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Abstract: This paper presents a new minimum-fuel glideslope guidance algorithm for
approaching autonomously a target evolving on an elliptic orbit. In addition to the usual
rectilinear profile to follow as in Hablani’s seminal paper, two new features are requested
for the new algorithm. The first one imposes bounds on the guidance error inherent to
chemical propulsion glideslope guidance, such that the chaser’s trajectory does not escape
from an admissible domain. The second one minimizes the consumption during rendezvous.
Indeed, unlike the classical glideslope algorithm for which there is no direct control on the fuel
consumption, additional degrees of freedom and relevant decision variables may be identified.
By combining a useful parametrization of the Tschauner-Hempel relative equations of motion
and results from polynomial optimization, a semidefinite formulation of the constraints on the
maximal guidance error is obtained. For a fixed-time glideslope rendezvous with a pre-assigned
number of maneuvers, a fuel-optimal solution with a bounded guidance error is obtained by
solving a semidefinite programming problem. Two numerical examples illustrate the usefulness
of the method compared to the classical ones when the approach corridor has to verify stringent
geometrical restrictions such as line-of-sight constraints.

Keywords: Glideslope approach, impulsive control, elliptic rendezvous, Tschauner-Hempel
equations, semidefinite programming

1. INTRODUCTION

Rendezvous (RDV) between two spacecraft (a target and
a chaser) has been one of the most salient operational
technology since its first manual achievement in the six-
ties between a Gemini vehicle and an unmanned target
vehicle. Recently, an increasing demand is witnessed to
perform autonomous rendezvous, proximity or On-Orbit
Servicing operations between an active chaser spacecraft
and a passive target spacecraft. Autonomy means that
appropriate RDV guidance schemes should combine the
simplicity of onboard implementation and a low level of
fuel consumption. If the closing phase of the complete
rendezvous process is particularly concerned, the assump-
tion that the distance between the chaser and the target is
small enough compared to the distance between the target
and the center of attraction means that a linearized model
for relative dynamics may be used to simplify the design of
guidance schemes. The objective of the closing phase is to
steer the chaser from several kilometers to few hundreds
of meters near the orbital target applying short high
thrust pulses approximated as impulsive maneuvers. This
idealization of the real actuation may greatly simplify
the design of efficient guidance schemes for close range
rendezvous operations (Fehse (2003)). The impulsive ap-
proximation consists of instantaneous velocity increments
which are applied to the actuated spacecraft whereas its
position remains unchanged.

This paper focuses on the fixed-time linearized minimum-
fuel impulsive closing phase rendezvous problem. Depend-
ing on various operational and safety constraints, various
closing phase strategies may be envisioned and proposed
to realize the proximal rendezvous: V-bar (curvilinear or-
bit direction as a straight line) and R-bar (direction of the

center of attraction) are very classical approaches while
looping trajectory or natural drift orbit to R-bar approach
are interesting variations as described by Fehse (2003).
Observability (line-of-sight constraints), safety reasons
and fuel budget are the main incentives to make a choice
among all possible approaches. One simple and general
scheme complying to safety restrictions is known as the
glideslope approach. This trajectory is a straight path in
any direction connecting the current location of the chaser
to its final destination. The glideslope approach has been
first defined in the past for rendezvous and proximity
operations involving the space shuttle, Pearson (1989).
This preliminary study has been extended and generalized
later for any direction in space and circular reference orbit
in Hablani et al. (2002), Wang et al. (2007) and for elliptic
reference orbit in Okasha and Newman (2011). Indeed, the
results presented in Hablani et al. (2002) are well-known
and define the so-called classical glideslope algorithm.

Our goal is to extend a previous work from Ariba et al.
(2016) where the classical glideslope algorithm of Hablani
was revisited in specific cases (V-bar and R-bar ap-
proaches) to the general setup and for an elliptic reference
orbit. The objective is to identify a new formulation of the
problem including useful degrees of freedom that allows
to minimize the fuel consumption and helps to enclose
the resulting trajectory segments between two successive
maneuvers, usually referred to as hopping, in a user-
defined approach corridor. Indeed, combining a suitable
parametrization of the Tschauner-Hempel relative equa-
tions of motion and results from polynomial optimization,
a semidefinite programming problem is obtained and pro-
pose a minimum-fuel solution to the glideslope guidance
problem while controlling the guidance error. The pro-



posed algorithm is compared to the classical glideslope
algorithm on two numerical examples, illustrating the
interest of this new approach in terms of consumption
reduction and admissibility of the trajectory in a corridor
of visibility. Note that the trajectories are considered in
an open-loop setup in this paper whereas real trajectories
undergo orbital disturbances and therefore, have to be
closed-loop controlled.

