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Control of Statically Hoverable Multi-Rotor Aerial Vehicles and
Application to Rotor-Failure Robustness for Hexarotors

Giulia Michieletto1,2, Markus Ryll1 and Antonio Franchi1

Abstract— Standard hexarotors are often mistakenly consid-
ered ‘by definition’ fail-safe multi-rotor platforms because of
the two additional propellers when compared to quadrotors.
However this is not true, in fact, a standard hexarotor cannot
statically hover with ‘only’ five propellers. In this paper we
provide a set of new general algebraic conditions to ensure
static hover for any multi-rotor platform with any number
of generically oriented rotors. These are elegantly formulated
as the full-rankness of the control moment input matrix,
and the non-orthogonality between its null-space and the row
space of the control force input matrix. Input saturations and
safety margins are also taken into account with an additional
condition on the null-space of control moment input matrix. A
deep analysis on the hoverability properties is then carried
out focusing on the propeller loss in a hexarotor platform.
Leveraging our general results we explain why a standard
hexarotor is not robust and how it can be made robust thanks
to a particular tilt of the rotors. We finally propose a novel
cascaded controller based on a preferential direction in the
null-space of the control moment input matrix for the large
class of statically hoverable multi-rotors, which goes far beyond
standard platforms, and we apply this controller to the case of
failed tilted hexarotor.

I. INTRODUCTION

Nowadays the interest of the robotic communities involved
in unmanned aerial vehicles (UAVs) are increasingly focused
on modeling, design and control of multi-rotors vehicles
mainly because of the simple rotor mechanics required for
flight control. Thanks to their versatility, these platforms are
recently becoming a mature technology and their applica-
tion field spans a wide variety of different tasks. For the
real world multi-rotor deployment the robustness to rotor-
failure(s) is an essential requirement, therefore such control
problem has been widely investigated in the last years.

Given the popularity of quadrotor platforms, a wide lit-
erature is available about detection and recovery in case of
both partial and complete (see, e.g., [1] and the references
within) loss of propeller(s) for such vehicles, guaranteeing
position (but not full-orientation) controllability. Neverthe-
less, recently, several fault-tolerant controllers (FTCs) have
been presented also for more complex aerial structures whose
propellers number is greater than four. In [2] an adaptive
FTC, which relaxes the assumption on control effectiveness
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Fig. 1: A real hexarotor recovering from a failure thanks to the
analysis and the controller proposed in this paper. The numbers
indicate the different phases of the experiment explained in Sec.
VI. Notice to the non-spinning propellers marked in the bottom-
right frame.

matrix, is presented for a six-rotor UAV. This approach is
successfully applied to a position (not orientation) tracking
problem in the case of one propeller loss. In [3] the authors
address the case of two failures in a hexarotor proposing
a time delay control method which allows to maintain the
platform at a desired altitude with continuous positive pitch
and roll attitude command inputs, while control authority
is lost on yaw angle that can evolve freely without any
bounds. In the recent past, the authors of [4] present a
theoretical analysis about the fault-tolerance of a six-rotor
vehicle, highlighting the fact that tilting the propellers of a
small fixed angle about the frame tangential axis allows to
keep the ability to reject disturbance torques in all directions
in case of a rotor-failure.

In this work, the rotor-failure issue is faced for the hexaro-
tor platforms described in [4]–[6]. This choice is motivated
by the fact that such structures are very popular as they
constitute the simplest redundant multi-rotor vehicles. In
addition, their dynamics is under-actuated or fully-actuated
depending on the directions of the rotors spinning axes.
The concept of rotor-failure robustness introduced here and
investigated rests upon the capability to still achieve static
hovering in case of failure of one propeller. For failure we
intend the worst case scenario, in which the propeller is not
usable anymore and it is not able to produce any thrust.
For static hoverability we instead mean that the platform is
able to keep a constant position and a constant orientation
without rotating around any axis. Relaxed (dynamic) versions
of the hovering concept have been recently introduced in [7].
Those solutions represent a valuable resource as last resort
methods to attempt saving the platform from catastrophic
damages. However, loosing the capability of controlling the



