37

! !

Once the clusters have been obtained, the share of each label is computed in order to determine
whether the clustering is consistent with the perceived quality of experience. The results are
shown in the figure below:

Figure 17: UC#2 Perceived quality per cluster

Such results are consistent as no cluster combines large shares of mutually incompatible
labels (for instance, no cluster mixes large good and bad labels). Each cluster is assigned a
different QoE numeric value, according to the levels outlined in section ¡Error! No se
encuentra el origen de la referencia.

Cluster Label
“good”

Label
“medium”

Label
“bad”

Score

0 1.22 29.52 69.27 3.96

1 99.71 0.01 0.29 8.98

2 91.03 5.76 3.21 8.63

3 0.01 69.98 30.01 5.10

4 0.46 53.47 46.07 4.63

Table 6: Per cluster score

The outcome of the model training will be a set of five cluster centroids and the score
associated to each cluster, in a 0-to-10 scale. The application of the model is
straightforward. Whenever a new trace arrives, the distance to the centroids is computed
and the trace is assigned to the closest centroid. Depending on the cluster, a numeric QoE
score is assigned to every session. QoE degradation detection relies on a rolling

computation of the average QoE KPI, named video_qoe.

The computation of video_qoe is done in 30-second windows (window_size: 30 seconds).

Computation is repeated every 15 seconds (reevaluation_period: 15 seconds),

considering the last 30-second window. When video_qoe goes below 60%

(video_qoe_threshold: 60%; recovery_video_qoe_treshold: 75%;

video_qoe_best_value: 100%; video_qoe_worst_value: 0%) for more than 30 seconds
(that is, one window), a degradation report is delivered to the PGF

619633 ONTIC. Deliverable D5.3:

ONTIC Subsystem Integration

37 / 37

! !

(degradation_persistence: 60 seconds) using the POST method. A reportID is computed for

every report. The PGF sends back a session ID, as part of the Location header, that must
be recorded.

The degradation report includes a validity element. Its default value is 60 seconds

(default_validity: 60 seconds). It is handled in the following way: start_time is

current time (epoch in milliseconds); end_time is current time plus 60 seconds (60000
milliseconds).

Computation goes on for the window time. Two situations can be found:

 video_qoe value recovers when it goes over 75% (recover_video_qoe_treshold),
following a hysteretic cycle, to avoid transient states. If so, a cancellation must be
sent by sending an update message (that is, using the same session resource, but
using a PUT method). The validity period must last 0 second. That is, start_time and
end_time are set to Epoch current time.

 video_qoe value does not go above the recover_video_qoe_treshold. If the
degradation situation remains for the 11 subsequent computation, an update (PUT) is
sent, with the same validity period (60 seconds).

To summarize, the following parameters are used:

Parameter Value

window_size 30 seconds

reevaluation_period 15 seconds

video_qoe_threshold 60%

recovery_video_qoe_threshold 75%

video_qoe_best_value 100%

video_qoe_worst_value 0%

degradation_persistence 60 seconds

default_validity 60 seconds