Notations: Op×m and Im denote respectively the null ma-
trix of dimensions p×m, the identity matrix of dimension
m. In order to simplify the notation, the transition matrix
Φ(tk+1, tk) will be denoted Φ[k]. For a symmetric real
matrix S ∈ Rn×n, the notation S � 0 (S � 0) stands
for the negative (positive) semi-definiteness of S.

2. CLASSICAL GLIDESLOPE APPROACH FOR
RENDEZVOUS

2.1 Relative motion dynamics

The close range phase of the spacecraft rendezvous mis-
sion is characterized by the use of relative navigation since
the separation between spacecraft is sufficiently small
Fehse (2003). When relative navigation information is
available to the chaser, the relative motion of the chaser is
expressed in the Local-Vertical-Local-Horizontal (LVLH)
frame. The origin of the coordinate frame is located at the
center of mass of the leader and the space is spanned by
(x, y, z) where the z axis is in the radial direction (R-
bar) oriented towards the center of the Earth, the y axis is
perpendicular to the leader orbital plane and pointing in
the opposite direction of the angular momentum (H-bar)
while the x axis completes the right-hand triad x = y×z
(V-bar), see Figure 1. The vector r defines the relative
position of the chaser with respect to the target.
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Fig. 1. LVLH frame for spacecraft rendezvous.

Under Keplerian assumptions (no orbital perturbations
are considered) and an elliptic reference orbit, the equa-
tions of motion for the relative motion in the LVLH frame
may be linearized for close separation between the leader
and the follower (Alfriend et al., 2010, Chapter 5, Section
5.6.1).

Ẋ(t) = A0(t)X(t) +
[
O3×3
I3

] f(t)

mF
(1)

where state X = (x, y, z, dx/dt, dy/dt, dz/dt)T represents
positions and velocities in the three fundamental axes of

the LVLH frame, f(t) = [fx(t) fy(t) fz(t)]
T

is the thrust
vector, mF is the mass of the follower and the dynamic
matrix A0(t) is a periodic matrix of time t given by :

A0(t) =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

a1(t) 0 ν̈ 0 0 2ν̇
0 a2(t) 0 0 0 0
−ν̈ 0 a3(t) −2ν̇ 0 0

 , (2)

and
a1(t) = ν̇2 + 2k4η3(ν),
a2(t) = ν̇2 − k4η3(ν),
a3(t) = −k4η3(ν),

by noting that:
dν

dt
=

n

(1− e2)3/2
(1 + e cos ν︸ ︷︷ ︸

η(ν)

)2 =: k2η2(ν), (3)

where n =

√
µ

a3
= 2π/T is the mean motion of the leader

orbit, satisfying for any fixed ν0, t0:
ν − ν0 = 2π ⇒ n(t− t0) = 2π, (4)

and µ is the standard gravitational parameter. It is
assumed that only the chaser is active and actuated
using 6 ungimbaled identical chemical thrusters. The use
of chemical propulsion leads to idealize possible thrusts
as impulsive maneuvers providing instantaneous velocity
jumps in the three axes while the relative position remains
unchanged during firing. The impulsive control input is
thus defined as:

∆v(tk) := ∆vk :=

t+
k∫

t−
k

1

mF

[
fx(t)
fy(t)
fz(t)

]
dt, (5)

where tk is a generic firing time and ∆vk represents the
applied impulsive thrust. In order to compute the transi-
tion matrix Φ(t, t0) for the linearized equations (1), clas-
sical derivations dating back to the seminal publications
of Lawden (Lawden, 1963, Chapter 5) and Tschauner-
Hempel (Tschauner (1967)) consists in applying a change
of independent variable from time t to true anomaly ν
and a simplifying coordinate change leading to X̃(ν) =
T (ν)X(t) with

T (ν) :=

[
η(ν)I3 O3×3

η(ν)′I3
1

k2η(ν)
I3

]
. (6)

The obtained simplified autonomous state space represen-
tation is expressed as X̃ ′(ν) = Ã(ν)X̃(ν) where

Ã(ν) =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 2
0 −1 0 0 0 0

0 0
3

η(ν)
−2 0 0

 . (7)

Although this state-space equation is linear time-varying,
Ã(ν) is simple enough to allow for the derivation of the
autonomous solution via the computation of a funda-
mental matrix ϕ̃ν0(ν) and a transition matrix Φ̃(ν, ν0).
Based on a particular fundamental solution, the so-called
Yamanaka-Ankersen form of the transition matrix, has
been proposed in the reference Yamanaka and Ankersen
(2002). This form is particularly appealing for computa-
tion purposes and therefore the transition matrix Φ(t, t0)
may be considered as readily computable by:

Φ(t, t0) = T (ν)−1ϕ̃ν0(ν)ϕ̃ν0(ν0)−1T (ν0). (8)

Thus, a controlled trajectory composed of N +1 impulses
is described by the following equation:

