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Wirtinger-based Exponential Stability for
Time-Delay Systems 1
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∗ LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse,
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Abstract: This paper deals with the exponential stabilization of a time-delay system with an
average of the state as the output. A general stability theorem with a guaranteed exponential
decay-rate based on a Wirtinger-based inequality is provided. Variations of this theorem for
synthesis of a controller or for an observer-based control is derived. Some numerical comparisons
are proposed with existing theorems of the literature and comparable results are obtained but
with an extension to stabilization.
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1. INTRODUCTION

Time-delay systems may arise in practice for many rea-
sons. For example, it appears in mechanical modeling like
vibration absorber (see Olgac and Holm-Hansen (1994))
or delayed resonator (see Gu et al. (2003)) which are
intrinsically with delay and neglecting it leads to an over-
simplification of the initial problem. That is why it is im-
portant to have a theory which can provide a framework to
work with. Indeed, although time-delay systems are a class
of dynamical systems widely studied in control theory, the
honored method like root-locus to assess stability are not
straightforward, particularly to provide robust stability
criteria.

Three main approaches have been developed to study the
stability of the such equations. The first one relies on
the characteristic equation (see Sipahi et al. (2011) and
references therein and Breda (2006)) and pole location.
These techniques give nearly the exact stability condi-
tions but suffer from several drawbacks. First of all, as
they are based on pole location approximations, they are
not appropriated for uncertain and/or time-varying delay
systems. Furthermore, these approaches could not also be
used easily for the design of controllers or observers.

Other approaches have been developed based either on
the robust approach or Lyapunov techniques. The ro-
bust approach consists of merging the delay uncertainty
into an uncertain set and use classical robust analysis as
Small Gain Theorem (Fridman et al. (2008)), Quadratic
Separation (Gouaisbaut and Peaucelle (2006)), Integral
Quadratic Constraints (Kao and Rantzer (2007)). Tech-
niques based on Lyapunov-Krasovskii functionals uses the
LMI framework developed in the book by Boyd et al.
(1994). This method enables exponential convergence with
a guaranteed decay rate, robust analysis, synthesis of
controllers and extension to multiple time-varying delay
systems.
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Despite these advantages, this approach is very conser-
vative. The complete Lyapunov-Krasovskii functional is
known (Kharitonov and Zhabko (2003)) but too complex
to be efficiently solved and even studied. A first step
is to introduce a simplified functional. Some works have
been done (for example by Seuret and Gouaisbaut (2015))
on how to relax the problem such that the conservatism
introduced by the choice of the Lyapunov-Krasovskii func-
tional is measured. The second step is to use integral
inequalities to transform some non-manageable terms like∫ t
t−h e

−2αsx>(t+s)Rx(t+s)ds into an expression suitable
to be transformed into LMIs. This last step is important
because there exists powerful and efficient algorithm to
find solutions of LMIs in polynomial time. The commonly
used inequalities in the two last steps are described by
Gu et al. (2003) and rely for most of them on Jensen’s
inequality. An important amount of papers have been
dedicated to reduce the conservatism induced by such
inequalities. Recently, Seuret and Gouaisbaut (2013) in-
troduced a Wirtinger-based inequality, known to be less
conservative. The present paper uses this framework to
state the exponential convergence with a guaranteed decay
rate and synthesis of controllers.

Two approaches have been widely used in the literature
to assess the exponential stability. The first one relies
on a change of variable z(t) = eαtx(t) and it can be
proven that establishing asymptotic stability of z implies
an exponential stability of x with a decay rate of α (Seuret
et al. (2004)). The second one is based on some modi-
fied Lyapunov-Krasovskii functionals which incorporate in
their structures the exponential rate.

Since one of the first article by Mori et al. (1982) on ex-
ponential convergence of time-delay systems, several expo-
nential estimates emerged from the literature: Mondie and
Kharitonov (2005), Xu et al. (2006) or more recently Trinh
et al. (2016). But only a few of them used the Wirtinger-
based inequality developed by Seuret and Gouaisbaut
(2013) to help synthesize observers or controllers for a
discrete or distributed delay system. The aim of this article



is to stabilize a specific class of time-delay systems as
described in the problem statement using this inequality.

