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Approximate Optimal Designs for

Multivariate Polynomial Regression

Yohann De Castro?, Fabrice Gamboa◦, Didier Henrion•, Roxana
Hess• and Jean-Bernard Lasserre•

Abstract: We introduce a new approach aiming at computing approxi-
mate optimal designs for multivariate polynomial regressions on compact
(semi-algebraic) design spaces. We use the moment-sum-of-squares hierarchy
of semidefinite programming problems to solve numerically the approximate
optimal design problem. The geometry of the design is recovered via semidef-
inite programming duality theory. This article shows that the hierarchy
converges to the approximate optimal design as the order of the hierarchy
increases. Furthermore, we provide a dual certificate ensuring finite conver-
gence of the hierarchy and showing that the approximate optimal design
can be computed numerically with our method. As a byproduct, we revisit
the equivalence theorem of the experimental design theory: it is linked to
the Christoffel polynomial and it characterizes finite convergence of the
moment-sum-of-square hierarchies.

MSC 2010 subject classifications: Primary 62K05, 90C25; secondary
41A10, 49M29, 90C90, 15A15.
Keywords and phrases: Experimental Design, Semidefinite Programming,
Christoffel Polynomial, Linear Model, Equivalence Theorem.

1. Introduction

1.1. Convex design theory

The optimal experimental designs are computational and theoretical objects
that aim at minimizing the uncertainty contained in the best linear unbiased
estimators in regression problems. In this frame, the experimenter models the
responses z1, . . . , zN of a random experiment whose inputs are represented by a
vector ti ∈ Rn with respect to known regression functions f1, . . . , fp, namely

zi =

p∑
j=1

θjfj(ti) + εi , i = 1, . . . , N,

where θ1, . . . , θp are unknown parameters that the experimenter wants to estimate,
εi, i = 1, . . . , N are i.i.d. centered square integrable random variables and the
inputs ti are chosen by the experimenter in a design space X ⊆ Rn. In this
paper, we consider that the regression functions F are multivariate polynomials
of degree at most d.

Assume that the inputs ti, for i = 1, . . . , N , are chosen within a set of
distinct points x1, . . . , x` with ` ≤ N , and let nk denote the number of times
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De Castro, Gamboa, Henrion, Hess and Lasserre/1 INTRODUCTION 2

the particular point xk occurs among t1, . . . , tN . This would be summarized by
defining a design ξ as follows

ξ :=

(
x1 · · · x`
n1

N · · · n`
N

)
, (1)

whose first row gives distinct points in the design space X where the inputs
parameters have to be taken and the second row indicates the experimenter which
proportion of experiments (frequencies) have to be done at these points. We
refer to the inspiring book of Dette and Studden [3] and references therein for a
complete overview on the subject of the theory of optimal design of experiments.
We denote the information matrix of ξ by

M(ξ) :=
∑̀
i=1

wiF(xi) F>(xi), (2)

where F := (f1, . . . , fp) is the column vector of regression functions and wi :=
ni/N is the weight corresponding to the point xi. In the following, we will not
not distinguish between a design ξ as in (1) and a discrete probability measure
on X with finite support given by the points xi and weights wi.

Observe that the information matrix belongs to S+p , the space of symmetric
nonnegative definite matrices of size p. For all q ∈ [−∞, 1] define the function

φq :=

{
S+p → R
M 7→ φq(M)

where for positive definite matrices M

φq(M) :=


( 1
p trace(Mq))1/q if q 6= −∞, 0

det(M)1/p if q = 0
λmin(M) if q = −∞

and for nonnegative definite matrices M

φq(M) :=

{
( 1
p trace(Mq))1/q if q ∈ (0, 1]

0 if q ∈ [−∞, 0].

We recall that trace(M), det(M) and λmin(M) denote respectively the trace,
determinant and least eigenvalue of the symmetric nonnegative definite matrix M .
These criteria are meant to be real valued, positively homogeneous, non constant,
upper semi-continuous, isotonic (with respect to the Loewner ordering) and
concave functions.

Hence, an optimal design is a solution ξ? to the following problem

maxφq(M(ξ)) (3)

where the maximum is taken over all ξ of the form (1). Standard criteria are given
by the parameters q = 0,−1,−∞ and are referred to D, A or E-optimum designs
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1 INTRODUCTION 3

Algorithm 1: Approximate Optimal Designs on Semi-Algebraic Sets

Data: A compact semi-algebraic design space X defined as in (4).
Result: An approximate optimal design ξ

1. Choose the two relaxation orders δ and r.

2. Solve the SDP relaxation (7) of order δ for a vector y?δ .

3. Either solve Nie’s SDP relaxation (28) or the Christoffel polynomial SDP relaxation
(30) of order r for a vector y?r .

4. If y?r satisfies the rank condition (29), then extract the optimal design ξ from the
truncated moment sequence as explained in Section 5.

5. Otherwise, choose larger values of δ and r and go to Step 2.

respectively. As detailed in Section 3.2, we restrict our attention to “approximate”
optimal designs where, by definition, we replace the set of “feasible” matrices
{M(ξ) : ξ of the form (1)} by the larger set of all possible information matrices,
namely the convex hull of {F(x) F>(x) : x ∈ X}. To construct approximate
optimal designs, we propose a two-step procedure presented in Algorithm 1. This
procedure finds the information matrix M? of the approximate optimal design
ξ? and then it computes the support points x?i and the weights w?i of the design
ξ? in a second step.

1.2. Contribution

This paper introduces a general method to compute approximate optimal de-
signs—in the sense of Kiefer’s φq-criteria—on a large variety of design spaces
that we refer to as semi-algebraic sets, see [8] or Section 2 for a definition. These
can be understood as sets given by intersections and complements of superlevel
sets of multivariate polynomials. An important distinguishing feature of the
method is to not rely on any discretization of the design space which is in contrast
to computational methods in previous works, e.g., the algorithms described in
[23, 21].

We apply the moment-sum-of-squares hierarchy—referred to as the Lasserre
hierarchy—of SDP problems to solve numerically and approximately the optimal
design problem. More precisely, we use an outer “approximation” (in the SDP
relaxation sense) of the set of moments of order d, see Section 2.2 for more
details. Note that these approximations are SDP representable so that they
can be efficiently encoded numerically. Since the regressors are polynomials, the
information matrix M is a linear function of the moment matrix (of order d).
Hence, our approach gives an outer approximation of the set of information
matrices, which is SDP representable. As shown by the interesting works [20, 18],
the criterion φq is also SDP representable in the case where q is rational. It proves
that our procedure (depicted in Algorithm 1) makes use of two semidefinite
programs and it can be efficiently used in practice. Note that similar two steps
procedures have been presented in the literature, the reader may consult the
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interesting paper [4] which proposes a way of constructing approximate optimal
designs on the hypercube.

The theoretical guarantees are given by Theorem 3 (Equivalence theorem
revisited for the finite order hierarchy) and Theorem 4 (convergence of the
hierarchy as the order increases). These theorems demonstrate the convergence
of our procedure towards the approximate optimal designs as the order of the
hierarchy increases. Furthermore, they give a characterization of finite order
convergence of the hierarchy. In particular, our method recovers the optimal
design when finite convergence of this hierarchy occurs. To recover the geometry
of the design we use SDP duality theory and Christoffel polynomials involved in
the optimality conditions.

We have run several numerical experiments for which finite convergence holds
leading to a surprisingly fast and reliable method to compute optimal designs.
As illustrated by our examples, in polynomial regression model with degree order
higher than one we obtain designs with points in the interior of the domain.

1.3. Outline of the paper

In Section 2, after introducing necessary notation, we shortly explain some
basics on moments and moment matrices, and present the approximation of
the moment cone via the Lasserre hierarchy. Section 3 is dedicated to further
describing optimal designs and their approximations. At the end of the section
we propose a two step procedure to solve the approximate design problem, it is
described in Algorithm 1. Solving the first step is subject to Section 4. There,
we find a sequence of moments y? associated with the optimal design measure.
Recovering this measure (step two of the procedure) is discussed in Section 5.
We finish the paper with some illustrating examples and a short conclusion.

2. Polynomial optimal designs and moments

This section collects preliminary material on semi-algebraic sets, moments and
moment matrices, using the notation of [8]. This material will be used to restrict
our attention to polynomial optimal design problems with polynomial regression
functions and semi-algebraic design spaces.

2.1. Polynomial optimal design

Denote by R[x] the vector space of real polynomials in the variables x =
(x1, . . . , xn), and for d ∈ N define R[x]d := {p ∈ R[x] : deg p ≤ d} where
deg p denotes the total degree of p.

We assume that the regression functions are multivariate polynomials, namely
F = (f1, . . . , fp) ∈ (R[x]d)

p. Moreover, we consider that the design space X ⊂ Rn
is a given closed basic semi-algebraic set

X := {x ∈ Rm : gj(x) > 0, j = 1, . . . ,m} (4)
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2 POLYNOMIAL OPTIMAL DESIGNS 5

for given polynomials gj ∈ R[x], j = 1, . . . ,m, whose degrees are denoted by
dj , j = 1, . . . ,m. Assume that X is compact with an algebraic certificate of
compactness. For example, one of the polynomial inequalities gj(x) > 0 should
be of the form R2 −

∑n
i=1 x

2
i > 0 for a sufficiently large constant R.