full attitude implies less stability, increase of the likelihood
of hitting the surrounding environment1, impossibility to use
some of the exteroceptive sensors, and risk to break some
parts in the touch down moment. Static hoverability is instead
a feature that would allow a damaged platform to slowly and
gently land on the ground. The first part of this work is thus
dedicated to the derivation of the algebraic prerequisites for
the control matrices which allow for the implementation of a
cascaded control suitable to keep a multi-rotor platform with
any number of generically oriented rotors in static hover.

The rest of the paper is organized as follows. A generic
multi-rotor model is described in Sec. II, while Sec. III
shows the derivation of the algebraic conditions for the static
hoverability. A control law for static hovering is illustrated
in Sec. IV. In Sec. V, a detailed study of the hoverability
property is conducted considering a propeller-failure in six-
rotor vehicles. Sec. VI reports the principal results of the
simulative campaign, while the results of preliminary exper-
iment (see. Fig.1) are available in the multimedia attachment.
Main conclusions are drawn in Sec. VII.

II. GENERICALLY TILTED MULTI-ROTOR

A large part of aerial platforms described in literature
can be ideally modeled as Generically Tilted Multi-Rotors
(GTMs). A GTM consists of a rigid body and n lightweight
propellers (with mass, gyroscopic effect, and moment of
inertia all negligible w.r.t. the body inertial parameters) each
spinning about its own axis (including the special cases of
all parallel or all different axes). The number n of propellers
and the axes mutual orientations determine if the GTM is an
under-actuated or full-actuated system [6].

In order to describe the dynamics of a GTM, let us
introduce the inertial world frame FW = {OW ,(xW ,yW ,zW )}
and the body frame FB = {OB,(xB,yB,zB)}, whose origin
OB coincides with the center of mass (CoM) of the platform.
The position of OB in FW and the orientation of FB w.r.t.
FW are respectively denoted by the vector p∈R3 and by the
rotation matrix R∈ SO(3), hence the pair q= (p,R)∈ SE(3)
describes the full-pose of the GTM in FW . In addition, the
twist of the platform is indicated by the pair (v,ωωω) where
v = ṗ denotes the linear velocity of OB in FW , and ωωω is the
angular velocity of FB w.r.t. FW , expressed in FB. Thus,
the orientation kinematics is governed by the relation

Ṙ = R[ωωω]×, (1)

where [·]× is the map that associates any vector in R3 to its
corresponding skew-symmetric matrix belonging to so(3).

Let us define also the frame FPi = {OPi ,(xPi ,yPi ,zPi)}
associated to the i-th propeller such that OPi and zPi coincide
with its center and its spinning axis, respectively, while xPi
and yPi identify its spinning plane. The position of OPi in
FB is indicated as pi ∈ R3. The rotation between zPi and
zB is parametrized through the tilt angles αi, βi ∈ [−π,π] so
that zPi = Ry(βi)Rx(αi)zB (where Rx, Ry, Rz are canonical
rotation matrices), xPi is arbitrarily chosen among the ones

1In fact, in the recent past a lot of attention has been driven toward the so
called aerial physical interaction, see e.g., [8]–[10], in which aerial robots
are required to fly and operate very close to the surrounding environment.

perpendicular to zPi and, as a consequence yPi = zPi × xPi .
Note that the parameters {αi, βi}n

i=1 allow to discriminate
between the cases of all parallel and all differently oriented
propeller axes. These quantities are here assumed to be
always fixed during the flight thus we do not encompass
the case of tiltable-rotor platforms.