In Section 2, the problem is stated and some useful lemmas
are reminded. Then in Section 3, an extension of exponen-
tial stability theorems with a Wirtinger-based inequality
is introduced. The general results of the previous section
are used for the computation of a feedback gain for a
given system in Section 4 while Section 5 is dedicated
to the design of an observer-based control. Finally, in the
last section, a numerical comparison of efficiency between
classical theorems and the one derived in this paper is
performed.

Notations. Throughout the paper, Rn stands for the n
dimensional Euclidian space, Rn×m for the set of all n×m
matrices. Sn is the subset of Rn×n of symmetric matrices
such that P ∈ Sn+ or equivalently P � 0 denotes a sym-
metric positive definite matrix. For any square matrices A
and B, the operations ’He’ and ’diag’ are defined as follow:
He(A) = A + A> and diag(A,B) = [A 0

0 B ]. The notations
In and 0n×m denote the n by n identity matrix and the
null matrix of size n × m. The state variable x can be
represented using the Shimanov notation (Kolmanovskii

and Myshkis (2013)): xt :

{
[−h, 0] → Rn

τ 7→ x(t+ τ)

2. PROBLEM STATEMENT

2.1 System data

The system to be controlled is the following one:
ẋ(t) = Ax(t) +Bu(t), ∀t > 0,

y(t) = C
1

h

∫ 0

−h
xt(s)ds, ∀t > 0,

x(t) = φ(t), ∀t ∈ [−h, 0],

(1)

with x(t) ∈ Rn the instantaneous state vector, h the
time delay, φ the initial state function and A, B, C three
matrices of appropriate dimensions. Then, the output is
not the instantaneous state but its average on a sliding
window of time [t − h, t], which differs significantly from
classical control problems. Numerous measurement tools,
in electronics for example, are measuring an average and
not the instantaneous state.

The purpose of this paper is to find a control input u
computed only with the output measurement vector y such
that System (1) is exponentially stable with a decay rate
of at least α > 0. First of all, we recall the definition of
exponential stability extended to time-delay systems:

Definition 1. (Chen and Zheng (2007)). System (1) is said
to be α-stable if there exists α > 0 and γ > 1 such that
for every solution x of (1) with a differentiable initial
condition φ defined on [−h; 0], the following exponential
estimate holds:

∀t > 0, |x(t)| 6 γe−αt ‖φ‖W (2)

where

‖φ‖W = max{||φ||h, ||φ̇||h} and ‖φ‖h = sup
θ∈[−h,0]

‖φ(θ)‖

Remark 1. The norm ‖·‖W is sightly different from the one
of Mondie and Kharitonov (2005) who do not consider a

norm depending on the derivative ẋ. This problem has
also been dealt by Fridman (2014) by introducing the sum
and not the maximum. These definitions are nevertheless
equivalent.

2.2 Preliminary Results

We recall two lemmas useful in the sequel. The first lemma,
introduced by Seuret and Gouaisbaut (2013) proposes an
integral inequality which is used in the proof of the main
theorem.

Lemma 1. (Wirtinger-based inequality). For a given ma-
trix R ∈ Sn+, the following inequality holds for all contin-
uously differentiable function x in [t− h, t]→ Rn:∫ t

t−h
ẋ>(s)Rẋ(s)ds >

1

h
ξ>(t)F>2 R̃F2ξ(t),

where

F2 =

[
In −In 0n

In In −2In

]
, R̃ = diag (R, 3R) ,

ξ(t) =

[
x>(t) x>(t− h)

1

h

∫ 0

−h
x>(s)ds

]>
.

The second lemma, called Finsler’s lemma, is widely used
to cope with non linearities in LMIs.

Lemma 2. (Ebihara et al. (2015))
For any Q ∈ Sn and M ∈ Rp×n, the three following
properties are equivalent:

(1) x>Qx ≺ 0 for all x ∈ Rn such that Mx = 0,
(2) ∃Y ∈ Rn×p, Q+ He

(
M>Y

)
≺ 0,

(3) M⊥
>
QM⊥ ≺ 0 where MM⊥ = 0.

