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Abstract. Air traffic generates workload for the air traffic controllers in charge of the airspace. For a 
large airspace, a single air traffic controller is not able to manage all this workload and the airspace is  
divided into sectors, each of them being assigned to a controller. When the traffic demand is 
decreasing during the night, the sectors are gathered together into groups to reduce the number of 
controllers in operation. Nowadays, this regrouping is performed empirically by airspace experts. In 
this paper, we show how the branch-and-price method can be used to compute a balanced grouping of 
air traffic control sectors to optimally reduce the number of controller teams during daily low flow 
periods. 
Keywords: Airspace Sectorization, Air Traffic Management, Branch and Price, Column Generation 
 
Introduction  
 
Airspace is divided into sectors each of them being assigned to a controller team. For instance, the 
French airspace is divided into 89 sectors with different altitude extensions. Over the course of a day 
of normal traffic, the control workload fluctuates based on traffic demands between various origin-
destination pairings. Traffic demand is reduced at night inducing less workload in the airspace and 
therefore sectors are gathered together into groups, each group constituting a larger sector assigned to 
a controller. The objective of the algorithm developed is to adapt the airspace according to the 
dynamic of traffic. In order to reach this objective, we consider that airspace is divided into elementary 
sectors which have to be merged or split with time. Each sector having a workload, we are searching 
for groupings with balanced workloads between groups of sectors and this, for each time period. When 
an aircraft is transferred from one sector to another, there is some information exchanges between the 
controllers concerned and the pilots in order to ensure a safe transfer of the aircraft between sectors. 
This information exchange between controllers and pilots induce an additional coordination workload 
for controller which is linked to the flow cut by the sector borders, related to the number of flights that 
cross sector borders. In order to reduce the transfer workload, the algorithm will have to minimize the 
flow cuts as well. Sector design requires also that sectors have to be connected when belonging to the 
same group. In the following of this paper, the problem of finding dynamic grouping of airspace 
sectors will be called Dynamic Sector Configuration (DAC) and a sector configuration will be referred 
to as configuration. 
 
Previous  work  
 
DAC has a number of conflicting objectives, related to either the static (coordination, sector control 
and transition workloads) or the dynamic aspects of the problem. Therefore, multi-objective 
approaches have been suggested as a method for the problem (Brinton et al., 2008).  Some 2D DAC 
optimization approaches have been developed, such as constraint programming (Trandac et al, 2003) 
and geometric algorithms (Basu et al., 2008), but these did not consider the multi-objective aspect of 
the problem. There exists also genetic programming based methods (Delahaye et al, 2008; Chen et al, 
2013) (Xue et al, 2008) improved the Genetic Algorithm efficiency with an iterative algorithm. Initial 
works were limited to 2D design but recent works include the third dimension (Sergeeva et al, 2015). 
(Tang et al, 2012). proposed an improved agent-based model (iABM) combined with GA to achieve 



the optimized sectorization. Authors of (Li et al, 2009) use a spectral clustering based algorithm and 
(Kulkarni et al, 2011) has proposed an algorithm based on Dynamic Programming. 
 
Those previous work address partially the full problem and do not fully take into account the stability 
of the design between transitions. Indeed, air traffic controllers have to adapt to the changes which 
translate into extra workload. Therefore, transitions between configurations have to maintain some 
level of stability with time. 
 
The remainder of the paper is organised as follows. The next section presents the DAC problem 
statement. Then a set partitioning-based mathematical formulation is introduced. The Branch and Price 
approach is described in the following section. Finally, computational results are presented before the 
Conclusion. 
 
Problem  statement    
 
Let T={1,…,|T|} represent the discretized time horizon. The airspace is modelled with a time-
dependent weighted graph tG (V,E,W , t T)= ∈  where V is the set of vertices, E is the set of edges 
and Wt is the set of edge weights and vertices weights at time period t T∈ . Each vertex i V∈  
represents a (elementary) sector i of the airspace and its weight corresponds to the sector workload. 
Each edge ( e (i, j)= ) represents the border between two neighbour sectors (i and j). Its weight 
corresponds to the coordination workload for the planes crossing the border if the two sectors belong 
to two different controllers. Our goal is to define a valid airspace configuration for each time period 
t T∈ . A solution of DAC is therefore a graph partitioning of G for each time period t, where nodes 
belonging to the same partition at time period t correspond to sectors grouped together and assigned to 
the same controller at that time period. 
 