Notice that those assumptions cover a large class of problems in optimal design
theory, see for instance [3, Chapter 5]. In particular, observe that the design
space X defined by (4) is not necessarily convex and note that the polynomial
regressors F can handle incomplete m-way dth degree polynomial regression.

The monomials xα1
1 · · ·xαnn , with α = (α1, . . . , αn) ∈ Nn, form a basis of the

vector space R[x]. We use the multi-index notation xα := xα1
1 · · ·xαnn to denote

these monomials. In the same way, for a given d ∈ N the vector space R[x]d has
dimension s(d) :=

(
n+d
n

)
with basis (xα)|α|≤d, where |α| := α1 + · · ·+ αn. We

write

vd(x) :=

( 1︸︷︷︸
degree 0

, x1, . . . , xn︸ ︷︷ ︸
degree 1

, x21, x1x2, . . . , x1xn, x
2
2, . . . , x

2
n︸ ︷︷ ︸

degree 2

, . . . , . . . , xd1, . . . , x
d
n︸ ︷︷ ︸

degree d

)>

for the column vector of the monomials ordered according to their degree, and
where monomials of the same degree are ordered with respect to the lexicographic
ordering. Note that, by linearity, there exists a unique matrix A of size p×

(
n+d
n

)
such that

∀x ∈ X , F(x) = Avd(x) . (5)

The cone M+(X ) of nonnegative Borel measures supported on X is understood
as the dual to the cone of nonnegative elements of the space C (X ) of continuous
functions on X .

2.2. Moments, the moment cone and the moment matrix

Given a positive measure µ ∈M+(X ) and α ∈ Nn, we call

yα =

∫
X
xαdµ

the moment of order α of µ. Accordingly, we call the sequence y = (yα)α∈Nn the
moment sequence of µ. Conversely, we say that y = (yα)α∈Nn has a representing
measure, if there exists a measure µ such that y is its moment sequence.

We denote byMd(X ) the convex cone of all truncated sequences y = (yα)|α|≤d
which have a representing measure supported on X . We call it the moment cone
(of order d) of X . It can be expressed as

Md(X ) :=
{

y ∈ R(n+d
n ) :∃µ ∈M+(X ) s.t. (6)

yα =

∫
X
xα dµ, ∀α ∈ Nn, |α| ≤ d

}
.
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Let Pd(X ) denotes the convex cone of all polynomials of degree at most d that
are nonnegative on X . Note that we assimilate polynomials p of degree at most d
with a vector of dimension s(d), which contains the coefficients of p in the chosen
basis.

When X is a compact set, then Md(X ) = Pd(X )? and Pd(X ) = Md(X )?,
see e.g., [9, Lemma 2.5] or [7].

When the design space is given by the univariate interval X = [a, b], i.e.,
n = 1, then this cone is representable using positive semidefinite Hankel matrices,
which implies that convex optimization on this cone can be carried out with
efficient interior point algorithms for semidefinite programming, see e.g., [24].
Unfortunately, in the general case, there is no efficient representation of this
cone. It has actually been shown in [22] that the moment cone is not semidefinite
representable, i.e., it cannot be expressed as the projection of a linear section
of the cone of positive semidefinite matrices. However, we can use semidefinite
approximations of this cone as discussed in Section 2.3.

Given a real valued sequence y = (yα)α∈Nn we define the linear functional
Ly : R[x]→ R which maps a polynomial f =

∑
α∈Nn fαx

α to

Ly(f) =
∑
α∈Nn

fαyα.

A sequence y = (yα)α∈Nn has a representing measure µ supported on X if and
only if Ly(f) > 0 for all polynomials f ∈ R[x] nonnegative on X [8, Theorem
3.1].

The moment matrix of a truncated sequence y = (yα)|α|≤2d is the
(
n+d
n

)
×(

n+d
n

)
-matrix Md(y) with rows and columns respectively indexed by integer

n-tuples α ∈ Nn, |α|, |β| ≤ d and whose entries are given by

Md(y)(α, β) = Ly(xαxβ) = yα+β .

It is symmetric (Md(y)(α, β) = Md(y)(β, α)), and linear in y. Further, if y has a
representing measure, then Md(y) is positive semidefinite (written Md(y) < 0).

Similarly, we define the localizing matrix of a polynomial f =
∑
|α|≤r fαx

α ∈
R[x]r of degree r and a sequence y = (yα)|α|≤2d+r as the

(
n+d
n

)
×
(
n+d
n

)
matrix

Md(fy) with rows and columns respectively indexed by α, β ∈ Nn, |α|, |β| ≤ d
and whose entries are given by

Md(fy)(α, β) = Ly(f(x)xαxβ) =
∑
γ∈Nn

fγyγ+α+β .

If y has a representing measure µ, then Md(fy) < 0 for f ∈ R[x]d whenever the
support of µ is contained in the set {x ∈ Rn : f(x) > 0}.

Since X is basic semi-algebraic with a certificate of compactness, by Putinar’s
theorem—see for instance the book [8, Theorem 3.8], we also know the converse
statement in the infinite case. Namely, it holds that y = (yα)α∈Nn has a rep-
resenting measure µ ∈M+(X ) if and only if for all d ∈ N the matrices Md(y)
and Md(gjy), j = 1, . . . ,m, are positive semidefinite.
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2 POLYNOMIAL OPTIMAL DESIGNS 7

2.3. Approximations of the moment cone

Letting vj := ddj/2e, j = 1, . . . ,m, denote half the degree of the gj , by Puti-
nar’s theorem, we can approximate the moment cone M2d(X ) by the following
semidefinite representable cones for δ ∈ N:

MSDP
2(d+δ)(X ) :=

{
yd,δ ∈ R(n+2d

n ) : ∃yδ ∈ R(n+2(d+δ)
n ) such that (7)

yd,δ = (yδ,α)|α|≤2d and

Md+δ(yδ) < 0, Md+δ−vj (gjyδ) < 0, j = 1, . . . ,m
}
.

By semidefinite representable we mean that the cones are projections of linear sec-
tions of semidefinite cones. SinceM2d(X ) is contained in every (MSDP

2(d+δ)(X ))δ∈N,
they are outer approximations of the moment cone. Moreover, they form a nested
sequence, so we can build the hierarchy

M2d(X ) ⊆ · · · ⊆ MSDP
2(d+2)(X ) ⊆MSDP

2(d+1)(X ) ⊆MSDP
2d (X ). (8)

This hierarchy actually converges, meaningM2d(X ) =
⋂∞
δ=0MSDP

2(d+δ)(X ), where

A denotes the topological closure of the set A.
Further, let Σ[x]2d ⊆ R[x]2d be the set of all polynomials that are sums of

squares of polynomials (SOS) of degree at most 2d, i.e., Σ[x]2d = {σ ∈ R[x] :

σ(x) =
∑k
i=1 hi(x)2 for some hi ∈ R[x]d and some k ≥ 1}. The topological dual

ofMSDP
2(d+δ)(X ) is a quadratic module, which we denote by PSOS

2(d+δ)(X ). It is given
by

PSOS
2(d+δ)(X ) :=

{
h = σ0 +

m∑
j=1

gjσj : deg(h) ≤ 2d, (9)

σ0 ∈ Σ[x]2(d+δ), σj ∈ Σ[x]2(d+δ−νj), j = 1, . . . ,m
}
.

Equivalently, see for instance [8, Proposition 2.1], h ∈ PSOS
2(d+δ)(X ) if and only if h

has degree less than 2d and there exist real symmetric and positive semidefinite
matrices Q0 and Qj , j = 1, . . . ,m of size

(
n+d+δ
n

)
×
(
n+d+δ
n

)
and

(
n+d+δ−νj

n

)
×(

n+d+δ−νj
n

)
respectively, such that for any x ∈ Rn

h(x) = σ0(x) +

m∑
j=1

gj(x)σj(x)

= vd+δ(x)>Q0vd+δ(x) +

m∑
j=1

gj(x) vd+δ−νj (x)>Qjvd+δ−νj (x) .

The elements of PSOS
2(d+δ)(X ) are polynomials of degree at most 2d which are

non-negative on X . Hence, it is a subset of P2d(X ).
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3. Approximate Optimal Design

3.1. Problem reformulation in the multivariate polynomial case

For all i = 1, . . . , p and x ∈ X , let fi(x) :=
∑
|α|≤d ai,αx

α with appropriate

ai,α ∈ R and note that A = (ai,α) where A is defined by (5). For µ ∈M+(X )
with moment sequence y define the information matrix

Md(y) :=
(∫
X

fifjdµ
)
1≤i,j≤p

=
( ∑
|α|,|β|≤d

ai,αaj,βyα+β

)
1≤i,j≤p

=
∑
|γ|≤2d

Aγyγ ,

where we have set Aγ :=
(∑

α+β=γ ai,αaj,β

)
1≤i,j≤p

for |γ| ≤ 2d. Observe that

it holds
Md(y) = AMd(y)A>. (10)

If y is the moment sequence of µ =
∑`
i=1 wiδxi , where δx denotes the Dirac

measure at the point x ∈ X and the wi are again the weights corresponding to
the points xi. Observe that Md(y) =

∑`
i=1 wiF(xi)F

>(xi) as in (2).
Consider the optimization problem

max φq(M) (11)

s.t. M =
∑
|γ|≤2d

Aγyγ < 0, yγ =
∑̀
i=1

ni
N
xγi ,

∑̀
i=1

ni = N,

xi ∈ X , ni ∈ N, i = 1, . . . , `,

where the maximization is with respect to xi and ni, i = 1, . . . , `, subject
to the constraint that the information matrix M is positive semidefinite. By
construction, it is equivalent to the original design problem (3). In this form,
Problem (11) is difficult because of the integrality constraints on the ni and the
nonlinear relation between y, xi and ni. We will address these difficulties in the
sequel by first relaxing the integrality constraints.