3. EXPONENTIAL STABILITY

Considering a feedback on System (1), i.e. u(t) = Ky(t),
it is possible to transform our system into a more general
one: ẋ(t) = Ax(t) +Adxt(−h) +AD

∫ 0

−h
xt(s)ds, ∀t > 0,

x(t) = φ(t), ∀t ∈ [−h, 0],

(3)
with x(t) ∈ Rn the instantaneous state vector and matrices
A, Ad and AD of appropriate dimensions.

Based on the lemmas recalled above, we propose a first
exponential stability result for the previous system.

Theorem 1. Assume that, for given h > 0 and α > 0, there
exist matrices P ∈ S2n, R,S ∈ Sn+ and Y ∈ Rn×4n and a
positive real β1 such that the following LMIs are satisfied:

P + e−2αh

h diag(0n, S) + 4α2h
e2αh−2hα−1

[
h2R −hR
−hR R

]
−β1diag (In, 0n) � 0,

(4)

Φ(α, h) + He
(
F>4 Y

)
≺ 0, (5)

with

Φ(α, h) = He
(
F>1 P (F0 + αF1)

)
+ S̄ + h2F>3 RF3

−e−2αhF>2 R̃F2,



F0 =

[
0n 0n In 0n

In −In 0n 0n

]
, F1(h) =

[
In 0n 0n 0n

0n 0n 0n hIn

]
,

F2 =

[
In −In 0n 0n

In In 0n −2In

]
,
F3 =

[
0n 0n In 0n

]
,

F4 =
[
A Ad −In hAD

]
,

R̃ = diag (R, 3R) , S̄ = diag
(
S,−e−2αhS, 02n

)
,

then, time-delay system (3) is α-exponentially stable i.e.:

||x(t)|| 6
√
β2β

−1
1 e−αt||φ||W ,

where β2 = (1 + h2)λmax(P ) + hλmax(S) +
h3

2
λmax(R).

Proof : This proof is divided into two parts.

Part 1: Stability of system (3) Consider a slightly modified
Lyapunov-Krasovskii functional originally proposed by
Seuret and Gouaisbaut (2013); Mondie and Kharitonov
(2005):

V (xt, ẋt) = x̄>(t)Px̄(t) +

∫ t

t−h
e−2α(t−s)x>(s)Sx(s)ds

+h

∫ t

t−h

∫ t

θ

e−2α(t−s)ẋ>(s)Rẋ(s)dsdθ,

(6)

with the extended state x̄(t) =

[
x>(t)

∫ t

t−h
x>(s)ds

]>
.

Let us firstly introduce functional Wα given by:

Wα(xt, ẋt) = V̇ (xt, ẋt) + 2αV (xt, ẋt)

We want to find an LMI condition so that inequality:

Wα(xt, ẋt) < 0, (7)

is guaranteed for system (3).

The derivative of functional (6) along the trajectories of
time-delay system (3) leads to:

Wα(xt, ẋt) 6 ˙̄x>(t)Px̄(t) + x̄>(t)P ˙̄x(t) + 2αx̄>(t)Px̄(t)

+x>(t)Sx(t)− e−2αhx>(t− h)Sx(t− h)

+h2ẋ>(t)Rẋ(t)− he−2αh
∫ t

t−h
ẋ>(s)Rẋ(s)ds

(8)

Using the extended state variable

ξ(t) =

[
x>(t) x>(t− h) ẋ>(t)

1

h

∫ t

t−h
x>(s)ds

]>
,

and the matrices defined in this theorem, inequality (8)
can be rewritten as:

Wα(xt, ẋt) 6 ξ>(t)
[
He
(
F>1 P (F0 + αF1

)
+ S̄

+hF>3 RF3

]
ξ(t)− he−2αh

∫ t

t−h
ẋ>(s)Rẋ(s)ds.