The i-th propeller exerts in OPi a thrust force and a drag
moment on the direction zPi , which are expressed in FB by

fi = fizPi = c fiω
2
i zPi , τττ i =± τizPi =± cτiω

2
i zPi , (2)

where c fi ,cτi are constant parameters related to the i-th
propeller physical features and ωi is its spinning rate. The
positive (negative) sign in the moment equation (2) refers to
clockwise (counterclockwise) rotation direction.

The total control force applied on the platform CoM and
the total control moment are expressed as

fW
c = Rfc = R ∑

n
i=1fi = RF1u, (3)

τττc = ∑
n
i=1((pi× fi)+τττ i) = F2u, (4)

where u =
[
u1 · · · un

]>
=
[
ω1|ω1| · · · ωn|ωn|

]> ∈ Rn,
F1,F2 ∈ R3×n are the matrices that map the control input
vector u to the control force and the control moment applied
to the platform, respectively. Note that fW

c is expressed in
FW while fc and τττc are expressed in FB.

Using the Netwon-Euler equations, and neglecting second
order effects such as, e.g., the flapping of the lightweight
propellers, the dynamics of a GTM can be expressed as[

mp̈
Jω̇ωω

]
=−

[
mge3

ωωω×Jωωω

]
+

[
Rfc
τττc

]
= ξξξ (ωωω)+

[
RF1
F2

]
u, (5)

where g, m and J ∈R3×3 represent the gravitational acceler-
ation, the total mass, and the inertia matrix of the platform.

III. STATIC HOVERABILITY CONDITIONS

We say that a given GTM platform, modeled by (1)–(5),
is in static hover when its position and attitude are stably
kept constant, i.e., the constant state (p,R,v,ωωω) = (0,R,0,0)
represents a (locally stable) forced equilibrium of (5) for
some attitude R ∈ SO(3) and some constant input u. A
platform in static hover is fully safe w.r.t. the surrounding
environment. The same does not hold for a platform in
dynamic hovering (see [7]) as explained in the Introduction.

In (1) the dynamics of ωωω influences the one of R, which
in turn influences through (5) the dynamics of v, and then
of p. The one-way nature of this influence chain makes
GTMs cascaded dynamical systems, a property that has
been used often for controlling these kind of platforms. The
main idea is that one first implements, independently from
the position/velocity dynamics, an inner control loop that
achieves the feedback control of ωωω and R exploiting the
control input τττc. Then one considers R as an additional
control input and uses it together with fc, to implement an
outer loop for the feedback control of v and p.

In order to implement the virtual inputs τττc and fc in (5)
one has to ‘invert’ the maps F1 and F2 by suitably choosing
the real inputs u. The first prerequisite to do so is the full-
actuation of the orientation dynamics, i.e., the possibility
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to freely choose τττc in an sufficiently large open set of R3

containing 0. This is equivalent to impose that F2 is full-rank,
namely rk(F2) = 3. The second prerequisite is that ‖fc‖ can
be chosen independently of τττc. In fact, while R can change
the direction of fW

c = Rfc, it cannot change its norm: the role
of ‖fc‖ is then fundamental in order to assign the norm of fW

c
independently from τττc. The second prerequisite is ensured if
rk
([

F>1 F>2
])
≥ 4, which can be recast as the existence of a

vector b2 ∈ ker(F2)∩Sn−1 such that F1b2 6= 0.

The conditions u ∈ ker(F2) and RF1u = mge3 required at
the hovering equilibrium are both satisfied if one sets u =
δb2 with δ = mg/‖F1b2‖ and R is such that RF1b2 ∝ e3.
In this way any vector b2 satisfying the second prerequisite
geometrically represents a line in the input space Rn, along
which a command u can lie to keep the platform hovering.
The working point along this line is decided by the m and
the propellers characteristics and arrangement, through the
matrices F1 and F2 (the former appears directly in ‖F1b2‖
and the latter appears indirectly, since b2 ∈ ker(F2)).