3.2. Relaxing the integrality constraints

In Problem (11), the set of admissible frequencies wi = ni/N is discrete, which
makes it a potentially difficult combinatorial optimization problem. A popular
solution is then to consider “approximate” designs defined by

ξ :=

(
x1 · · · x`
w1 · · · w`

)
, (12)

where the frequencies wi belong to the unit simplex W := {w ∈ R` : 0 ≤ wi ≤
1,
∑`
i=1 wi = 1}. Accordingly, any solution to Problem (3), where the maximum

imsart-generic ver. 2014/10/16 file: AoSv2.tex date: October 17, 2017



3 APPROXIMATE OPTIMAL DESIGN 9

is taken over all matrices of type (12), is called “approximate optimal design”,
yielding the following relaxation of Problem (11)

max φq(M) (13)

s.t. M =
∑
|γ|≤2d

Aγyγ < 0, yγ =
∑̀
i=1

wix
γ
i ,

xi ∈ X , w ∈ W,

where the maximization is with respect to xi and wi, i = 1, . . . , `, subject to
the constraint that the information matrix M is positive semidefinite. In this
problem the nonlinear relation between y, xi and wi is still an issue.

3.3. Moment formulation

Let us introduce a two-step-procedure to solve the approximate optimal design
Problem (13). For this, we first reformulate our problem again.

By Carathéodory’s theorem, the subset of moment sequences in the truncated
moment cone M2d(X ) defined in (6) and such that y0 = 1, is exactly the set:{

y ∈M2d(X ) : y0 = 1
}

=
{

y ∈ R(n+2d
n ) : yα =

∫
X
xαdµ ∀|α| ≤ 2d,

µ =
∑̀
i=1

wiδxi , xi ∈ X , w ∈ W
}
,

where ` ≤
(
n+2d
n

)
, see the so-called Tchakaloff theorem [8, Theorem B12].

Hence, Problem (13) is equivalent to

max φq(M) (14)

s.t. M =
∑
|γ|≤2d

Aγyγ < 0,

y ∈M2d(X ), y0 = 1,

where the maximization is now with respect to the sequence y. Moment problem
(14) is finite-dimensional and convex, yet the constraint y ∈M2d(X ) is difficult
to handle. We will show that by approximating the truncated moment cone
M2d(X ) by a nested sequence of semidefinite representable cones as indicated
in (8), we obtain a hierarchy of finite dimensional semidefinite programming
problems converging to the optimal solution of Problem (14). Since semidefinite
programming problems can be solved efficiently, we can compute a numerical
solution to Problem (13).

This describes step one of our procedure. The result of it is a sequence y? of
moments. Consequently, in a second step, we need to find a representing atomic
measure µ? of y? in order to identify the approximate optimal design ξ?.
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4. The ideal problem on moments and its approximation

For notational simplicity, let us use the standard monomial basis of R[x]d for
the regression functions, meaning F = (f1, . . . , fp) := (xα)|α|≤d with p =

(
n+d
n

)
.

This case corresponds to A = Id in (5). Note that this is not a restriction, since
one can get the results for other choices of F by simply performing a change of
basis. Indeed, in view of (10), one shall substitute Md(y) by AMd(y)A> to get
the statement of our results in whole generality; see Section 4.5 for a statement
of the results in this case. Different polynomial bases can be considered and,
for instance, one may consult the standard framework described by the book [3,
Chapter 5.8].

For the sake of conciseness, we do not expose the notion of incomplete q-way
m-th degree polynomial regression here but the reader may remark that the
strategy developed in this paper can handle such a framework.

Before stating the main results, we recall the gradients of the Kiefer’s φq
criteria in Table 1.

Name D-opt. A-opt E-opt. generic case
q 0 −1 −∞ q 6= 0,−∞

φq(M) det(M)
1
p p(trace(M−1))−1 λmin(M)

[ trace(Mq)

p

] 1
q

∇φq(M) det(M)
1
pM
− 1
p p(trace(M−1)M)−2 Πmin(M)

[ trace(Mq)

p

] 1
q
−1Mq−1

p

Table 1
Gradients of the Kiefer’s φq criteria. We recall that Πmin(M) = uu>/||u||22 is defined only
when the least eigenvalue of M has multiplicity one and u denotes a nonzero eigenvector

associated to this least eigenvalue. If the least eigenvalue has multiplicity greater than 2, then
the sub gradient ∂φq(M) of λmin(M) is the set of all projectors on subspaces of the

eigenspace associated to λmin(M), see for example [13]. Notice further that φq is upper
semi-continuous and is a positively homogeneous function

4.1. The ideal problem on moments

The ideal formulation (14) of our approximate optimal design problem reads

ρ = max
y

φq(Md(y))

s.t. y ∈M2d(X ), y0 = 1.
(15)

For this we have the following standard result.

Theorem 1 (Equivalence theorem). Let q ∈ (−∞, 1) and X ⊆ Rn be a compact
semi-algebraic set as defined in (4) and with nonempty interior. Problem (15)
is a convex optimization problem with a unique optimal solution y? ∈M2d(X ).
Denote by p?d the polynomial

x 7→ p?d(x) := vd(x)>Md(y
?)q−1vd(x) = ||Md(y

?)
q−1
2 vd(x)||22. (16)
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4 APPROXIMATING THE IDEAL PROBLEM 11

Then y? is the vector of moments—up to order 2d—of a discrete measure µ?

supported on at least
(
n+d
n

)
and at most

(
n+2d
n

)
points in the set

Ω :=
{
x ∈ X : trace(Md(y

?)q)− p?d(x) = 0
}
,

In particular, the following statements are equivalent:

◦ y? ∈M2d(X ) is the unique solution to Problem (15);

◦ y? ∈
{

y ∈M2d(X ) : y0 = 1
}

and p?:=trace(Md(y
?)q)− p?d > 0 on X .

Proof. A general equivalence theorem for concave functionals of the information
matrix is stated and proved in [6, Theorem 1]. The case of φq-criteria is tackled
in [19] and [3, Theorem 5.4.7]. In order to be self-contained and because the
proof of our Theorem 3 follows the same road map we recall a sketch of the
proof in Appendix A.

Remark 1 (On the optimal dual polynomial). The polynomial p?d contains all
the information concerning the optimal design. Indeed, its level set Ω supports
the optimal design points. The polynomial is related to the so-called Christoffel
function (see Section 4.2). For this reason, in the sequel p?d in (16) will be called
a Christoffel polynomial. Notice further that

X ⊂
{
p?d ≤ trace(Md(y

?)q)
}
.

Hence, the optimal design problem related to φq is similar to the standard problem
of computational geometry consisting in minimizing the volume of a polynomial
level set containing X (Löwner-John’s ellipsoid theorem). Here, the volume

functional is replaced by φq(M) for the polynomial ||M
q−1
2 vd(x)||22. We refer to

[9] for a discussion and generalizations of Löwner-John’s ellipsoid theorem for
general homogenous polynomials on non convex domains.

Remark 2 (Equivalence theorem for E-optimality). Theorem 1 holds also for
q = −∞. This is the E-optimal design case, in which the objective function is
not differentiable at points for which the least eigenvalue has multiplicity greater
than 2. We get that y? is the vector of moments—up to order 2d—of a discrete
measure µ? supported on at most

(
n+2d
n

)
points in the set

Ω :=
{
x ∈ X : λmin(Md(y

?))||u||22 −
(∑

α

uαx
α
)2

= 0
}
,

where u = (uα)|α|≤2d is a nonzero eigenvector of Md(y
?) associated to

λmin(Md(y
?)). In particular, the following statements are equivalent

◦ y? ∈M2d(X ) is a solution to Problem (15);

◦ y? ∈ {y ∈M2d(X ) : y0 = 1} and for all x ∈ X ,
(∑

α uαx
α
)2
≤

λmin(Md(y
?))||u||22.

Furthermore, if the least eigenvalue of Md(y
?) has multiplicity one then y? ∈

M2d(X ) is unique.
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4.2. Christoffel polynomials

In the case of D-optimality, it turns out that the unique optimal solution
y? ∈M2d(X ) of Problem (14) can be characterized in terms of the Christoffel
polynomial of degree 2d associated with an optimal measure µ whose moments
up to order 2d coincide with y?. Notice that in the paradigm of optimal design
the Christoffel polynomial is the variance function of the multivariate polynomial
regression model. Given a design, it is the variance of the predicted value of the
model and so quantifies locally the uncertainty of the estimated response. We
refer to [2] for its earlier introduction and the chapter [19, Chapter 15] for an
overview of its properties and uses.

Definition 2 (Christoffel polynomial). Let y ∈ R(n+2d
n ) be such that Md(y) �

0. Then there exists a family of orthonormal polynomials (Pα)|α|≤d ⊆ R[x]d
satisfying

Ly(Pα Pβ) = δα=β and Ly(xα Pβ) = 0 ∀α ≺ β,

where monomials are ordered with respect to the lexicographical ordering on Nn.
We call the polynomial

pd : x 7→ pd(x) :=
∑
|α|≤d

Pα(x)2, x ∈ Rn,

the Christoffel polynomial (of degree d) associated with y.