Then, using the integral inequality from Lemma 1, we
obtain:

Wα(xt, ẋt) 6 ξ>(t)
[
He
(
F>1 P (F0 + αF1)

)
+ S̄

+h2F>3 RF3 − e−2αhF>2 R̃F2

]
ξ(t),

where ξ satisfies a linear constraint defined by F4ξ = 0.
Therefore, using Lemma 2, ξ>Φ(α, h)ξ 6 0 with F4ξ = 0,

inequality (7) is satisfied if the following LMI is also
satisfied:

∃Y ∈ Rn×4n,Φ(α, h) + He
(
F>4 Y

)
≺ 0, (9)

which concludes the first part of the proof.

Part 2 Exponential stability: The proof of exponential
stability is based on inequality (9). Indeed, as it has been
noticed by Mondie and Kharitonov (2005), the inequality
(9) leads to:

V (xt, ẋt) 6 e
−2αtV (φ, φ̇), (10)

To ensure the exponential stability of system (3), one
should find strictly positive reals β1 and β2 such that:

β1||x(t)||2 6 V (xt, ẋt) 6 β2||xt||2W (11)

A lower bound for equation (6) can be derived using Jensen
inequality and the inequality derived in appendix A. The
Bessel-like inequality developed in appendix A is similar to
Jensen’s inequality but deals with the exponential terms.

V (xt, ẋt) > x̄>(t)Px̄(t)

+h

∫ t

t−h

∫ t

θ

e−2α(t−s)ẋ>(s)Rẋ(s)dsdθ

+
e−2αh

h

(∫ t

t−h
x>(s)ds

)
S

(∫ t

t−h
x(s)ds

)
.

Then, by Jensen’s inequality, we have:

V (xt, ẋt) > x̄>(t)

(
P +

e−2αh

h
diag(0, S)

+ 4α2h
e2αh−2hα−1

[
h2R −hR
−hR R

]
−β1diag (In, 0n)

)
x̄> + β1||x(t)||2.

Assuming LMI (4) holds, then the previous equation
becomes:

V (xt, ẋt) > β1||x(t)||2. (12)

Using equation (10) and (11), one can get:

β1||x(t)||2 6 V (xt, ẋt) 6 e
−2αtV (φ, φ̇).

Calculating V (φ, φ̇), one can get the following upper
bound:

V (φ, φ̇) = φ̄>(0)Pφ̄(0) +

∫ 0

−h
e2αsφ>(s)Sφ(s)ds

+h

∫ 0

−h

∫ 0

θ

e2αsφ̇>(s)Rφ̇(s)dsdθ,

with φ̄(0) =

[
φ>(0)

∫ 0

−h
φ>(s)ds

]>
. We get:

V (φ, φ̇) 6
(
(1 + h2)λmax(P ) + hλmax(S)

)
||φ||2h

+
h3

2
λmax(R)||φ̇||2h

6 β2||φ||2W ,
with

β2 = (1 + h2)λmax(P ) + hλmax(S) +
h3

2
λmax(R).

Using the previous equation and (11), one can get:



β1||x(t)||2 6 V (xt, ẋt) 6 e
−2αtV (φ, φ̇) 6 β2e

−2αt||φ||2W
which is the same than:

||x(t)|| 6
√
β2β

−1
1︸ ︷︷ ︸

γ

e−αt||φ||W ,

and that concludes the proof. �

Remark 2. The lower bound β1 has been explicitly stated
such that an optimization of γ should be possible.

Remark 3. By fixing α = 0, one can recover the case of
asymptotic stability developed by Seuret and Gouaisbaut
(2013).

Remark 4. At the light of Lemma 2 proposition 3, using
slack variables is not mandatory and is useless for analysis
purposes. Nevertheless, we will show that it is suitable for
design purposes.

Corollary 1. Assume that, for given h > 0 and ε1, ε2, ε3, ε4
in R, α > 0, there exist matrices P ∈ S2n, R,S ∈ Sn+ and
Z ∈ Rn×n and a positive real β1 such that the positivity
LMI (4) and the following LMI are satisfied:

Φ(α, h) + He
(
F>4 ZFε

)
≺ 0, (13)

with

Fε =
[
ε1In ε2In ε3In ε4In

]
,

Then system (3) is α-stable and Z is not singular.