X(t) = Φ(t, t0)X(t0) +

N∑
k=0

Φ(t, tk)B∆vk, (9)

where t1 < t2 < · · · < tN ≤ t and ∆vk denotes the
impulsive control applied at tk. B = [O3×3 I3]T is the



input matrix. Hereafter, the following notation describing
the free motion with a block partitioned transition matrix
is adopted:

X(t) =

[
r(t)
v(t)

]
=

[
Φrr(t, t0) Φrv(t, t0)
Φvr(t, t0) Φvv(t, t0)

] [
r0
v0

]
(10)

2.2 Hablani’s classical glideslope approach

When considering design of impulsive maneuvers for a
glideslope rendezvous, the most cited reference is the
paper by Hablani et al. (2002) in which the so called
classical inbound and outbound glideslope approaches for
circular reference are presented in a general setup. Con-
trasting with this reference, the present paper is restricted
to inbound decelerating glideslope trajectories and the
main features of the classical glideslope algorithm are now
recalled in this particular case. This guidance trajectory is
characterized by a straight line and its associated vector
ρ(ν) = rc(ν) − rT , defining the commanded path as
illustrated by the Figure 2. Defining ρ0 = r0 − rT , the
unit vector u gives the direction of the straight path:

u =

[
xT − x0

‖ρ0‖
yT − y0

‖ρ0‖
zT − z0

‖ρ0‖

]T
.
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Fig. 2. Glideslope approach.

The chaser is commanded to reach rT from r0 following
a specific commanded profile:

ρ(t) = ρ0e

(ρ̇0 − ρ̇T )t

ωρ0 +
ρ̇T ρ0

ρ̇0 − ρ̇T

e (ρ̇0 − ρ̇T )t

ωρ0 − 1

 ,

(11)
where ρ̇0 < 0, ρ̇T < 0 are respectively the initial and
final commanded velocities and ρ0 = ‖ρ0‖ is the initial
distance to go. These quantities are specified by the
designer and inputs for the classical algorithm. Note that
ρ̇0 > ρ̇T and that ρT = 0 by definition of the trajectory.
For a given set of these parameters, the basic principle of
the classical algorithm is then to analytically compute a
fixed number of impulses equally spaced in time over the
transfer duration T . Each computed incremental velocity
at rk is obtained as ∆vk = vk+ − vk− where vk+ is
the departure velocity needed to go from rk to rk+1
and vk− is the arrival velocity at rk. Both quantities are
simply obtained by solving the autonomous Hill-Clohessy-
Wiltshire equations (Clohessy and Wiltshire (1960)) at
each step k.

The classical glideslope algorithm is straightforward and
rapid to implement but suffers from key shortcomings.
First, it is limited to circular reference orbits. In addition,
it is important to mention that the actual trajectory of the
chaser will not be strictly along the commanded straight
line path but will exhibit humps between the N points
where an impulsive maneuver is performed and located on
the commanded path (cf. Figure 2). These humps coming
from the natural relative motion of the chaser driven
by the Hill-Clohessy-Wiltshire equations are nothing but
lateral guidance position errors possibly occurring in and
out-of-plane that cannot be directly controlled in the

classical glideslope algorithm. In addition, if the initial
and final commanded velocities of the glideslope profile
are a priori given, there is no degree of freedom left
to control the transfer time and the consumption when
X(0) and X(T ) are fixed. Indeed, the transfer time T
is not fixed a priori but deduced from the initial and
final commanded velocities (ρ̇0, ρ̇T ) and from the initial
distance to go ρ0:

T =
ρ0

ρ̇0 − ρ̇T
ln

[
ρ̇T
ρ̇0

]
. (12)

The consumption itself is computed a posteriori from the
velocity increments without any possibility to optimize it
for given side conditions of the rendezvous. The objective
of the present paper is therefore to propose a new opti-
mization algorithm for the general glideslope framework
and extend the results to elliptic reference orbits, taking
these two important features into account:

- Minimize the fuel-consumption for a given set of
initial and final rendezvous conditions and an a priori
fixed time of transfer;

- Control the maximum guidance error by defining
constraints on the humps profile.

3. MINIMUM-FUEL GLIDESLOPE APPROACH
WITH CONTROLLED HUMPS VIA SEMIDEFINITE

PROGRAMMING

The main result of the paper is now presented. It mainly
consists in deriving a numerically tractable expression for
the different constraints on the chaser trajectory and con-
trol path to fulfill the second requirement above that will
be used in the resulting optimization problem allowing
to minimize the fuel consumption during the glideslope
transfer. First, the glideslope line tracking constraints
are defined according to the transition matrix of the rel-
ative linearized keplerian elliptic dynamics. Contrasting
with these two references, intermediate positions are free
variables and a constraint is added to control the final
relative velocity of the chaser. Next, the constraints on
the humps profile are dealt with using a parametriza-
tion of the relative trajectory defined in Deaconu et al.
(2015) and results from polynomial optimization from the
reference Nesterov (2000). Finally, a general minimum-
fuel multipulse glideslope guidance algorithm relying on
the solution of a semidefinite programming problem is
proposed.