We consider three main objectives to minimize: (a) the air traffic controllers’ workload, (b) the 
workload difference between controllers, and (c) the changes between consecutive configurations. 
Therefore, the static cost of a solution is covered by the first two objectives and measures the quality 
of the sector grouping of each time period. The dynamic cost of a solution is covered by the third 
objective and measures the change rate between consecutive configurations. The user can therefore 
define his unique objective-function as a weighted sum of the three objectives ( a b c)α +β + γ , using 
γ  to increase or decrease the relative importance of stability (the higher γ , the less changes will be 
favoured among consecutive sectorizations).  
 
Set-­partitioning-­based  mathematical  formulation  
 
The mathematical model proposed is based on the definition of the set of feasible configurations Ct for 
each time period t. These sets are of course exponential in size, hence the Dantzig-Wolfe 
decomposition and column-generation-based solution method. Each configuration i is assigned a cost 
denoted ci

t which reflects its static cost if it is applied at time period t. An edge e E∈  is said to be 
frontier for configuration i if and only if its extremities belong to different controllers in the 
configuration i. An edge is said to be frontier at time period t if it is frontier in the configuration 
applied at time period t.  
 
We introduce three sets of binary decision variables to model the DAC problem using an extended 
formulation: Xi

t, Ye
t and Ze

t. Variable Xi
t is equal to 1 if configuration ti C∈ 	
  is applied at time period 

t and 0 otherwise. Variable Ye
t is equal to 1 if edge e E∈  is a frontier at time t and 0 otherwise. 

Variable Ze
t is equal to 1 if edge e E∈  was not frontier at time t-1 but became frontier at time t, or if 

edge e was frontier at time t-1 and is no longer frontier at time t. This variable is equal to 0 if the edge 
status (frontier or not) has not changed from t-1 to t. 
 
The resectorization problem can be formulated as follows: 



 
  
  

CFB
1 1

(P )min
t

T T
t t t
i i e

t t e Ei C

f c X Zγ
= = ∈∈

= +∑∑ ∑∑ 	
   	
   	
   (1) 

	
  s.t. 
                      1 .. } , {1

t

t
i

i C

X t T
∈

= ∀ ∈∑ 	
  	
   	
   	
   (2)	
  

( )

           0, {1. . } ,
t

t t
e i

i C e

Y X t T e E
∈

+− = ∀ ∈ ∀ ∈∑ 	
  	
   (3)	
  

1      0   , {2. . }  t t t
e e eZ Y Y t T− ≥− + ∀ ∈ 	
   	
   	
   (4)	
  

1     0,    . {2 . }t t t
e e eZ Y Y t T− ≥− + ∀ ∈ 	
  	
   	
   	
   (5)	
  

	
                        {0,1}   , {1.. },t
eY t T e E∈ ∀ ∈ ∀ ∈ 	
   	
   (6)	
  

	
                         {0,1}, {1.. },t t
iX t T i C∈ ∀ ∈ ∀ ∈ 	
   	
   (7)	
  

	
                        {0,1}   , {2.. },t
eZ t T e E∈ ∀ ∈ ∀ ∈ 	
   	
   (8)	
  

where γ  is a predefined dynamic/static weighting factor and Ct(e) is the subset of configurations valid 
for time t that use edge e as a frontier. 
 
The objective-function (1) minimizes the sum of the static and dynamic costs. The static cost measures 
the quality of the configuration with regards to the traffic at the time it is applied, whereas the dynamic 
cost measures the stability of configurations over time. The static cost is computed as a weighted sum 
of the workload difference among controllers and the total amount of coordination workload. Indeed 
some configurations might be balanced but generate a higher overall workload for coordination. The 
dynamic cost is proportional to the number of edges that change status between two consecutive time 
periods. Constraints (2) ensure that one feasible configuration is applied per time period. Constraints 
(3) link the status of each edge (frontier or not) with the set of configurations (Ct(e)) in which the edge 
is a frontier. Constraints (4) and (5) ensure that the changes of status between consecutive instants are 
correctly computed for each edge. 
This model has a polynomial number of binary variables Ye

t and Ze
t, but an exponential number of 

binary variables Xi
t. Let (P’) be the problem obtained by replacing constraints (7) and (8) with (9) and 

(10) has the same optimal solution as (P). Its validity is stated by Theorem 1. 
 