Proof : Applying Theorem 1, with Y = ZFε leads to
this result. LMI (13) leads to the result −ε3(Z> +Z) ≺ 0
which means ε3 6= 0 and Z is not singular. This proof is
constraining Y so this is not equivalent to the previous
theorem. The Finsler’s lemma can be seen as assessing
the stability of two systems at the same time. Considering
Y = ZFε, and by applying Finsler’s lemma on equation
(9) with F4 the vector of slack variables, that leads to the
stability of another system:

ε3ẋ(t) = −ε1x(t)− ε2x(t− h)− ε4
1

h

∫ 0

−h
x(t+ s)dx

There are then two possible choices for Fε:

(1) Fε 6=1 is ε3 = ε1 = ε4 = 1 and ε2 = 0
(2) Fε=1 is ε3 = ε1 = ε4 = ε2 = 1

The first choice sees the delayed term x(t − h) as a per-
turbation. Perhaps, deleting the effect of this term would
stabilize the system, that means ε2 = 0. The other choice
considers that the delayed term is helping the stabilization
of the system. The two choices are confronted in numerical
simulations later on. �

4. CONTROL DESIGN

In this part, the problem of designing a controller for
time-delay system (1) is discussed, i.e. the controller gain
Kbecomes a variable of the LMI. Theorem 1 would lead to
a non-linear matrix inequality while Corollary 1 gets rid
of this at the price of a higher constraint on the structure
of the slack variables.

Considering the average of the whole state X as the output
(C = In), the system can be written in another more useful
form with :

 ẋ(t) = Ax(t) +
1

h
BK

∫ t

t−h
x(s)ds, ∀t > 0,

x(t) = φ(t), ∀t ∈ [−h; 0],

(14)
where φ is the initial condition and x is the state.

The system is in the same form as the one defined in
(3) with AD = 1

hBK and Ad = 0. One can notice
that AD depends on K which is a variable in this case.
The optimization based on the LMI framework cannot be
applied directly because it is not a linear problem on the
variable K. The feedback gain K for a given h can be
found using this theorem:

Theorem 2. Assume that, for given h > 0, ε1, ε2, ε3, ε4 ∈ R
and α > 0, there exist matrices P ∈ S2n+ , R,S ∈ Sn+,
X ∈ Rn×n invertible and a positive real β1 such that the
positivity LMI (4) and the following LMI are satisfied:

Φ(α, h) + He

((
NX̃ +

[
0n 0n 0n BK̄

])>
Fε

)
≺ 0,

(15)
with the same notations than in Corollary 1 but:

N =
[
A 0n −In 0n

]
,

X̃ = diag(X,X,X,X),

then time-delay system (14) is α-stable with the feedback
gain K = K̄X−1

Proof : Since Z is non-singular in the proof of Corollary 1,

let us introduce X = Z−1 and F4 = N +
[

0n 0n 0n BK
]

so that F4ξ = 0 is still valid.

Multiplying on the left by X̃> and on the right by X̃,
equation (13) is equivalent to the following one:(

F0X̃
)>

PF1(h)X̃ +
(
F1(h)X̃

)>
PF0X̃

+2
(
αF1X̃

)>
PF1X̃ + X̃>S̄X̃

−e−2αh
(
F2X̃

)>
R̃F2X̃ + h2

(
F3X̃

)>
RF3X̃

+He
(
X̃>F>4 X

−1FεX̃
)
≺ 0.