The Christoffel polynomial1 can be expressed in different ways. For instance
via the inverse of the moment matrix by

pd(x) = vd(x)>Md(y)−1vd(x), ∀x ∈ Rn,

or via its extremal property

1

pd(t)
= min

P∈R[x]d

{∫
P (x)2 dµ(x) : P (t) = 1

}
, ∀t ∈ Rn,

when y has a representing measure µ—when y does not have a representing
measure µ just replace

∫
P (x)2dµ(x) with Ly(P 2) (= P>Md(y)P ). For more

details the interested reader is referred to [11] and the references therein. Notice
also that there is a regain of interest in the asymptotic study of the Christoffel
function as it relies on eigenvalue marginal distributions of invariant random
matrix ensembles, see for example [12].

Remark 3 (Equivalence theorem for D-optimality). In the case of D-optimal
designs, observe that

t? := max
x∈X

p?d(x) = trace(Id) =

(
n+ d

n

)
,

1Actually, what is referred to the Chistoffel function in the literature is its reciprocal
x 7→ 1/pd(x). In optimal design, the Christofel function is also called sensitivity function or
information surface [19].
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4 APPROXIMATING THE IDEAL PROBLEM 13

where p?d given by (16) for q = 0. Furthermore, note that p?d is the Christoffel
polynomial of degree d of the D-optimal measure µ?.

4.3. The SDP relaxation scheme

Let X ⊆ Rn be as defined in (4), assumed to be compact. So with no loss of
generality (and possibly after scaling), assume that x 7→ g1(x) = 1− ‖x‖2 > 0 is
one of the constraints defining X .

Since the ideal moment Problem (15) involves the moment cone M2d(X )
which is not SDP representable, we use the hierarchy (8) of outer approximations
of the moment cone to relax Problem (15) to an SDP problem. So for a fixed
integer δ ≥ 1 we consider the problem

ρδ = max
y

φq(Md(y))

s.t. y ∈MSDP
2(d+δ)(X ), y0 = 1.

(17)

Since Problem (17) is a relaxation of the ideal Problem (15), necessarily ρδ ≥ ρ
for all δ. In analogy with Theorem 1 we have the following result characterizing
the solutions of the SDP relaxation (17) by means of Sum-of-Squares (SOS)
polynomials.

Theorem 3 (Equivalence theorem for SDP relaxations). Let q ∈ (−∞, 1) and let
X ⊆ Rn be a compact semi-algebraic set as defined in (4) and be with non-empty
interior. Then,

a) SDP Problem (17) has a unique optimal solution y? ∈ R(n+2d
n ).

b) The moment matrix Md(y
?) is positive definite. Let p?d be as defined in (16),

associated with y?. Then p? := trace(Md(y
?)q)− p?d is non-negative on X

and Ly?(p?) = 0.

In particular, the following statements are equivalent:

◦ y? ∈MSDP
2(d+δ)(X ) is the unique solution to Problem (17);

◦ y? ∈ {y ∈ MSDP
2(d+δ)(X ) : y0 = 1} and p? = trace(Md(y

?)q) − p?d∈
PSOS
2(d+δ)(X ).

Proof. We follow the same roadmap as in the proof of Theorem 1.

a) Let us prove that Problem (17) has an optimal solution. The feasible set is
nonempty with finite associated value, since we can take as feasible point
the vector ỹ associated with the Lebesgue measure on X , scaled to be a
probability measure.

Let y ∈ R(n+2d
n ) be an arbitrary feasible solution and yδ ∈ R(n+2(d+δ)

n ) an
arbitrary lifting of y—recall the definition of MSDP

2(d+δ)(X ) given in (7).

Recall that g1(x) = 1 − ‖x‖2. As Md+δ−1(g1 y) � 0 one deduces that
Lyδ(x

2t
i (1 − ‖x‖2)) ≥ 0 for every i = 1, . . . , n, and all t ≤ d + δ − 1.
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Expanding and using linearity of Ly yields 1 ≥
∑n
j=1 Lyδ(x

2
j) ≥ Lyδ(x

2
i )

for t = 0 and i = 1, . . . , n. Next for t = 1 and i = 1, . . . , n,

0 ≤ Lyδ(x2i (1− ‖x‖2)) = Lyδ(x
2
i )︸ ︷︷ ︸

≤1

−Lyδ(x4i )−
n∑
j 6=i

Lyδ(x
2
ix

2
j )︸ ︷︷ ︸

≥0

,

yields Lyδ(x
4
i ) ≤ 1. We may iterate this argumentation until we finally

obtain Lyδ(x
2d+2δ
i ) ≤ 1, for all i = 1, . . . , n. Therefore by [10, Lemma 4.3,

page 110] (or [8, Proposition 3.6, page 60]) one has

|yδ,α| ≤ max
{
yδ,0︸︷︷︸
=1

, max
i
{Lyδ(x

2(d+δ)
i )}

}
≤ 1 ∀|α| ≤ 2(d+ δ). (18)

This implies that the set of feasible liftings yδ is compact, and therefore,
the feasible set of (17) is also compact. As the function φq is upper semi-
continuous, the supremum in (17) is attained at some optimal solution
y? ∈ Rs(2d). It is unique due to convexity of the feasible set and strict
concavity of the objective function φq, e.g., see [19, Chapter 6.13] for a
proof.

b) Let Bα, B̃α and Cjα be real symmetric matrices such that∑
|α|≤2d

Bαx
α = vd(x) vd(x)>

∑
|α|≤2(d+δ)

B̃αx
α = v(x)d+δ vd+δ(x)>

∑
|α|≤2(d+δ)

Cjαx
α = gj(x) vd+δ−vj (x) vd+δ−vj (x)>, j = 1, . . . ,m.

Recall that it holds ∑
|α|≤2d

Bαyα = Md(y) .

First, we notice that there exists a strictly feasible solution to (17) because
the cone MSDP

2(d+δ)(X ) has nonempty interior as a supercone of M2d(X ),

which has nonempty interior by [9, Lemma 2.6]. Hence, Slater’s condition2

holds for (17). Further, by an argument in [19, Chapter 7.13]) the ma-
trix Md(y

?) is non-singular. Therefore, φq is differentiable at y?. Since
additionally Slater’s condition is fulfilled and φq is concave, this implies
that the Karush-Kuhn-Tucker (KKT) optimality conditions3 at y? are
necessary and sufficient for y? to be an optimal solution.

2For the optimization problem max {f(x) : Ax = b; x ∈ C}, where A ∈ Rm×n and C ⊆ Rn
is a nonempty closed convex cone, Slater’s condition holds, if there exists a feasible solution x
in the interior of C.

3For the optimization problem max {f(x) : Ax = b; x ∈ C}, where f is differentiable,
A ∈ Rm×n and C ⊆ Rn is a nonempty closed convex cone, the KKT-optimality conditions at
a feasible point x state that there exist λ? ∈ Rm and u? ∈ C? such that A>λ? −∇f(x) = u?

and 〈x,u?〉 = 0.
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4 APPROXIMATING THE IDEAL PROBLEM 15

The KKT-optimality conditions at y? read

λ? e0 −∇φq(Md(y
?)) = p̂? with p̂?(x) := 〈p̂?,v2d(x)〉 ∈ PSOS

2(d+δ)(X ),

where p̂? ∈ Rs(2d), e0 = (1, 0, . . . , 0), and λ? is the dual variable associated
with the constraint y0 = 1. The complementarity condition reads 〈y?, p̂?〉 =
0.
Recalling the definition (9) of the quadratic module PSOS

2(d+δ)(X ), we can

express the membership p̂?(x) ∈ PSOS
2(d+δ)(X ) more explicitly in terms of

some “dual variables” Λj < 0, j = 0, . . . ,m,

1α=0 λ
?−〈∇φq(Md(y

?)),Bα〉 = 〈Λ0, B̃α〉+
m∑
j=1

〈Λj ,Cj
α〉, |α| ≤ 2(d+δ),

(19)

Then, for a lifting y?δ ∈ R(n+2(d+δ)
n ) of y? the complementary condition

〈y?, p̂?〉 = 0 reads

〈Md+δ(y
?
δ),Λ0〉 = 0; 〈Md+δ−vj (y

?
δ gj),Λj〉 = 0, j = 1, . . . ,m. (20)

Multiplying by y?δ,α, summing up and using the complementarity conditions
(20) yields

λ?−〈∇φq(Md(y
?)),Md(y

?)〉 = 〈Λ0,Md+δ(y
?
δ)〉︸ ︷︷ ︸

=0

+

m∑
j=1

〈Λj ,Md+δ−vj (gj y?δ)〉︸ ︷︷ ︸
=0

.

(21)
We deduce that

λ? = 〈∇φq(Md(y
?
d,δ)),Md(y

?
d,δ)〉 = φq(Md(y

?
d,δ)) (22)

by the Euler formula for homogeneous functions.