In normal working condition the i-th propeller spinning
rate ωi must belong to a certain set of feasible frequencies,
namely ui ∈ Ui, i = 1, . . . ,n. The third prerequisite is then
that the working point input commands corresponding to a
hovering equilibrium lie ‘inside enough’ the allowable input
set U1× . . .×Un, such that additional input maneuverability
is left for controlling the attitude and compensating the
position errors. One can recast the third prerequisite on
the vector b2 imposing that δb2 ∈ H1 × . . .×Hn, where
H1 ⊂U1, . . . ,Hn ⊂Un are the sets of conservative hovering
commands.

The third prerequisite can be slightly relaxed assuming
that a subset of rotors with indexes in a set C ⊂ N =
{1, . . . ,n} is not used for dynamic control but is just kept
at a constant spinning rate for the whole duration of the
flight, i.e., u j(t) = u∗j ∀ j ∈ C ,∀t ≥ t0. In this case the
third requirement becomes less stringent, in fact it can be
tolerated that δb2, j = u∗j belongs to the larger set U j (instead
of H j) for any j ∈ C , where b2, j represents the j-th entry
of b2. On the other side by doing so only the control
inputs ui with i ∈N \C can be used for dynamic control,
which means that the first and second prerequisites must be
changed accordingly. Denoting with FC

1 , FC
2 , and bC

2 the
matrices (vector) obtained from F1, F2, (b2) by removing the
columns (entries) whose index is in C we have in conclusion
following conditions.

Static Hoverability Conditions (SHCs). A GTM is said
statically hoverable if it exists C ⊂N and a set of values
{u∗j ∈U j} j∈C such that the following conditions are satisfied

1) rk(FC
2 ) = 3

2) ∃b2 ∈ ker(F2)∩Sn−1 such that
a) FC

1 bC
2 6= 0

b) denoting with δ = mg/‖F1b2‖ it is
i) δb2, j = u∗j ∀ j ∈ C and

ii) δb2, j ∈ H j for any other j.

Proposition 1. A straightforward consequence of the SHCs
is that a GTM can be statically hoverable only if n−|C | ≥ 4.

IV. HOVER CONTROL

In this section we propose a controller to stably keep
a statically hoverable GTM in static hover. It is worth to
notice that statically hoverable platforms represent a much
larger class of UAVs than the typical ones encountered in the
literature, such as, e.g., collinear propeller or fully-actuated
platforms. Therefore the main contribution of this section is
to provide a control law for such larger class of vehicles.

Formally, the goal of the proposed controller is to keep the
platform at a given constant reference position pr ∈ R3 and
with a constant attitude that is as close as possible to a given
reference one defined by a constant given rotation matrix
Rr ∈ SO(3). The controller is composed by an outer control
loop (position controller) computing the reference control
force fr and the desired orientation Rd , which is passed to
an inner control loop (attitude controller) which outputs the
reference control moment τττr. The actual input is computed
by a wrench mapper that determines u so that τττc = F2u = τττr
and, at least, the projection of the control force fc = F1u
along a certain direction is equal to the norm of fr.

The key feature of the control strategy is indeed the
identification of a preferential direction in the force space,
denoted with d∗ ∈ Im(F1)∩ S2, along which the intensity
of the control force can be assigned independently from τττc.
This is equivalent to find a vector d∗ ∈ Im(F1)∩ S2 such
that rk(

[
F>1 d∗ F>2

]
) ≥ 4. In fact, if that rank inequality is

satisfied, then d>∗ F1u can be arbitrarily assigned regardless
of the fact that it also has to be F2u = τττr. Assuming that the
SHCs are fulfilled, then it is easy to check that a reasonable
and viable choice is to take exactly d∗ = F1b2/‖F1b2‖.
Notice that d∗ is not necessarily parallel to zB.

The structure of the proposed controller consists of the
three main blocks here described.