3.1 Glideslope line tracking

In order to perform the transfer from r0 to rT in a given
duration T , the number of thruster firings is fixed and
equal to N . Any two successive impulsive maneuvers are
separated by ∆t = T/N and impulsive thrusts are applied
at dates tk = k∆t, k = 0, 1, · · · , N − 1. The following
notation will be used in the rest of the paper.

r(tk) = rk, ρ(tk) = ρk, v(tk) = vk. (13)

Throughout the transfer, the spacecraft must follow the
commanded path. After each maneuver, the chaser must
be back on the glideslope line. The initial r0 and final
rN = rT positions are fixed by specifications. Intermedi-
ate positions are set free and are parameterized as

rk = r0 + ρku, k = 1, . . . , N − 1. (14)
The scalars ρk are free and denote the travelled distance
from r0 to rk. Note that ρ0 = 0 and ρN = ‖rT − r0‖. A
set of N equations of the form:

rk+1 = Φ[k]
rr rk + Φ[k]

rvvk+ , k = 0, . . . , N − 1, (15)

with the position vectors rk+1 / rk as defined above,
defines the relative dynamics of the chaser after the



impulsive actuation at tk. vk+ is the velocity vector right
after the impulse is applied. Combining Equations (14)
and (15) enforces the requirement for the chaser to come
back on the path after each maneuver period leading to
the set of equations:

ρk+1u− ρkΦ[k]
rru− Φ[k]

rvvk+ = (Φ[k]
rr − I3)r0,

ρ1u− Φ[0]
rvv0+

= (Φ[0]
rr − I3)r0,

(16)

for k = 1, · · · , N − 1. Because the reference orbit is
considered to be elliptic, the transition matrix is not
constant all over the orbit and need to be updated for each
maneuver. Since time intervals for impulse control are
input data, all transition matrices Φ[k] can be computed a
priori. The decision variables in (16) are composed by the
sequence of scalar variables ρk for k = 1, · · · , N−1 and by
the sequence of vectors vk+ for k = 0, 1, · · · , N − 1. The
sequence of impulses is deduced afterwards, computing
the difference between the design variable vk+ and the
velocity vector vk− resulting from the previous maneuver
and from the relative dynamics of the chaser:

vk+1− = Φ[k]
vr rk + Φ[k]

vvvk+ , k = 0, 1, · · · , N − 1. (17)

Therefore, we have

∆vk = vk+ − vk− . (18)

3.2 Final velocity constraint

Since a last impulse is needed to control the final velocity
of the spacecraft, an additional equality constraint is
defined. This (N + 1)th impulse maneuver is given by

∆vN = vN+
− vN− ,

∆vN = vN+
− Φ[N−1]

vr rN−1 − Φ[N−1]
vv vN−1+

.
(19)

Setting the vector vN+
= vT as the desired final velocity

and ∆vN being a free variable, an extra equality con-
straint is appended:

vT − Φ[N−1]
vr r0 = Φ[N−1]

vr uρN−1 + Φ[N−1]
vv vN−1+ + ∆vN .

(20)
As mentioned earlier, ∆vN , ρN−1 and vN−1+

are the only
free variables of (20).

3.3 Constraints on guidance error

The aim of this subsection is to give a numerically
tractable formulation of the continuous constraints im-
posed on the spacecraft relative trajectory in order to
bound the guidance error inherent to the impulsive glides-
lope approach. In the spirit of the method developed in
Deaconu et al. (2015), the idea is to look for an equivalent
finite description of the admissible relative trajectories
using various tools from algebraic geometry and in par-
ticular, properties of non-negative polynomials. The main
steps of the method are: 1) define a piecewise linear enve-
lope enclosing the admissible trajectory; 2) use a rational
parametrization of the trajectory between each pulse to
transform the previous continuous linear constraints into
polynomials non negativity constraints; 3) apply represen-
tation theorems of cones of nonnegative polynomials from
Nesterov (2000) to get a final semidefinite formulation of
the constraints on guidance error.

First, a set of linear constraints on the chaser’s relative
trajectory is defined, for each maneuver, by:

Akr(t) ≤ bk, ∀t ∈ [tk tk+1], ∀k = {0, . . . , N − 1}. (21)

The interval [tk tk+1] corresponds to the maneuver period,
from the (k + 1)th impulse to the instant when the
spacecraft is back on the glideslope line. Ak ∈ Rnc×3 is a

constant matrix and bk ∈ Rnc is a constant vector. These
matrices are built from input specifications related to the
maximal allowable excursion. nc denotes the number of
scalar inequalities, each of which defines a plane bounding
the trajectory. For instance, let define vectors u1 and u2 as
an orthonormal basis for the null space of uT . By choosing