Similarly, multiplying by xα and summing up yields

λ? − vd(x)>∇φq(Md(y
?))vd(x)

=
〈

Λ0,
∑

|α|≤2(d+δ)

B̃α x
α
〉

+

m∑
j=1

〈
Λj ,

∑
|α|≤2(d+δ−vj)

Cj
α x

α
〉

=
〈

Λ0,v(x)d+δ vd+δ(x)>
〉

︸ ︷︷ ︸
σ0(x)

+

m∑
j=1

gj(x)
〈

Λj ,vd+δ−vj (x) vd+δ−vj (x)>
〉

︸ ︷︷ ︸
σj(x)

= σ0(x) +

n∑
j=1

σj(x) gj(x)

= p̂?(x) ∈ PSOS
2(d+δ)(X ). (23)
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Note that σ0 ∈ Σ[x]2(d+δ) and σj ∈ Σ[x]2(d+δ−dj), j = 1, . . . ,m, by defini-
tion.

For q 6= 0 let c? :=
(
n+d
n

)[(
n+d
n

)−1
trace(Md(y

?)q)
]1− 1

q

. As Md(y
?) is

positive semidefinite and non-singular, we have c? > 0. If q = 0, let
c? := 1 and replace φ0(Md(y

?)) by log detMd(y
?), for which the gradient

is Md(y
?)−1.

Using Table 1 we find that c?∇φq(Md(y
?)) = Md(y

?)q−1. It follows that

c?λ?
(22)
= c?〈∇φq(Md(y

?)),Md(y
?)〉 = trace(Md(y

?)q)

and c?〈∇φq(Md(y
?)),vd(x)vd(x)>〉 (16)= p?d(x)

Therefore, Eq. (23) is equivalent to p? := c? p̂? = c? λ? − p?d ∈ PSOS
2(d+δ)(X ).

To summarize,

p?(x) = trace(Md(y
?)q)− p?d(x) ∈ PSOS

2(d+δ)(X ).

We remark that all elements of PSOS
2(d+δ)(X ) are non-negative on X and that

(21) implies Ly?(p?) = 0. Hence, we have shown b).

The equivalence follows from the argumentation in b).

Remark 4 (Finite convergence). If the optimal solution y? of Problem (17) is
coming from a measure µ? on X , that is y? ∈M2d(X ), then ρδ = ρ and y? is the
unique optimal solution of Problem (15). In addition, by the proof of Theorem 1,
µ? can be chosen to be atomic and supported on at least

(
n+d
n

)
and at most

(
n+2d
n

)
“contact points” on the level set Ω := {x ∈ X : trace(Md(y

?)q)− p?d(x) = 0}.

Remark 5 (SDP relaxation for E-optimality). Theorem 3 holds also for q =
−∞. This is the E-optimal design case, in which the objective function is not
differentiable at points for which the least eigenvalue has multiplicity greater

than 2. We get that y? satisfies λmin(Md(y
?))−

(∑
α uαx

α
)2

> 0 for all x ∈ X
and Ly?(

(∑
α uαx

α
)2

) = λmin(Md(y
?)), where u = (uα)|α|≤2d is a nonzero

eigenvector of Md(y
?) associated to λmin(Md(y

?)).
In particular, the following statements are equivalent

◦ y? ∈MSDP
2(d+δ)(X ) is a solution to Problem (17);

◦ y? ∈ {y ∈MSDP
2(d+δ)(X ) : y0 = 1} and p?(x) = λmin(Md(y

?))||u||22 −(∑
α uαx

α
)2
∈ PSOS

2(d+δ)(X ).

Furthermore, if the least eigenvalue of Md(y
?) has multiplicity one then y? is

unique.
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4.4. Asymptotics

We now analyze what happens when δ tends to infinity.

Theorem 4. Let q ∈ (−∞, 1) and d ∈ N. For every δ = 0, 1, 2, . . . , let y?d,δ be an
optimal solution to (17) and p?d,δ ∈ R[x]2d the Christoffel polynomial associated
with y?d,δ defined in Theorem 3. Then,

a) ρδ → ρ as δ →∞, where ρ is the supremum in (15).
b) For every α ∈ Nn with |α| ≤ 2d, we have limδ→∞ y?d,δ,α = y?α, where

y? = (y?α)|α|≤2d ∈M2d(X ) is the unique optimal solution to (15).
c) p?d,δ → p?d as δ →∞, where p?d is the Christoffel polynomial associated with

y? defined in (16).
d) If the dual polynomial p? := trace(Md(y

?)q)− p?d to Problem (15) belongs
to PSOS

2(d+δ)(X ) for some δ, then finite convergence takes place, that is, y?d,δ
is the unique optimal solution to Problem (15) and y?d,δ has a representing
measure, namely the target measure µ?.

Proof. We prove the four claims consecutively.

a) For every δ complete the lifted finite sequence y?δ ∈ R(n+2(d+δ)
n ) with zeros

to make it an infinite sequence y?δ = (y?δ,α)α∈Nn . Therefore, every such y?δ
can be identified with an element of `∞, the Banach space of finite bounded
sequences equipped with the supremum norm. Moreover, Inequality (18)
holds for every y?δ . Thus, denoting by B the unit ball of `∞ which is
compact in the σ(`∞, `1) weak-? topology on `∞, we have y?δ ∈ B. By
Banach-Alaoglu’s theorem, there is an element ŷ ∈ B and a converging
subsequence (δk)k∈N such that

lim
k→∞

y?δk,α = ŷα ∀α ∈ Nn. (24)

Let s ∈ N be arbitrary, but fixed. By the convergence (24) we also have

lim
k→∞

Ms(y
?
δk

) = Ms(ŷ) < 0;

lim
k→∞

Ms(gj y?δk) = Ms(gj ŷ) < 0, j = 1, . . . ,m.

Notice that the subvectors y?d,δ = (y?δ,α)|α|≤2d with δ = 0, 1, 2, . . . belong
to a compact set. Therefore, since φq(Md(y

?
d,δ)) <∞ for every δ, we also

have φq(Md(ŷ)) <∞.
Next, by Putinar’s theorem [8, Theorem 3.8], ŷ is the sequence of moments
of some measure µ̂ ∈M+(X ), and so ŷd = (ŷα)|α|≤2d is a feasible solution
to (15), meaning ρ ≥ φq(Md(ŷd)). On the other hand, as (17) is a relaxation
of (15), we have ρ ≤ ρδk for all δk. So the convergence (24) yields

ρ ≤ lim
k→∞

ρδk = φq(Md(ŷd)),

which proves that ŷ is an optimal solution to (15), and limδ→∞ ρδ = ρ.
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b) As the optimal solution to (15) is unique, we have y? = ŷd with ŷd defined
in the proof of a) and the whole sequence (y?d,δ)δ∈N converges to y?, that
is, for α ∈ Nn with |α| ≤ 2d fixed

lim
d,δ→∞

y?δ,α = lim
δ→∞

y?δ,α = ŷα = y?α. (25)

c) It suffices to observe that the coefficients of Christoffel polynomial p?d,δ are
continuous functions of the moments (y?d,δ,α)|α|≤2d =(y?δ,α)|α|≤2d. Therefore,
by the convergence (25) one has p?d,δ → p?d where p?d ∈ R[x]2d as in Theorem
1.

The last point follows directly observing that, in this case, the two Programs (15)
and (17) satisfy the same KKT conditions.

4.5. General regression polynomial bases

We return to the general case described by a matrix A of size p×
(
n+d
n

)
such that

the regression polynomials satisfy F(x) = Avd(x) for all x ∈ X . Without loss of
generality, we can assume that the rank of A is p, i.e., the regressors f1, . . . , fp
are linearly independent. Now, the objective function becomes φq(AMd(y)A>)
at point y. Note that the constraints on y are unchanged, i.e.,

� y ∈M2d(X ), y0 = 1 in the ideal problem,
� y ∈MSDP

2(d+δ)(X ), y0 = 1 in the SDP relaxation scheme.

We recall the notation Md(y) := AMd(y)A> and we get that the KKT conditions
are given by

∀x ∈ X , φq(Md(y))− F(x)>∇φq(Md(y)) F(x)︸ ︷︷ ︸
proportional to p?d(x)

= p?(x)

where

� p? ∈M2d(X )? (= P2d(X )) in the ideal problem,
� p? ∈MSDP

2(d+δ)(X )? (= PSOS
2(d+δ)(X )) in the SDP relaxation scheme.

Our analysis leads to the following equivalence results in this case.

Proposition 5. Let q ∈ (−∞, 1) and let X ⊆ Rn be a compact semi-algebraic
set as defined in (4) and with nonempty interior. Problem (13) is a convex
optimization problem with an optimal solution y? ∈M2d(X ). Denote by p?d the
polynomial

x 7→ p?d(x) := F(x)>Md(y)q−1F(x) = ||Md(y)
q−1
2 F(x)||22. (26)

Then y? is the vector of moments—up to order 2d—of a discrete measure µ?

supported on at least p points and at most s points where

s ≤ min
[
1 +

p(p+ 1)

2
,

(
n+ 2d

n

)]
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5 RECOVERING THE MEASURE 19

(see Remark 6 ) in the set Ω := {x ∈ X : trace(Md(y)q)− p?d(x) = 0}.
In particular, the following statements are equivalent:

◦ y? ∈M2d(X ) is the solution to Problem (15);
◦ y? ∈ {y ∈M2d(X ) : y0 = 1} and p? := trace(Md(y)q)− p?d(x) > 0 on X .

Furthermore, if A has full column rank then y? is unique.

The SDP relaxation is given by the program

ρδ = max
y

φq(Md(y))

s.t. y ∈MSDP
2(d+δ)(X ), y0 = 1,

(27)

for which it is possible to prove the following result.