0 ≤ Xi

t,   ∀t∈{1..T},∀i∈Ct   (9) 
0 ≤ Ze

t  ≤ 1,  ∀t∈{2..T},∀e∈E   (10) 
 
Theorem 1: An optimal solution of MILP (P’) provides an optimal solution for problem (P). 
 
Proof outline: Although variables Xi

t are continuous, the model ensures that their values are always 
binary in feasible solutions, equal to 1 if configuration i is being applied at time t, and 0 otherwise. 
The same needs to be proven for variables Ze

t.  
Proving that equations (4), (5), (6), (10) and objective-function (1) result into Ze

t=0 if Ye
t-1=Ye

t and 
Ze

t=1 otherwise, is straightforward. Regarding Xi
t, let S be a feasible solution of (P’): Y∈[0,1]|C||T| , 

Z∈[0,1]|E||T| and X∈IR|L||T |. Given an instant t∗ ∈ T, let us denote: 
•   C>0 the subset of configurations used at instant t∗. In other words C>0={i : Xi

t* > 0, ∀i ∈ Ct∗}. 
•   E>0 the subset of edges that are frontier in at least one configuration i of C>0. 
•   C>0(e) the subset of configurations from C>0 that use edge e as a frontier. 

With a reasoning similar to the one applied for the extended formulation of (Ngueveu et al, 2016), it 
can be proven that C>0(e) = C>0, ∀e ∈ E>0, from which it can be deduced that:   

•   either |C>0|=1 and therefore all Xi
t* are binary 

•   or |C>0|>1 but all configurations from C>0 are identical. 



There are no identical configurations in Ct of (P’) therefore Xi
t are binary and (P’) is equivalent to (P). 

 
Branch-­and-­Price  for  DAC  
 
Problem (P’) has a polynomial number of constraints but an exponential number of continuous 
variables and some binary variables, therefore column generation can be applied to solve its linear 
relaxation and a branch-and-price solution method can be applied to solve (P’). Note that (P) could 
also be solved with a branch-and-price. However, allowing variables Xi

t to be continuous as it is done 
in (P’) does ensure that the optimal solution can be obtained without needing to branch on the 
variables that are being generated by the pricing. As a consequence, the pricing procedure proposed 
remains valid at any node of the exploration tree. This means that the branching procedure can be left 
up to the mixed integer linear solver. Only the pricing procedure needs to be specifically implemented. 

	
    
Figure 1 Column generation scheme.  Figure 2 Dynamic sector configuration algorithm. 
 
Column  generation  for  DAC  
  
A master problem (Pr) for DAC is a linear relaxation of (P’), where the set of valid configurations Ct is 
replaced with a subset Ctr ⊂ Ct. Each master problem can therefore be solved with any linear 
programming solver. Let us consider the dual of (P’) (resp. (Pr)) denoted (D’)(resp. (Dr)). Let  ut,∀t ∈ 
{1..T} be the dual variables associated with constraints (12) and let ve

t,∀t ∈ {1..T},∀e ∈ E be the 
dual variables associated with constraints (13). Any variable Xi

t in (P’) corresponds to a dual 
constraint in (D’) expressed with equation (14). 
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   (14), where F(i) is the set of edges which are frontier in configuration i. 

 
Let tj C∈  be a feasible configuration that does not belong to the restricted subset Ctr, then the 
corresponding variable Xj

t does not exist in (Pr) and the corresponding dual constraint (14)j does not 
exist in (Dr). Let SDr be the optimal solutions of (Dr). Only one of two different situations can happen: 
either constraint (14)j is violated by SDr , or it is not. If the constraint is not violated, then adding it 
would not change the optimum dual solution, which means that adding primal variable Xi

t would not 
change the optimal solution of (Pr). There is therefore no need to add configuration j in Ctr. If the 
constraint is violated, then adding it would change the optimal dual solution, meaning that the 
corresponding variable Xi

t should be added to the master problem and the configuration j should be 
added to Ctr. Consequently, our pricing procedure searches for missing and violated constraints (14), 
which is equivalent to searching for configurations of negative reduced cost where the reduced cost of 
a configuration i is computed with expression 

( )

t t t
i e

e E i
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− − ∑ . The major advantage of using an 

extended formulation for modelling and solving DAC is to let the model decide optimally what is the 
best selection and sequence of configurations, while focussing on generating for each time period the 
configurations of negative reduced cost. Note that this reduced cost takes into account both the static 
and the dynamic impact of the addition of the configuration at time period t, by including the values of 
ci

t and ve
t in its computations.   