A0 =


uT1
−uT1
uT2
−uT2

 and b0 =


uT1 (r0 + δ1u1)
−uT1 (r0 − δ1u1)
uT2 (r0 + δ2u2)
−uT2 (r0 − δ2u2)

 , (22)

a rectangular corridor with four planes parallel to the
glideslope direction is defined. Parameters δ1 and δ2
specify the distance from the glideslope line to each pair
of planes. In this case, nc = 4 and the matrix Ak = A0 is
identical ∀k = {0, . . . , N − 1}. Vector bk is changing with
the different distance specifications {δ1k

, δ2k
} associated

to each maneuver. Applying the change of variable (6) to
the general constraint (21), we get:

Akr̃(ν) ≤ η(ν)bk, ∀ν ∈ [νk νk+1],
∀k = {0, . . . , N − 1}. (23)

In Deaconu et al. (2015), the autonomous relative trajec-
tory was parameterized as follows,

x̃(ν) = (2 + e cos ν)(d1 sin ν − d2 cos ν) + d3

+3d4J(ν, ν0)(1 + e cos ν)2,

ỹ(ν) = d5 cos ν + d6 sin ν,

z̃(ν) = (1 + e cos ν)(d2 sin ν + d1 cos ν)
−3 e d4J(ν, ν0) sin ν(1 + e cos ν) + 2d4,

(24)

for ν ∈ [ν0, νf ], where the vector of parameters D is
defined by (26) and depends linearly on the initial state,
the integral term J(ν, ν0) is given by

J(ν, ν0) =

∫ ν

ν0

1

η(u)2
du =

n

(1− e2)3/2
(t− t0). (25)

We are now in a position to apply the following change
of variable in order to transform the trigonometrical
functions into rational functions

w = tan
ν

2
, cos ν =

1− w2

1 + w2
, sin ν =

2w

1 + w2
. (27)

The propagation of the spacecraft relative motion can
then be expressed as a function of w:

x̃(w) =
1

(1 + w2)2

[
Px(w) + 3d4PJx(w)J(w)

]
,

ỹ(w) =
1

(1 + w2)
Py(w),

z̃(w) =
1

(1 + w2)2

[
Pz(w) + 2d4PJz(w)J(w)

] (28)

for w ∈ [w0, wf ]. Only the term with J(w) is non-
rational and requires to be dealt with. All P∗ functions
are polynomials:

PJx(w) =
(

(1 + e) + (1− e)w2
)2

,

PJz(w) = −3e
(

(1 + e)w + (1− e)w3
)
,

Px(w) =

4∑
i=0

pxiw
i, Py(w) =

2∑
i=0

pyiw
i, Pz(w) =

4∑
i=0

pziw
i

(29)
where coefficients of Px, Py and Pz depend linearly on the
vector D




d1
d2
d3
d4
d5
d6


︸ ︷︷ ︸

D

=



0 0
3(e+ cos ν0)

e2 − 1
−

2 cos ν0 + e cos2 ν0 + e

e2 − 1
0

sin ν0(1 + e cos ν0)

e2 − 1

0 0
3 sin ν0(1 + e cos ν0 + e2)

(e2 − 1)(1 + e cos ν0)
−

sin ν0(2 + e cos ν0)

e2 − 1
0 −

cos ν0 + e cos2 ν0 − 2e

e2 − 1

1 0 −
3e sin ν0(2 + e cos ν0)

(e2 − 1)(1 + e cos ν0)

e sin ν0(2 + e cos ν0)

e2 − 1
0

e2 cos2 ν0 + e cos ν0 − 2

e2 − 1

0 0 −
3e cos ν0 + e2 + 2

e2 − 1

(1 + e cos ν0)2

e2 − 1
0 −

e sin ν0(1 + e cos ν0)

e2 − 1

0 cos ν0 0 0 − sin ν0 0

0 sin ν0 0 0 cos ν0 0


︸ ︷︷ ︸

C(ν0)

[
r̃0

ṽ0

]
︸ ︷︷ ︸
X̃(ν0)

(26)


px0
px1
px2
px3
px4


︸ ︷︷ ︸

px

=


0 −2− e 1 0 0 0

4 + 2e 0 0 0 0 0
0 2e 2 0 0 0

4− 2e 0 0 0 0 0
0 2− e 1 0 0 0


︸ ︷︷ ︸

Cx

D, (30)

[
py0
py1
py2

]
︸ ︷︷ ︸
py

=

[
0 0 0 0 1 0
0 0 0 0 0 2
0 0 0 0 −1 0

]
︸ ︷︷ ︸

Cy

D, (31)


pz0
pz1
pz2
pz3
pz4


︸ ︷︷ ︸

pz

=


e+ 1 0 0 2 0 0

0 2e+ 2 0 0 0 0
−2e 0 0 4 0 0

0 2− 2e 0 0 0 0
e− 1 0 0 2 0 0


︸ ︷︷ ︸

Cz

D. (32)

Before defining trajectory constraints, we first need to
deal with the integral term J(ν, ν0) in the spacecraft
relative motion (28). In order to have a rational expression
for the motion, a polynomial approximation is derived to
bound J over w ∈ [w0, wf ]:

J(w) = Θr(w) + ε(w)⇒ Θr(w)− ε̄︸ ︷︷ ︸
Θl(w)

≤ J(w) ≤ Θr(w) + ε̄︸ ︷︷ ︸
Θu(w)

(33)
where Θr(w) is a polynomial of degree r and ε̄ the
maximum error due to the approximation.