Proposition 6. Let q ∈ (−∞, 1) and let X ⊆ Rn be a compact semi-algebraic
set as defined in (4) and with nonempty interior. Then,

a) SDP Problem (27) has an optimal solution y?d,δ ∈ R(n+2d
n ).

b) Let p?d be as defined in (26), associated with y?. Then p? :=
trace(Md(y

?
d,δ)

q)− p?d(x) > 0 on X and Ly?d,δ
(p?) = 0.

In particular, the following statements are equivalent:

◦ y? ∈MSDP
2(d+δ)(X ) is a solution to Problem (17);

◦ y? ∈ {y ∈MSDP
2(d+δ)(X ) : y0 = 1} and p? = trace(Md(y

?)q) −
p?d ∈PSOS

2(d+δ)(X ).

Furthermore, if A has full column rank then y? is unique.

5. Recovering the measure

By solving step one as explained in Section 4, we obtain a solution y? of SDP
Problem (17). As y?∈MSDP

2(d+δ)(X ), it is likely that it comes from a measure.
If this is the case, by Tchakaloff’s theorem, there exists an atomic measure
supported on at most s(2d) points having these moments. For computing the
atomic measure, we propose two approaches: A first one which follows a procedure
by Nie [17], and a second one which uses properties of the Christoffel polynomial
associated with y?.

These approaches have the benefit that they can numerically certify finite
convergence of the hierarchy.

5.1. Via Nie’s method

This approach to recover a measure from its moments is based on a formulation
proposed by Nie in [17].
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Let y? = (y?α)|α|≤2d a finite sequence of moments. For r ∈ N consider the
SDP problem

min
yr

Lyr (fr)

s.t. Md+r(yr) < 0,
Md+r−vj (gj yr) < 0, j = 1, . . . ,m,
yr,α = y?α, ∀α ∈ Nn, |α| ≤ 2d,

(28)

where yr ∈ R(n+2(d+r)
n ) and fr ∈ R[x]2(d+r) is a randomly generated polynomial

strictly positive on X , and again vj = ddj/2e, j = 1, . . . ,m. We check whether
the optimal solution y?r of (28) satisfies the rank condition

rankMd+r(y
?
r) = rankMd+r−v(y

?
r), (29)

where v := maxj vj . Indeed if (29) holds then y?r is the sequence of moments
(up to order 2r) of a measure supported on X ; see [8, Theorem 3.11, p. 66]. If
the test is passed, then we stop, otherwise we increase r by one and repeat the
procedure. As y? ∈M2d(X ), the rank condition (29) is satisfied for a sufficiently
large value of r.

We extract the support points x1, . . . , x` ∈ X of the representing atomic
measure of y?r , and y? respectively, as described in [8, Section 4.3].

Experience reveals that in most cases it is enough to use the following poly-
nomial

x 7→ fr(x) =
∑

|α|≤d+r

x2α = ||vd+r(x)||22

instead of using a random positive polynomial on X . In Problem (28) this
corresponds to minimizing the trace of Md+r(y)—and so induces an optimal
solution y with low rank matrix Md+r(y).

5.2. Via the Christoffel polynomial

Another possibility to recover the atomic representing measure of y? is to find
the zeros of the polynomial p?(x) = trace(Md(y

?)q) − p?d(x), where p?d is the
Christoffel polynomial associated with y? defined in (16), that is, p?d(x) =
vd(x)>Md(y

?)q−1vd(x). In other words, we compute the set Ω = {x ∈ X :
trace(Md(y

?)q) − p?d(x) = 0}, which due to Theorem 3 is the support of the
atomic representing measure.

To that end we minimize p? on X . As the polynomial p? is non-negative on X ,
the minimizers are exactly Ω. For minimizing p?, we use the Lasserre hierarchy
of lower bounds, that is, we solve the semidefinite program

min
yr

Lyr (p
?)

s.t. Md+r(yr) < 0, yr,0 = 1,
Md+r−vj (gj yr) < 0, j = 1, . . . ,m,

(30)

where yr ∈ R(n+2(d+r)
n ).
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Since p?d is associated with the optimal solution to (17) for some given δ ∈ N,
by Theorem 3, it satisfies the Putinar certificate (23) of positivity on X . Thus,
the value of Problem (30) is zero for all r > δ. Therefore, for every feasible
solution yr of (30) one has Lyr(p

?) ≥ 0 (and Ly?d
(p?) = 0 for y?d an optimal

solution of (17)).
When condition (29) is fulfilled, the optimal solution y?r comes from a measure.

We extract the support points x1, . . . , x` ∈ X of the representing atomic measure
of y?r , and y? respectively, as described in [8, Section 4.3].

Alternatively, we can solve the SDP

min
yr

trace(Md+r(yr))

s.t. Lyr (p
?) = 0,

Md+r(yr) < 0, yr,0 = 1,
Md+r−vj (gj yr) < 0, j = 1, . . . ,m,

(31)

where yr ∈ R(n+2(d+r)
n ). This problem also searches for a moment sequence of a

measure supported on the zero level set of p?. Again, if condition (29) is holds,
the finite support can be extracted.

5.3. Calculating the corresponding weights

After recovering the support {x1, . . . , x`} of the atomic representing measure
by one of the previously presented methods, we might be interested in also
computing the corresponding weights ω1, . . . , ω`. These can be calculated easily
by solving the following linear system of equations:

∑`
i=1 ωix

α
i = y?α for all

|α| ≤ 2d, i.e.,
∫
X x

αµ?(dx) = y?α.

6. Examples

We illustrate the procedure on six examples: a univariate one, four examples in
the plane and one example on the three-dimensional sphere. We concentrate on
D-optimal designs, namely q = 0.

All examples are modeled by GloptiPoly 3 [5] and YALMIP [14] and solved
by MOSEK 7 [16] or SeDuMi under the MATLAB R2014a environment. We ran
the experiments on an HP EliteBook with 16-GB RAM memory and an Intel
Core i5-4300U processor. We do not report computation times, since they are
negligible for our small examples.

6.1. Univariate unit interval

We consider as design space the interval X = [−1, 1] and on it the polynomial

measurements
∑d
j=0 θjx

j with unknown parameters θ ∈ Rd+1. To compute the
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D-optimal design we first solve Problem (17), in other words

max
yδ

log detMd(yδ)

s.t. Md+δ(yδ) < 0,
Md+δ−1((1− ‖x‖2) yδ) < 0,
yδ,0 = 1

(32)

for yδ ∈ Rs(2(d+δ)) and given regression order d and relaxation order d+ δ, and
then taking the truncation y? := (y?δ,α)|α|62d of an optimal solution y?δ . For
instance, for d = 5 and δ = 0 we obtain the sequence y? ≈ (1, 0, 0.56, 0, 0.45, 0,
0.40, 0, 0.37, 0, 0.36)>.

Then, to recover the corresponding atomic measure from the sequence y? we
solve the problem

min
y

traceMd+r(yr)

s.t. Md+r(yr) < 0
Md+r−1((1− x2)yr) < 0,
yα = y?r,α, |α| ≤ 2d,

(33)

and find the points -1, -0.765, -0.285, 0.285, 0.765 and 1 (for d = 5, δ=0, r = 1).
As a result, our optimal design is the weighted sum of the Dirac measures
supported on these points. The points match with the known analytic solution
to the problem, which are the critical points of the Legendre polynomial, see e.g.,
[3, Theorem 5.5.3, p.162]. In this case, we know explicitly the optimal design,
its support is located at the roots of the polynomial t→ (1− t2)P ′d(t) where P ′d
denotes the derivative of the Legendre polynomial of degree d, and its weights
are all equal to 1/(1 + d). Now, observe that the roots of p? have degree 2 in the
interior of [−1, 1] (there are d− 1 roots corresponding exactly to the roots of P ′d)
and degree 1 on the edges (corresponding exactly to the roots of (1−t2)). Observe
also that p? has degree 2d. We deduce that p? equals t→ (1− t2)(P ′d(t))

2 up to
a multiplicative constant. Calculating the corresponding weights as described in
Section 5.3, we find ω1 = · · · = ω6 ≈ 0.166 as prescribed by the theory.

Alternatively, we compute the roots of the polynomial x 7→ p?(x) = 6− p?5(x),
where p?5 is the Christoffel polynomial of degree 2d = 10 on X and find the same
points as in the previous approach by solving Problem (31). See Figure 1 for the
graph of the Christoffel polynomial of degree 10.

We observe that we get less points when using Problem (30) to recover the
support for this example. This may occur due to numerical issues.

6.2. Wynn’s polygon

As a first two-dimensional example we take the polygon given by the vertices
(−1,−1), (−1, 1), (1,−1) and (2, 2), scaled to fit the unit circle, i.e., we consider
the design space

X = {x ∈ R2 : x1, x2 > − 1
4

√
2, x1 ≤ 1

3 (x2+
√

2), x2 ≤ 1
3 (x1+

√
2), x21+x22 ≤ 1}.
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Figure 1. Polynomial p? for Example 6.1.

Note that we need the redundant constraint x21 + x22 ≤ 1 in order to have an
algebraic certificate of compactness.