(16)

Noticing that F0X̃ = X̄F0, F1X̃ = X̄F1, F3X̃ = XF3 and
FεX̃ = XFε with X̄ = diag(X,X), equation (16) becomes:

F>0 P2F1(h) + F>1 (h)P2F0 + 2αF>1 P2F1

−e−2αhF2R̃3F2 + h2F>3 R3F3

+S̄2 + He

((
NX̃ +

[
0n 0n 0n BK̄

])>
Fε

)
≺ 0,

with K̄ = KX, P2 = X̄>PX̄ � 0, S2 = X>SX and
R3 = X>RX. As X is invertible, the positiveness of P is
equivalent to the positiveness of P2 and that concludes the
proof. �

5. OBSERVER-BASED CONTROL

Based on the preliminary section, we aim at developing
an observer-based controller for time-delay system (1).
Following the same procedure than the one described in
Glad and Ljung (2000) for a linear time-invariant system,



the estimate of x will be called x̂ and let ε be x − x̂ such
that:

˙̂x = Ax̂+Bu+ L

(
y − 1

h
C

∫ t

t−h
x̂(s)ds

)
, (17a)

ε̇ = Aε− 1

h
LC

∫ t

t−h
ε(s)ds, (17b)

with L a n × p matrix and the others matrices are the
same as before. The stability of system (17b) leads to
the convergence of x̂ to x. This observer has the same
structure than a Kalman filter for LTI systems but adapted
to System (1).

5.1 Convergence of the observer

The following theorem holds for the error system (17):

Theorem 3. Assume that, for given h > 0, α > 0,
ε1, ε2, ε3, ε4 ∈ R, there exist a matrix P ∈ S2n and
R,S ∈ S2n+ and a n×n invertible matrix Z, a n×p matrix

denoted L̄ and , β1 > 0 such that LMI (4) and the following
LMI are satisfied:

Φ(α, h) + He

(
N>ZFε +

[
0n 0n 0n −L̄C

]>
Fε

)
≺ 0,

(18)
with the same notations than for Corollary 1 and Theorem
2 but:

N =
[
A 0n −In 0n

]
,

then time-delay system error ε defined in (17b) is α-stable
with the gain L = Z−T L̄. That means x̂ in (17a) converges
exponentially to the instantaneous x.

Proof : Starting from equation (13) in Corollary 1 with
F4 = N + [0n,3n − LC] so that F4ξ = 0 then:

Φ(α, h) + He
(

(N + [0n,3n − LC])
>
ZFε

)
≺ 0

which leads to LMI (18) with L̄> = L>Z so L = Z−T L̄
which concludes the proof. �

5.2 Feedback from reconstructed states

Using equations (17) and x̂ = x − ε, the original system
can be transformed into:


ẋ(t) = (A−BK)x(t) +BKε(t),

ε̇(t) = Aε(t)− 1

h
LC

∫ t

t−h
ε(s)ds,

u(t) = −Kx̂(t).

(19)

Denoting X>(t) =
[
x>(t) ε>(t)

]>
leads to:

Ẋ(t) =

[
A−BK BK

0n A

]
X(t)+

0n 0n

0n −
1

h
LC

∫ t

t−h
X(s)ds.

(20)

The following proposition gives a sufficient condition which
ensures the stability of the closed loop (19).

Proposition 1. (Separation Principle) The stability of
the system using feedback from reconstructed states is

ensured if the observer is stable and if there exists K such
that A−BK has strictly negative eigenvalues.

Proof : The characteristic matrix of equation (20) is:

∆(s) =

sIn −A+BK −BK

0n sIn −A+
1− e−hs

hs
LC


And its characteristic equation is:

det (∆(s)) = det(sIn−A+BK)det
(
sIn −A+ 1−e−hs

hs LC
)

Using L as defined by Theorem 3, and using Theorem 1.5

proposed by Gu et al. (2003), det
(
sIn −A+ 1−e−hs

hs LC
)

=

0 has strictly negative roots and the system (20) is stable
if A−BK has strictly negative eigenvalues. �

6. EXAMPLES AND COMPARISONS

6.1 Exponential convergence theorems

Example 1: Theorem 1 and Corollary 1 can ensure
stability of system (3) for a given delay. A comparison
of efficiency between the latter two and the theoretical
bounds by Chen and Zheng (2007) can be done on system
(3) with:

A =

[
0.2 0

0.2 0.1

]
, AD =

[
−1 0

−1 −1

]
and Ad = 02 . (21)

Table 1 shows a comparison of the upper and lower bound
for h leading to a stable system using different theorems
obtained with YALMIP by Löfberg (2004).