The linear constraints (23) are transformed by the change
of variables (27) into

Akr̃(w) ≤
(

1 + e+ (1− e)w2

1 + w2

)
bk, ∀w ∈ [wk wk+1],

∀k = {0, . . . , N − 1},
(34)

with wk = tan(νk/2). Let us expand the ith row of this
latter expression:

Aki1 x̃(w)+Aki2 ỹ(w)+Aki3 z̃(w) ≤
(

1 + e+ (1− e)w2

1 + w2

)
bki ,

(35)
that is equivalent to

Γki (w)

(1 + w2)2
≥ 0, (36)

with

Γki (w) = bki

((
1 + w2)(1 + e+ (1− e)w2

))
−Aki1

[
Px(w) + 3d4PJx(w)J(w)

]
−Aki2(1 + w2)Py(w)

−Aki3
[
Pz(w) + 2d4PJz(w)J(w)

]
.

(37)

Replacing the function J(w) by the two extreme bounding
polynomials Θl and Θu, the above function becomes poly-
nomial, respectively Γkil and Γkiu. Hence, the inequality
(36) becomes a pair of inequalities with Γkil and Γkiu, that
must be repeated for each constraint i (rows of Ak) and
for each maneuver k. Finally, the whole constraint on
the guidance error is formulated as the polynomial non
negativity constraints:{

Γkil(w) ≥ 0,
Γkiu(w) ≥ 0,

(38)

for i = {1, . . . , nc}, for k = {0, . . . , N − 1}, ∀w ∈
[wk wk+1], with

Γkil(w) = bki

((
1 + w2)(1 + e+ (1− e)w2

))
−Aki1

[
Px(w) + 3d4PJx(w)Θl(w)

]
−Aki2(1 + w2)Py(w)

−Aki3
[
Pz(w) + 2d4PJz(w)Θl(w)

]
,

Γkiu(w) = bki

((
1 + w2)(1 + e+ (1− e)w2

))
−Aki1

[
Px(w) + 3d4PJx(w)Θu(w)

]
−Aki2(1 + w2)Py(w)

−Aki3
[
Pz(w) + 2d4PJz(w)Θu(w)

]
.

(39)

The properties of non negative polynomials and repre-
sentation theorems of cones of non negative polynomi-
als given in Nesterov (2000) allow us to translate these
inequalities defined on an infinite interval into a semi-
definite programming problem:{

∃ Y k1il, Y k2il � 0 s.t. γkil = Λ∗(Y k1il, Y
k
2il),

∃ Y k1iu, Y k2iu � 0 s.t. γkiu = Λ∗(Y k1iu, Y
k
2iu),

(40)

for i = {1, . . . , nc}, for k = {0, . . . , N − 1}. Γkil and Γkiu
are represented by their vector of coefficients γkil and γkiu,
respectively. The exact definition of the linear operator Λ∗

is omitted here for the sake of conciseness but it may be



obtained in the appendix of the reference Deaconu et al.
(2015).

3.4 Definition of the Cost function

Apart from the control of the humps during the glideslope,
the other main objective of the approach is to minimize
the fuel consumption during the transfer. As 6 ungimbaled
identical chemical thrusters are used, the cost function
may be naturally defined as the 1-norm of the N + 1
impulsive thrusts:

C(N) =

N∑
k=0

‖∆vk‖1, (41)

with ∆vk = vk+ − vk− . The formulation (41) is trans-
formed in order to express the above criterion with respect
to the decision variables variables vk+ , k = 0, · · · , N − 1,
ρk, k = 1, · · · , N − 1 and ∆vN :

C(N) = ‖v0+ − v0−‖1+
N−1∑
k=1

‖vk+ − Φ[k−1]
vr (r0 + ρk−1u)− Φ[k−1]

vv vk−1+‖1

+‖∆vN‖1,
(42)

where v0− is the initial velocity vector. This cost function
involving absolute values can be transformed into a lin-
ear function with the introduction of new variables and
inequality constraints:

v0+ − v0− ≤ α0

−
(
v0+
− v0−

)
≤ α0

vk+ − Φ[k−1]
vr (r0 + ρk−1u)− Φ[k−1]

vv vk−1+ ≤ αk

−
(
vk+ − Φ[k−1]

vr (r0 + ρk−1u)− Φ[k−1]
vv vk−1+

)
≤ αk

∆vN ≤ αN
−∆vN ≤ αN

(43)
where αk are extra decision variables, and the cost func-
tion becomes:

C(N) =

N∑
k=0

[1 1 1]αk

3.5 A semidefinite programming problem

Having defined all the different ingredients in the previous
subsections, the last step consists in gathering them
in a compact formulation. Therefore, a solution to the
initial minimum-fuel glideslope guidance problem may be
obtained via the solution of the following semidefinite
programming problem.

min cTα

s.t.