1) Position Controller: Let be given a constant reference
position pr ∈ R3, then a good choice to steer the position
error ep = p−pr to zerois to apply to the vehicle the force

fr = mge3−Kpep−Kvv, (6)

which is a simple PD + gravity compensation control with
positive definite diagonal gain matrices Kp,Kv ∈ R3×3.

The fundamental idea behind the proposed controller is to
obtain fc = fr by rotating the platform in such a way that the
preferential direction d∗ is aligned with fr. In fact in this way,
both the direction and the intensity of fc can be made equal
to ones of fr regardless of the implemented moment τττc. To
do so the position controller computes the desired orientation
Rd ∈ SO(3). This carries out the alignment of the preferential
direction to the direction of the required control force, i.e.,
Rd is such that Rdd∗ = fr/‖fr‖, and at the same time tries
to minimize the distance from the reference orientation Rr.

The desired orientation Rd is univocally determined
among the infinite possible solutions by first computing the
minimal rotation Rb ∈ SO(3) that aligns the preferential di-
rection and zW . This is done through the Rodrigues’ rotation
formula. Then, a matrix Rw ∈ SO(3) is defined in order to fix
one of the infinite rotations that align zW to fr/‖fr‖. To do
so, the requirement on minimal distance from Rr is exploited
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by setting Rw =
[
((r3× r1)× r3) (r3× r1) r3

]
, where r1 is

to the first column of Rr and r3 = fr/‖fr‖. The desired
orientation is univocally determined by Rd = RwRb.

2) Attitude Controller: To let R track Rd , the standard
geometric control moment is computed as

τττr =ωωω×Jωωω−KReR−Kωωωω, (7)

where the positive definite diagonal gain matrices KR,Kω ∈
R3×3 allow to tune the effect of the rotation tracking error
eR and the angular velocity feedback term, respectively.
Specifically, the rotation tracking error is chosen to be

eR =
1
2
(R>d R−R>Rd)

∨, (8)

where the operator [·]∨ describes the map from so(3) to R3.
3) Wrench Mapper: The proposed control law prioritizes

the fulfillment of the required control torque, namely to
obtain τττc = τττr. To do so the actual control input is designed
as the sum of two terms, uτ and u f , where uτ = F†

2τττr and
u f = b2c. The value of the parameter c ∈ R is set requiring
that the total force applied to the body, i.e., RF1u, is made
as close as possible to fr, thus solving

min
c
‖RF1(F†

2τττr +b2c)− fr‖2, (9)

whose solution in closed form is obtained through the simple
vector projection using the formula

c =
(fr−RF1F†

2τττr)
T RF1b2

‖RF1b2‖2 =
(fr−RF1F†

2τττr)
T Rd∗

‖F1b2‖
. (10)

As a consequence, the total input control law u results to be

u = F†
2τττr +b2(fr−RF1F†

2τττr)
T Rd∗‖F1b2‖−1. (11)

Note that as long as Rd∗ is kept parallel to fr then τττr = 0,
and therefore we obtain that the total force is RF1b2

fT
r Rd∗
‖F1b2‖

=

Rd∗fT
r Rd∗ = fr as it should be.

Thanks to control continuity, the control input is kept
feasible at least in a neighborhood of the equilibrium due to
the fact that the commands at the equilibrium are designed
to be well inside the feasibility set by virtue of the third
prerequisite.

V. HEXAROTOR ROBUSTNESS ANALYSIS

In this section we introduce and investigate the concept
of rotor-failure robustness for a hexarotor GTM, i.e., having
6 propellers, defined as its capability to still achieve static
hover in the case a rotor fails and stops to spin. We consider
the most common case in which Ui = [0,u] and Hi = [h,h],
where 0 < h < h < u for i ∈S = {1, . . . ,6}, and in which
cτi = cτ , c fi = c f for i = 1, . . . ,6.

Definition 1. In the following, ‘the k-th rotor is failed’ means
that it cannot spin anymore (ωk = uk ≡ 0). A rotor that is not
failed is healthy.