As before, in order to find the D-optimal measure for the regression, we solve
Problems (17) and (28). Let us start by analyzing the results for d = 1 and δ = 3.
Solving (17) we obtain y? ∈ R45 which leads to 4 atoms when solving (28) with
r = 3. For the latter the moment matrices of order 2 and 3 both have rank 4, so
Condition (29) is fulfilled. As expected, the 4 atoms are exactly the vertices of
the polygon.

Again, we could also solve Problem (31) instead of (28) to receive the same
atoms. As in the univariate example we get less points when using Problem (30).
To be precise, GloptiPoly is not able to extract any solutions for this example.

For increasing d, we get an optimal measure with a larger support. For d = 2
we recover 7 points, and 13 for d = 3. See Figure 2 for the polygon, the supporting
points of the optimal measure and the

(
2+d
2

)
-level set of the Christoffel polynomial

p?d for different d. The latter demonstrates graphically that the set of zeros of(
2+d
d

)
− p?d intersected with X are indeed the atoms of our representing measure.

In the picture the size of the support points is chosen with respect to their
corresponding weights, i.e., the larger the point, the bigger the respective weight.

The numerical values of the support points and their weights computed in
the above procedure (and displayed in Figure 2) are listed in Appendix B.

To get an idea of how the Christoffel polynomial looks like, we plot in Figure
3 the 3D-plot of the polynomial −p? = p?d −

(
2+d
2

)
. This illustrates very clearly

that the zeros of p? on X are the support points of the optimal design.
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Figure 2. The polygon (bold black) of Example 6.2, the support of the optimal design measure

(red points) where the size of the points corresponds to the respective weights, and the
(2+d

2

)
-

level set of the Christoffel polynomial (thin blue) for d = 1 (left), d = 2 (middle), d = 3 (right)
and δ = 3.

6.3. Ring of ellipses

As a second example in the plane we consider an ellipsoidal ring, i.e., an ellipse
with a hole in the form of a smaller ellipse. More precisely,

X = {x ∈ R2 : 9x21 + 13x22 ≤ 7.3, 5x21 + 13x22 ≥ 2}.

We follow the same procedure as described in the former example. See Figure 4
for the results. The values are again listed in Appendix B.

6.4. Moon

To investigate another non-convex example, we apply our method to the moon-
shaped semi-algebraic set

X = {x ∈ R2 : (x1 + 0.2)2 + x22 ≤ 0.36, (x1 − 0.6)2 + x22 ≥ 0.16}.

The results are represented in Figure 5 and for the numerical values the interested
reader is referred to Appendix B.

6.5. Folium

The zero level set of the polynomial f(x) = −x1(x21 − 2x22)(x21 + x22)2 is a curve
of genus zero with a triple singular point at the origin. It is called a folium. As a
last two-dimensional example we consider the semi-algebraic set defined by f ,
i.e.,

X = {x ∈ R2 : f(x) ≥ 0, x21 + x22 ≤ 1}.

Figure 6 illustrates the results and the values are listed in Appendix B.
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Figure 3. The polynomial p?d −
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)
where p?d denotes the Christoffel polynomial of Example

6.2 for d = 1 (top left), d = 2 (top right), d = 3 (bottom middle). The red points correspond

to the
(2+d

2

)
-level set of the Christoffel polynomial.

6.6. The 3-dimensional unit sphere

Last, let us consider the regression for the degree d polynomial measurements∑
|α|≤d θαx

α on the unit sphere X = {x ∈ R3 : x21 + x22 + x23 = 1}. Again, we

first solve Problem (17). For d = 1 and δ ≥ 0 we obtain the sequence y? ∈ R10

with y?000 = 1, y?200 = y?020 = y?002 = 0.333 and all other entries zero.
In the second step we solve Problem (28) to recover the measure. For r = 2 the

moment matrices of order 2 and 3 both have rank 6, meaning the rank condition
(29) is fulfilled, and we obtain the six atoms {(±1, 0, 0), (0,±1, 0), (0, 0,±1)} ⊆ X
on which the optimal measure µ ∈M+(X ) is uniformly supported.

For quadratic regressions, i.e., d = 2, we obtain an optimal measure supported
on 14 atoms evenly distributed on the sphere. Choosing d = 3, meaning cubic
regressions, we find a Dirac measure supported on 26 points which again are
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Figure 4. The polygon (bold black) of Example 6.3 and the support of the optimal design
measure (red points) where the size of the points corresponds to the respective weights for
d = 1 (left), d = 2 (middle), d = 3 (right) and δ = 3.
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Figure 5. The polygon (bold black) of Example 6.4 and the support of the optimal design
measure (red points) where the size of the points corresponds to the respective weights for
d = 1 (left), d = 2 (middle), d = 3 (right) and δ = 3.

evenly distributed on the sphere. See Figure 7 for an illustration of the supporting
points of the optimal measures for d = 1, d = 2, d = 3 and δ = 0.

Using the method via Christoffel polynomials gives again less points. No
solution is extracted when solving Problem (31) and we find only two supporting
points for Problem (30).

6.7. Fixing some moments

Our method has an additional nice feature. Indeed in Problem (17) one may
easily include the additional constraint that some moments (yα), α ∈ Γ ⊂ Nn2d
are fixed to some prescribed value. We illustrate this potential on one example.
For instance, with Γ = {(020), (002), (110), (101)}, let y020 := 2, y002 := 1,
y110 := 0.01 and y101 := 0.95. In order to obtain a feasible problem, we scale
them with respect to the Gauss distribution.

For the D-optimal design case with d = 1 and δ = 0 and after computing the
support of the corresponding measure using the Nie method, we get 6 points as
we obtain without fixing the moments. However, now four of the six points are
shifted and the measure is no longer uniformly supported on these points, but
each two opposite points have the same weight. See Figure 8 for an illustration of
the position of the points with fixed moments (blue) with respect to the position
of the support points without fixing the points (red).
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Figure 6. The polygon (bold black) of Example 6.5, the support of the optimal design measure

(red points) where the size of the points corresponds to the respective weights, and the
(2+d

2

)
-

level set of the Christoffel polynomial (thin blue) for d = 1 (left), d = 2 (middle), d = 3 (right)
and δ = 3.

Figure 7. The red points illustrate the support of the optimal design measure for d = 1 (left),
d = 2 (middle), d = 3 (right) and δ = 0 for Example 6.6.

7. Conclusion

In this paper, we give a general method to build optimal designs for multidi-
mensional polynomial regression on an algebraic manifold. The method is highly
versatile as it can be used for all classical functionals of the information matrix.
Furthermore, it can easily be tailored to incorporate prior knowledge on some
multidimensional moments of the targeted optimal measure (as proposed in
[15]). In future works, we will extend the method to multi-response polynomial
regression problems and to general smooth parametric regression models by
linearization.
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Appendix A: Proof of Theorem 1

First, let us prove that Problem (15) has an optimal solution. The feasible set
is nonempty with finite associated objective value—take as feasible point the
vector y ∈M2d(X ) associated with the Lebesgue measure on the compact set X ,
scaled to be a probability measure. Moreover, as X is compact with nonempty
interior, it follows that M2d(X ) is closed (as the dual of P2d(X )).

In addition, the feasible set {y ∈M2d(X ) : y0 = 1} of Problem (15) is compact.
Indeed there exists M > 1 such that it holds

∫
X x

2d
i dµ < M for every probability

measure µ on X and every i = 1, . . . , n. Hence, max{y0, maxi{Ly(x2di )}} < M
which by [10] implies that |yα| ≤ M for every |α| ≤ 2d, which in turn implies
that the feasible set of (15) is compact.

Next, as the function φq is upper semi-continuous, the supremum in (15) is
attained at some optimal solution y? ∈M2d(X ). Moreover, as the feasible set is
convex and φq is strictly concave (see, e.g., [19, Chapter 6.13]) then y∗ is the
unique optimal solution.

Now, we examine the properties of the polynomial p? and show the equivalence
statement. For this we notice that there exists a strictly feasible solution because
the cone int(M2d(X )) is nonempty by Lemma 2.6 in [9]. Hence, Slater’s condition4

holds for (15). Further, by a an argument in [19, Chapter 7.13], the matrix Md(y
?)

is non-singular. Therefore, φq is differentiable at y?. Since additionally Slater’s
condition is fulfilled and φq is concave, this implies that the Karush-Kuhn-Tucker

4For the optimization problem max {f(x) : Ax = b; x ∈ C}, where A ∈ Rm×n and C ⊆ Rn
is a nonempty closed convex cone, Slater’s condition holds, if there exists a feasible solution x
in the interior of C.
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(KKT) optimality conditions5 at y? are necessary (and sufficient) for y? to be
an optimal solution.

The KKT-optimality conditions read

λ? e0 −∇φq(Md(y
?)) = p̂? with p̂? = 〈p̂,v2d(x)〉 ∈ M2d(X )? (= P2d(X )),

(where p̂ ∈ R(n+2d
n ), e0 = (1, 0, . . . , 0), and λ? is the dual variable associated with

the constraint y?0 = 1). The complementarity condition is 〈y?, p?〉 = 0.
Writing Bα, α ∈ Nn2d, for the real symmetric matrices satisfying

∀x ∈ X ,
∑
|α|≤2d

Bαx
α = vd(x)vd(x)>,

and 〈A,B〉 = trace(AB) for two real symmetric matrices A and B, this can be
expressed as(

1α=0 λ
? − 〈∇φq(Md(y

?)),Bα〉
)
|α|≤2d

= p̂, p̂? ∈ P2d(X ). (34)

Multiplying (34) term-wise by y?α, summing up and invoking the complementarity
condition, yields

λ? = λ? y?0
(34)
=
〈
∇φq(Md(y

?)),
∑
|α|≤2d

y?αBα

〉
(35)

=
〈
∇φq(Md(y

?)),Md(y
?)
〉

= φq(Md(y
?)) ,

where the last equality holds by Euler formula for the positively homogeneous
function φq.