ρk+1u− ρkΦ
[k]
rr u− Φ

[k]
rvvk+ = (Φ

[k]
rr − I3)r0, k = 1, . . . , N − 1,

ρ1u− Φ
[0]
rvv0+ = (Φ

[0]
rr − I3)r0,

vT − Φ
[N−1]
vr r0 = Φ

[N−1]
vr uρN−1 + Φ

[N−1]
vv vN−1+ + ∆vN ,

α0 ≥ v0+ − v0− ,

α0 ≥ −
(
v0+ − v0−

)
,

αk ≥
(
Φ

[k−1]
vr (ρk−1u+ r0) + Φ

[k−1]
vv vk−1+ − vk+

)
,

αk ≥ vk+ − Φ
[k−1]
vr (ρk−1u+ r0)− Φ

[k−1]
vv vk−1+ , k = 1, . . . , N − 1,

αN ≥ ∆vN ,
αN ≥ −∆vN ,

γkil = Λ∗(Y k1il, Y
k
2il), i = {1, . . . , nc}, k = {0, . . . , N − 1},

γkiu = Λ∗(Y k1iu, Y
k
2iu),

Y k1il � 0, Y k2il � 0,

Y k1iu � 0, Y k2iu � 0,
(44)

with c = [ 1 . . . 1 ]
T

and α =
[
αT0 . . . αTN

]T
. When

considering a second order polynomial approximation, we
have that Y k1il ∈ R4×4, Y k2il ∈ R3×3, Y k1iu ∈ R4×4 and
Y k2iu ∈ R3×3. Vectors γkil and γkiu are the given vector of
coefficients of polynomials Γkil and Γkiu. nc is the number
of row of matrix Ak. Decision variables are

• αk for k = {0, . . . , N},
• ρk for k = {1, . . . , N − 1},
• vk+ for k = {0, . . . , N − 1},
• ∆vN ,
• Y k1il, Y k2il, Y k1iu and Y k2iu for i = {1, . . . , nc}, for k =
{0, . . . , N − 1}.

4. NUMERICAL SIMULATION

4.1 Example 1

First, an illustration based on PRISMA Berges et al.
(2007) is presented. PRISMA programme is a cooperative
effort between the Swedish National Space Board (SNSB),
the French Centre National d’Etudes Spatiales (CNES),
the German Deutsche Zentrum für Luft- und Raumfahrt
(DLR) and the Danish Danmarks Tekniske Universitet
(DTU) Larsson et al. (2006). Launched on June 15, 2010
Yasny (Russia), it was intended to test in-orbit new
guidance schemes (particularly autonomous orbit control)
for formation flying and rendezvous technologies. The
orbital elements of the target orbit, as well as initial and
final rendezvous conditions, are listed in Table 1.

Semi-major axis a = 7011 km
Inclination i = 98 deg.

Argument of Perigee ω = 0 deg.
RAAN Ω = 190 deg.

Eccentricity e = 0.004
True Anomaly ν0 = 0 rad.

t0 0 s
XT

0 = [rT0 vT0− ] [ −400 40 −50 −0.5 0 0 ] m -m/s

T 1500 s
XT
T = [rTT vTT ] [ −40 0 −10 0 0 0 ] m -m/s

N 6

Table 1. PRISMA rendezvous characteristics

In this first example, the target evolves on a quasi-circular
orbit and the standard glideslope approach is employed
to transfer the chaser from r0 to rT in 6 maneuvers (N)



during 25 min (T = 1500 s). Three algorithms are com-
pared: the classical one from Hablani et al. (2002) based
on Hill-Clohessy-Wiltshire equations, its direct extension
based on Yamanaka-Ankersen equations and the proposed
optimal glideslope algorithm. In all cases, the resulting
impulsive control sequence ∆vi is applied and propagated
with the Tschauner-Hempel equations. We aim at empha-
sizing the significant drift induced when using the glides-
lope control computed with the Hill-Clohessy-Wiltshire
equations even when the reference orbit is quasi-circular.
Figure 3 shows the chaser trajectories for the different
approaches. The final position of the chaser resulting
from the Hablani’s glideslope is [−49.2,−0.2,−16] m, that
is 11m away from the desired position. Regarding the
velocity profile along the glideslope, the relevant param-
eters are set such that ρ̇0 = −1 and ρ̇T is imposed by
the maneuver period T . The global consumptions of the
standard circular and elliptic glideslope algorithms are
similar and given respectively by 2.9705 m/s and 2.977
m/s. The specifications for the proposed algorithm are
defined by a final velocity vT = 0 m/s and a constraint
on the trajectory characterized by a 10 m ×10 m corridor.
The consumption obtained is 1.9698 m/s which is much
lower than the standard approach.
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Fig. 3. Chaser relative trajectories, standard circular
glideslope (blue) vs. elliptic glideslope (red) vs. pro-
posed optimal algorithm (orange).