Definition 2. A hexarotor GTM is said to be {k}-loss robust,
with k ∈S if the obtained ‘penta’-rotor GTM considering
the novel set N = S \{k} is still statically hoverable.

23

4

5 6

1

(a) Collinear Hexarotor

23

4

5 6

1

(b) Tilted Hexarotor

Fig. 2: Platforms considered in the rotor-failure robustness analysis:
blue and red discs correspond to rotors with concordant and
opposing thrust force and drag moment respectively.

Definition 3. A hexarotor is fully robust if it is {k}-loss
robust for any k ∈S .

Definition 4. A hexarotor that is not fully robust is partially
robust if it is {k}-loss robust for at least one k ∈S .

Definition 5. A hexarotor that is neither fully robust nor
partially robust is fully vulnerable.

Let us denote by A1,A2 ∈ R3×6 the control force and
moment input matrices of the considered hexarotor GTM
(i.e., F1 and F2 in (5), respectively). In addition, we indicate
as kA1 and kA2 the matrices obtained from A1 and A2 by
removing the k-th column and by kA j

1 and kA j
2 the matrices

obtained from kA j
2 by removing both the k-th and the j-th

column.
In the following, we compare the robustness properties

of the hexarotor platforms with parallel propeller axes
(Collinear Hexarotor, Fig. 2a) w.r.t. the case in which the
rotor axes are differently oriented (Tilted Hexarotor, Fig. 2b).

A. Collinear Hexarotor

Contrarily to the common sense, which associates robust-
ness with redundancy (an hexarotor has six rotors while a
quadrotor only four), we have the following clear result.

Proposition 2. The collinear hexarotor (having αi = βi = 0
for i = 1, . . . ,6) is fully vulnerable.

Proof. Due to Prop. 1 the set C can either be /0 or { j}.
Let us consider the first case first, i.e., FC

2 =k A2 ∈ R3×5.
The k-th row of Tab. I reports the null-space generating
vectors and the rank of kA2 for k ∈ S . It is clear to see
that any linear combination of the generating vectors has a
0 in correspondence of the entry l = k+3 (for k = 1,2,3) or
l = k−3 (for k = 4,5,6). This implies that b2,l = 0 6∈ Hl .

Let us now consider the case in which C = {l}. The only
possible value is u∗l = 0 (because it must hold that b2 ∈
ker(A2)). This corresponds to switching off the rotor opposed
to the failed one. The k-th row of Tab. II reports the null-
space generating vectors and the rank of kAl

2 ∈ R3×4. Also
in this case the SHCs are not verified, this time because
rk(kAl

2) = 2 for any k ∈ S . Finally, consider the case in
which C = { j} with j 6= l. Whatever the value is chosen for
u∗j , it holds (like in the C = /0 case) that b2,l = 0 6∈ Hl .

Therefore we can conclude that it is impossible to fulfill
the SHCs for a collinear hexarotor GTM if any of its six
propeller fails.
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null-space generators rank
1A2 (fail) [ 1 0 0 1 0 ]> 3

[ 0 1 0 0 1 ]>

2A2
[ 1 (fail) 0 1 0 0 ]> 3
[ 0 1 0 0 1 ]>

3A2
[ 1 0 (fail) 1 0 0 ]> 3
[ 0 1 0 1 0 ]>

4A2
[ 0 1 0 (fail) 1 0 ]> 3
[ 0 0 1 0 1 ]>

5A2
[ 1 0 0 1 (fail) 0 ]> 3
[ 0 0 1 0 1 ]>

6A2
[ 1 0 0 1 0 ]> (fail) 3
[ 0 1 0 0 1 ]>

1 2 3 4 5 6
propellers

TABLE I: Rank and null-space analysis for kA2.