Similarly, multiplying Equation (34) term-wise by xα and summing up yields
for all x ∈ X

x 7→ p̂?(x)
(34)
= λ? −

〈
∇φq(Md(y

?)),
∑
|α|≤2d

Bαx
α
〉

(36)

=λ? −
〈
∇φq(Md(y

?)),vd(x)vd(x)>
〉
≥ 0.

For q 6= 0 let c? :=
(
n+d
n

)[(
n+d
n

)−1
trace(Md(y

?)q)
]1− 1

q

. As Md(y
?) is positive

semidefinite and non-singular, we have c? > 0. If q = 0, let c? := 1 and replace
φ0(Md(y

?)) by log detMd(y
?), for which the gradient is Md(y

?)−1.
Using Table 1 we find that c?∇φq(Md(y

?)) = Md(y
?)q−1. It follows that

c?λ?
(35)
= c?〈∇φq(Md(y

?)),Md(y
?)〉 = trace(Md(y

?)q)

and c?〈∇φq(Md(y
?)),vd(x)vd(x)>〉 (16)= p?d(x)

5For the optimization problem max {f(x) : Ax = b; x ∈ C}, where f is differentiable,
A ∈ Rm×n and C ⊆ Rn is a nonempty closed convex cone, the KKT-optimality conditions at
a feasible point x state that there exist λ? ∈ Rm and u? ∈ C? such that A>λ? −∇f(x) = u?

and 〈x, u?〉 = 0.
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Therefore, equation (36) is equivalent to p? := c? p̂? = c? λ? − p?d ∈ P2d(X ).
To summarize,

p?(x) = trace(Md(y
?)q)− p?d(x) ∈ P2d(X ).

Since the KKT-conditions are necessary and sufficient, the equivalence statement
follows.

Finally, we investigate the measure µ? associated with y?. Multiplying the
complementarity condition 〈y?, p̂?〉 = 0 with c?, we have∫

X
p?(x)︸ ︷︷ ︸
≥0 on X

dµ?(x) = 0.

Hence, the support of µ? is included in the algebraic set Ω = {x ∈ X : p?(x) = 0}.
The measure µ? is an atomic measure supported on at most

(
n+2d
n

)
points.

This follows from Tchakaloff’s theorem (see [8, Theorem B.12] or [1] for instance),
which states that for every finite Borel probability measure on X and every
s ∈ N, there exists an atomic measure µs supported on ` ≤

(
n+s
n

)
points such

that all moments of µs and µ? agree up to order s. For s = 2d we get that
` ≤

(
n+2d
n

)
. If ` <

(
n+d
n

)
, then rank Md(y

?) <
(
n+d
n

)
in contradiction to Md(y

?)

being non-singular. Therefore,
(
n+d
n

)
≤ ` ≤

(
n+2d
n

)
.

Remark 6. The last paragraph has to be adapted as follows in the general case.
Recall that there exists a full row rank matrix A of size p×

(
n+d
n

)
such that the

regression polynomials satisfy F(x) = Avd(x). Recall also that we are optimizing
over the cone of matrices of the form Md(y) := AMd(y)A> indexed by moment
sequences y.

First, note that

rank Md(y) = min(p, rankMd(y))

and recall that the optimal solution Md(y
?) has full rank, namely it holds that

rank Md(y
?) = p. We deduce that rankMd(y

?) ≥ p so that µ? has at least p
support points.

Then, consider the vector space spanned by the constant function 1 and the
polynomials x 7→ fi(x)fj(x) for 1 ≤ i, j ≤ p. Denote by s its dimension and
observe that

s ≤ min
[
1 +

p(p+ 1)

2
,

(
n+ 2d

n

)]
.

The first argument in the minimum is the number of quadratic terms fifj while
the second comes from the observation that their span is included in the vector
space of multivariate polynomials of n variables of degree at most 2d. Recall that
we want to represent the outcome of the linear evaluations

(Md(y
?))i,j =

∫
fifjdµ

? , 1 ≤ i, j ≤ p ,
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Wynn Ellipses Moon Folium
(x1, x2) ω (x1, x2) ω (x1, x2) ω (x1, x2) ω

d = 1 (-0.35,-0.35) 0.125 (-0.00,-0.75) 0.250 (-0.80, 0.00) 0.329 ( 0.29,-0.55) 0.333
(-0.35, 0.35) 0.281 (-0.90,-0.00) 0.250 ( 0.07,-0.53) 0.305 (-1.00, 0.00) 0.333
( 0.35,-0.35) 0.281 ( 0.90, 0.00) 0.250 ( 0.07, 0.53) 0.305 ( 0.29, 0.55) 0.333
( 0.71, 0.71) 0.313 ( 0.00, 0.75) 0.250 ( 0.33,-0.29) 0.031

( 0.33, 0.29) 0.031
d = 2 (-0.35,-0.35) 0.163 (-0.45,-0.65) 0.134 (-0.39,-0.57) 0.167 (-1.00, 0.00) 0.167

(-0.35, 0.35) 0.165 (-0.90,-0.00) 0.139 (-0.80, 0.00) 0.167 (-0.60,-0.21) 0.166
( 0.12, 0.12) 0.066 (-0.00,-0.39) 0.093 (-0.20,-0.00) 0.167 (-0.60, 0.21) 0.166
( 0.35,-0.35) 0.165 ( 0.45,-0.65) 0.134 ( 0.29,-0.35) 0.167 ( 0.28,-0.56) 0.162
( 0.18, 0.53) 0.141 (-0.45, 0.65) 0.134 (-0.39, 0.57) 0.167 ( 0.21,-0.20) 0.088
( 0.53, 0.18) 0.141 ( 0.00, 0.39) 0.093 ( 0.29, 0.35) 0.167 ( 0.21, 0.20) 0.088
( 0.71, 0.71) 0.159 ( 0.90, 0.00) 0.139 ( 0.28, 0.56) 0.162

( 0.45, 0.65) 0.134
d = 3 (-0.35,-0.35) 0.095 (-0.64,-0.53) 0.085 (-0.57,-0.47) 0.099 (-1.00,-0.00) 0.100

( 0.02,-0.35) 0.074 (-0.90, 0.00) 0.088 (-0.08,-0.59) 0.098 (-0.77,-0.20) 0.099
(-0.35, 0.02) 0.074 (-0.00,-0.75) 0.088 (-0.80, 0.00) 0.100 (-0.77, 0.20) 0.099
( 0.35,-0.35) 0.096 (-0.36,-0.32) 0.075 (-0.45,-0.18) 0.061 (-0.45, 0.00) 0.077
( 0.14,-0.12) 0.044 ( 0.00,-0.39) 0.005 (-0.11,-0.30) 0.062 (-0.14,-0.00) 0.033
(-0.12, 0.14) 0.044 (-0.64, 0.53) 0.085 (-0.45, 0.18) 0.061 ( 0.10,-0.41) 0.098
(-0.35, 0.35) 0.097 (-0.36, 0.32) 0.075 ( 0.33,-0.29) 0.099 ( 0.29,-0.56) 0.099
( 0.45,-0.06) 0.088 ( 0.36,-0.32) 0.075 (-0.57, 0.47) 0.099 ( 0.31,-0.35) 0.100
(-0.06, 0.45) 0.088 ( 0.64,-0.53) 0.085 ( 0.11,-0.00) 0.063 ( 0.10, 0.41) 0.098
( 0.39, 0.39) 0.037 (-0.00, 0.39) 0.005 (-0.11, 0.30) 0.062 ( 0.31, 0.35) 0.100
( 0.61, 0.41) 0.084 ( 0.36, 0.32) 0.075 (-0.08, 0.59) 0.098 ( 0.29, 0.56) 0.099
( 0.41, 0.61) 0.084 (-0.00, 0.75) 0.088 ( 0.33, 0.29) 0.099
( 0.71, 0.71) 0.097 ( 0.90,-0.00) 0.088

( 0.64, 0.53) 0.085
Table 2

The numerical values for Examples 6.2, 6.3, 6.4, and 6.5 for the support points
xi = (xi,1, xi,2) and their corresponding weights ωi, i = 1, . . . , `.

by a discrete probability measure µ?. By Tchakaloff’s theorem, see for instance
[1, Corollary 2 6], we get that there exists a representing probability measure µ?

of Md(y
?) with at most s support points.

Appendix B: Numerical results for the Examples

We list in Table 2 details on the results for the two-dimensional examples
(Sections 6.2, 6.3, 6.4, and 6.5), namely, the numerical values of the support
points and their corresponding weights.

6In [1, Corollary 2], the reader may consider (φj)j=1,...,s any basis of the vector space
spanned by the constant function 1 and the polynomials x 7→ fi(x)fj(x) to get the result.
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ematical Programming, 152(1-2):559–591, 2015.

[10] J. B. Lasserre and T. Netzer. SOS approximations of nonnegative poly-
nomials via simple high degree perturbations. Mathematische Zeitschrift,
256(1):99–112, 2007.
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