The sequences of impulsive maneuvers for the standard
elliptic glideslope and the minimum-fuel algorithm are
detailed below in Table 2 and depicted in Figure 4. Note
also that the standard trajectories do not respect the
admissible corridor in green.
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Fig. 4. Impulsive control sequences for the standard el-
liptic glideslope (top) and for the optimal glideslope
(bottom) in example 1.

4.2 Example 2

In this second example, the standard elliptic glideslope
approach as it may be built from the information obtained
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Fig. 5. Chaser relative trajectories: standard elliptic
glideslope algorithm (red) vs. proposed optimal algo-
rithm (orange).

in Okasha and Newman (2011) and the proposed optimal
algorithm are compared in a case for which the eccentric-
ity of the reference orbit is high. The parameters defining
the conditions of the rendezvous are set as follows:
T = 540 s, N = 4, n = 0.001 rad/s, e = 0.7, vT = 0,

r0 =

[
−500

10
30

]
m, rT =

[
−100

0
20

]
m, v0− =

[
0
0

0.5

]
m/s.

Regarding the constraints on the trajectory guidance
error, we define for each maneuver a box (or a corridor)
defined by 4 planes with (22). Thus, 4 boxes centered
around the glideslope line are defined:

maneuver 1 2 3 4
height [m] 90 50 30 20
width [m] 10 10 10 10

Figure 5 depicts the chaser trajectories for the two meth-
ods and where the four boxes corresponding to trajectory
constraints are represented in green. The consumption of
the standard glideslope algorithm is 7.74 m/s whereas the
consumption of our optimal algorithm is 4.53 m/s. The
respective sequences of impulsive maneuvers are presented
in Table 3 and depicted in Figure 6.

time (s) 0 135 270 405 540

standard glideslope
∆vx (m/s) 2.2830 -1.5736 -0.3350 -0.0669 -0.0165
∆vy (m/s) -0.0512 0.0544 0.0095 0.0017 0.0004
∆vz (m/s) 1.3608 1.6940 0.2323 0.0486 0.0114

optimal glideslope
∆vx (m/s) 0.9751 0 0 0 -0.6517
∆vy (m/s) -0.0129 0.0168 0.0039 0.0009 0.0165
∆vz (m/s) 0.5938 1.2648 0.5613 0.3079 0.1267

Table 3. Impulsive control sequences for ex. 2.

5. CONCLUSION

In this paper, a new algorithm based on semidefinite
programming has been proposed for the problem of im-
pulsive close range glideslope rendezvous in an elliptic
orbit. The two main shortcomings (the lack of control
on the bounds over the inherent guidance errors and the
impossibility of minimizing the fuel consumption) of the
classical algorithm by Hablani et al. (2002) are tackled via
a combination of simple techniques mainly borrowed from
the field of non negative polynomials theory. The main
design feature included in the new proposed glideslope
algorithm is the possibility to specify an admissible vol-
ume for each hump of the relative trajectory and therefore
to control the guidance error all along the rectilinear



time (s) 0 250 500 750 1000 1250 1500

standard glideslope
∆vx (m/s) 1.1784 -0.3757 -0.1915 -0.0976 -0.0498 -0.0254 -0.0245
∆vy (m/s) -0.0749 0.0455 0.0231 0.0117 0.0058 0.0029 0.0028
∆vz (m/s) 0.2879 0.2779 0.1455 0.0780 0.0436 0.0261 0.0083

optimal glideslope
∆vx (m/s) 0.6930 0 0 0 0 0 -0.2785
∆vy (m/s) -0.0173 0.0087 0.0068 0.0048 0.0027 0.0004 0.0312
∆vz (m/s) 0.0979 0.1525 0.1543 0.1560 0.1577 0.1595 0.0486

Table 2. Impulsive control sequences for ex. 1.
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Fig. 6. Impulsive control sequences for the standard glides-
lope (top) and for the optimal glideslope (bottom) in
example 2.

path. Two different examples have clearly shown the key
features of the exposed results like a significant improved
fuel consumption with respect to Hablani’s algorithm and
a user-defined bound profile on the maximum guidance
error, which turns out to be very useful when dealing with
visibility constraints while keeping a reasonable numerical
complexity of computation.
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