null-space generators rank
1A4

2 (fail) [ 1 0 (off) 1 0 ]> 2
[ 0 1 0 1 ]>

2A5
2

[ 1 (fail) 0 1 (off) 0 ]> 2
[ 0 1 0 1 ]>

3A6
2

[ 1 0 (fail) 1 0 ]> (off) 2
[ 0 1 0 1 ]>

4A1
2 (off) [ 1 0 (fail) 1 0 ]> 2

[ 0 1 0 1 ]>

5A2
2

[ 1 (off) 0 1 (fail) 0 ]> 2
[ 0 1 0 1 ]>

6A3
2

[ 1 0 (off) 1 0 ]> (fail) 2
[ 0 1 0 1 ]>

1 2 3 4 5 6
propellers

TABLE II: Rank and null-space analysis for kAl
2, where l corre-

sponds to the propeller opposed to the k-th one.

B. Tilted Hexarotor
Let us now consider the case in which the rotors are

non collinear, and let us focus on the case in which αi =
(−1)i−1α and βi = β , i=,1 . . . ,6, where α,β ∈ [−π/4,π/4].
We distinguish three different sets (cases) of configuration:

(i) rotors tilted only about their xPi -axis (α 6= 0, β = 0);
(ii) rotors tilted only about the yPi -axis (α = 0, β 6= 0);

(iii) rotors tilted both about xPi -axis and yPi -axis (α, β 6= 0).
In Sec. V-A we have seen that a major obstacle for the

satisfaction of the SHCs is the fact that rk(kAl
2) = 2 for any

k, l ∈S defined as before. In fact if we consider, e.g., k = 3
(and consequently l = k+3 = 6) we obtain

3A6
2 = cτ

[
0
√

3
2 r 0 −

√
3

2 r
−r − 1

2 r r 1
2 r

1 −1 −1 1

]
. (12)

with r = c f
cτ
` where ` is the distance between OB and OPi for

all propellers. It is straightforward to verify that rk(3A6
2) = 2,

in accordance with Tab. II. A similar structure appears for
different k’s. This highlights the major difference between a
quadrotor and a failed collinear hexarotor: in the latter case
the component of the control moment along the zB axis is
linearly dependent to the other two components along xB and
yB. This happens because the direction of rotation of the four
propellers is not alternated as it is instead in the quadrotor
case (as clearly visible in Fig. 2a imagining to remove any
pair of opposite propellers).

1) Role of β (full-rankness): If all propellers are inward
(outward) tilted by an angle β > 0 and α = 0, then all thrust
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Fig. 3: Spinning rates at hovering equilibrium when ω6 changes in
[0,15] Hz.
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Fig. 4: Condition number of matrix kAl
2 w.r.t. β angle for different

values (in degrees) of α angle.

vectors are inward (outward) tilted, while the drag vectors
are inward tilted for the rotors whose drag sign is positive
and they are outward tilted for the rotors whose drag sign is
negative. As a consequence, it occurs that

3A6
2(β ) = cτ

[
sβ − 1

2 sβ+
√

3
2 r cβ sβ − 1

2 sβ−
√

3
2 r cβ

−r cβ −
√

3
2 sβ− 1

2 r cβ r cβ −
√

3
2 sβ+ 1

2 r cβ

cβ −cβ −cβ cβ

]
, (13)

where sβ = sinβ and cβ = cosβ for compactness. It is
possible to see that rk(3A6

2(β 6= 0)) = 3 and that in general
rk(kAl

2(β 6= 0)) = 3 for any k ∈ S . The condition β 6= 0
ensures a decoupling between the component of the control
moment along the zB axis and ones along xB and yB.

Another effect of choosing β 6= 0 is that the l-th com-
ponent of a generic vector in ker(kA2) is not anymore
necessarily zero (even though it is typically a ‘small’ number
compared to the other entries). Therefore it is not mandatory
to select u∗l = 0 as in the collinear case. In Fig. 3 we plot the
spinning rates required at the hovering equilibrium when the
propeller k = 3 is failed (i.e, ω3 = 0 Hz) for different values
of ω∗l , l = k+ 3 = 6 and β = 25 deg. It is clear as u∗l = 0
represents in this case the best solution in order to balance
the control effort.