Pricing  procedure  for  DAC:  how  to  find  configurations  of  negative  reduced  cost 
 
Given a weighted graph H representing the airspace at a specific time period, there exists different 
graph partitioning algorithms that can be used to find the best configuration for that specific time 
period. Our pricing method modifies the graph weights before using the partitioning algorithm to 
ensure that the configurations generated are the ones with the best reduced costs. Recall that the 
reduced cost of a configuration is given by expression :	
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For a given time period t, ut is constant and has the same value for all configurations, therefore finding 
the configuration that has the best reduced cost at time t is equivalent to finding the configuration i 
with the best 
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As a consequence, finding the configuration that has the best reduced cost on the graph G with edge 
costs we is equivalent to finding the configuration that has the minimum total cost on graph H with 
modified edge costs we

tr = we
t – ve

t/β and then subtracting ut from that total cost. Therefore, it suffices 
to apply classic graph partitioning on the graph with modified edge costs we

tr and then subtracting ut 
from the total cost (on the modified graph) of the configuration obtained. If a negative value is 
obtained then a configuration of negative reduced cost has been found and should be added to the 
restricted set; otherwise, the current solution is optimal and the column generation stops. 
 
Any airspace sectorization algorithm based on graph partitioning is applicable on the modified graph 
in the pricing procedure. This is another major advantage of the method proposed, because any 
additional restriction or regulation could be simply integrated in this pricing. Note that if the pricing 
procedure is heuristic, the resulting branch-and-price code is also heuristic, yet valid bounds and 
feasible solutions of good quality can be obtained. If the pricing procedure is an exact method, then 
the optimality of the final solution is guaranteed for the DAC.  
 
Computational  Results  
 
The proposed algorithm was tested on instances from the Reims ATCC. The real radar data was used 
for those computations. In Reims, the sectorization can be modified every 15 minutes and the planning 
has to be done for the next 2 hours, therefore T=8 time periods. This computation was done at 6 
different times: 8h00, 8h15, … 9h15, resulting into 6 time steps. For the subsequent computational 
evaluation, we used a Multi-Level heuristic (Bichot et al, 2011) in the pricing procedure, because of it 
is fast yet efficient. The solutions computed were compared with the configurations used in the real 
situation in terms of (a) load balance between controllers and (b) smoothness (stability) of the 
sectorizations. The results showed that the proposed algorithm produced solutions with a better 
workload balance [Figure 3]. It means that controllers have more similar workload. The solutions were 
also better from a smoothness viewpoint. This means that consecutive sectorizations were more 
similar with proposed algorithm than the sectorizations that were used in practice [Figure 4]. 
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Figure 3: Quality of Load Balance.   Figure 4: Quality of Smoothness. 



 
The initial master problem was created with |T|=8 initial columns (configurations), one per time 
period, generated by applying the pricing procedure on the original weighted graph for each time 
period with all dual variables values set to zero. Then the branch-and-price procedure was launched 
and new columns (configurations) were generated until no configuration of negative reduced cost 
could be found. The algorithm was run at each of the 6 times steps. [Table 1] shows the computing 
times with an implementation in C++ and with the framework SCIP 3.1.0 on an Intel Core i5-4210U 
CPU and 6 GB of RAM. Each master problem was solved with IBM CPLEX 12.6 whereas each 
pricing was done with the Multi-Level heuristic. 
 
Table 1: Performance of the algorithm (SCIP, C++) at the different time 
 

Time-steps 1 (8h00) 2 (8h15) 3 (8h30) 4 (8h45) 5 (9h00) 6 (9h15) 
# configurations generated 55 48 40 35 72 45 
Computing time 175 s 155 s 130 s 119 s 201 s 145 s 
	
  
Conclusion  
  
This paper presented a branch-and-price-based method for solving an airspace dynamic sector 
configuration problem. The method proposed is generic, adaptive and was fast on real world instances. 
It allows the user to define his unique objective-function by choosing the relative weight of the static 
versus the dynamic aspects of the problem: controller workload balance versus stability of the 
sectorization. It can therefore be used for an automatic planning of sectorization, to decide when to 
reconfigure the airspace and how often. Future work may include the automation of the parameter 
setting procedure that fine-tunes the values assigned to the different weighting coefficients in function 
of the user expressed preferences. 
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