Any nonzero value of β ensures the full-rankness of the
control moment input matrix however a very small value
means that the matrix is close to loose full-rankness (i.e.,
it has a large condition number). On the other side, a large
value of β implies energy dissipation due to internal forces
and unbalanced control inputs at the hovering equilibrium.
A good tradeoff has to be found between the two needs.

2) Role of α (improved condition number): The parameter
α is not essential to ensure propeller-failure robustness, in
fact, when β = 0 and α 6= 0 (case (ii)), the results are the
same as described for the collinear hexarotor (rk(kAl

2) = 2).
On the other side, when β 6= 0, a value of alpha α > 0 lets
the condition number of the matrix lAk

2 decrease much more
rapidly when β increase, as it can be seen in Fig. 4.

We can conclude this section with the following summa-
rizing result.

Proposition 3. A tilted hexarotor is fully vulnerable in case
(i), and it is fully robust if β 6= 0, i.e., in cases (ii) and (iii).
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Fig. 5: Non-ideal simulation of the proposed controller in the case
of a single failed motor for a GTH having α = 35 deg and β = 10
deg.

VI. SIMULATIONS RESULTS

In this section we present the main simulation results for
a hexarotor with α = 35 deg and β = 10 deg. Specifically,
the controller explained in Sec. IV is tested in the case of a
rotor-failure. The model presented in (5) has been extended
by several real world effects to increase the reliability.
• Position and orientation feedback and their derivatives

are loaded with time delay t f =12 ms, sensor noise
according to Tab. III, and a reduced sampling frequency
of 100 Hz while the controller runs at 500 Hz.

• The ESC controller driving the motors is modeled by
quantizing the desired u in (11) resembling a 10 bit
discretization in the feasible motor speed between 0 Hz
and 120 Hz. The motor-propeller combination is mod-
eled as a first order transfer function

(
G(s) = 10

0.05s+10

)
and speed-dependent noise (see Tab. III).

In the simulated scenarios the vehicle shall hover at a
predefined spot pr and Rr fulfilling a surveillance task (phase
I). At time t = 5s we model the failure of a single rotor and
utilize the controller presented in Sec. IV to recover from this
threatening situation. Therefore we first set the gain matrix
Kp = 03×3 in (6) for a certain time (phase II). In this phase
the orientation stabilizes and the velocity error decreases.
We then increase Kp using the current position in that time
instance as future desired position (phase III). Finally when
the norm of the current velocity decreases under a threshold
we determine a new trajectory from the current position to
the original hovering position to return back (phase IV).

p v R ω u
6.4e-04 1.4e-03 1.2e-03 2.7e-03 0-0.32

TABLE III: Standard deviation of noise added in the simulations.

The results of the simulation are reported in Fig. 5. The
position and orientation error in phase I is negligible. At
time t =5 s, when the rotor-failure occurs, the opposing
propeller is switched off and the controller asks for a new
hovering orientation (see fourth plot in Fig. 5). Within ≈3 s
a negligible velocity is achieved. In phase IV the platform
successfully returns to its original position.

To better understand the achieved simulation results the
authors suggest referring to the multimedia attachment.

VII. CONCLUSION AND FUTURE WORK

In this work we have derived the algebraic conditions
that allow to implement a cascaded controller to keep a
Generically Tilted Multi-Rotor platform in static hover. A
suitable control law has then been designed and its validity
has been proved by simulation results. We have finally
conducted a deep analysis on the hoverability capabilities
of hexarotor platforms when a rotor fails and the rotor
spinning axes are parallel or generically oriented. In future,
the validity of the proposed controller will be tested on a
real scenario, and a formal proof of its convergence will be
provided.
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