EV Th1 Th1 Cor1ε=1 Cor1ε 6=1

α 0 0 0.5 0 0

hmin 0.2 0.2001 0.6370 0.2002 0.2001

hmax 2.04 1.9419 1.0059 1.8391 1.9108
Table 1. Upper and lower bound for the delay

for the system (14) and a given decay-rate

EV stands for eigenvalue analysis and hmin is the lower
bound of the interval for asymptotic stability while hmax
is the upper one. Results of Theorem 1 are reported in Th1
for two different choices of α. For α = 0, this is equivalent
to Theorem 6 derived by Seuret and Gouaisbaut (2013).
Cor1ε=1 stands for Corollary 1 in the case of all the ε
equals to 1 while Cor1ε 6=1 is with ε1 = ε3 = ε4 = 1 and
ε2 = 0.

On this numerical example, it is possible to see the
efficiency of the Wirtinger-based inequality by comparing
the first and the second columns. To set an α different from
0 is a very restrictive condition for the convergence and the
range of feasible h for α = 0.5 is 4 times shorter than the
one for asymptotic convergence. The use of a structure
for Y leads to poorer results as expected. The choice of
ε1 = ε3 = ε4 = 1 and ε2 = 0 is used in the examples from
now on because in the examples presented in this article,
it seems to give better results. As ε2 is related to Ad it is
logical to set it to 0.

There are not so many theorems which directly deal
with distributed delay systems and Figure 1 compares
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Fig. 1. Evolution of α depending on the delay with
Theorem 1 and Corolary 1 for system (21).

only the efficiency of Theorem 1 with a pseudo-spectral
analysis conducted by Breda et al. (2015) and Corollary
1 with different choices of ε as explained in the previous
paragraph. The gap between the pseudo-spectral analysis
and Theorem 1 is of a factor of nearly 2.5 for the maximum
α to a given h. Nevertheless, for small h and small
α, the approximate is good and fit the pseudo-spectral
curve. Possible explanations would be in the difference
introduced in (8) and in the choice of the Lyapunov-
Krasvoski functional (6). The extension to Corollary 1
introduces more conservatism and the choice of ε has
to be done carefully because it can affects the stability
assessment significantly.

Example 2: To be compared with other results of the
literature, another system with a discrete delay only is
considered:

A =

[
−3 −2

1 0

]
, Ad =

[
−0.5 0.1

0.3 0

]
and AD = 02 .

(22)
Results are shown in Figure 2 with the use of Theorem 1,
Corollary 1, the article by Mondie and Kharitonov (2005)
(denoted mondie in the legend), another by Xu et al.
(2006) (denoted Lam) and stability assessment using a
pseudo-spectral approach (Breda et al. (2015)).

First of all, Theorem 1 leads to good results and fit the
shape of the maximum α. The stability theorem provided
by Xu et al. (2006) gives similar results but a bit closer
to the real boundary. These two theorems give a precise
estimation at small h which is not the case of Mondie
and Kharitonov (2005). Another important conclusion is
the conservatism of Corollary 1 compared to the others
theorems for bigger h. The curves decrease significantly
faster than the others. Nevertheless, the main interest of
this corollary compared to Theorem 1 is the possibility of
designing controller or observer gains.

6.2 Controller design

Let system (14) defined by the matrices:

A =

[
0.2 0

0.2 0.1

]
and B =

[
−1 0

−1 −1

]
.

This system is the same than time-delay system (21), and
it is not stable without feedback for h = 0.
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Fig. 2. Evolution of α depending on the delay with different
theorems for system (22).

Th2ε 6=1 Th2ε 6=1 Th2ε 6=1

α 0 0.5 1

hmin 0 0 0

hmax 2.5189 0.8688 0.5479
Table 2. Upper and lower bound for the delay
for the stabilized system (14) and a given

decay-rate
In Table 2, the lower bound (hmin) and the upper bound
(hmax) of the delay for which there exists a matrix K
such that the closed-loop system is stable are summarized
for different values of α. The range of feasible delay is
shrinking as the decay-rate increases. The lower bound of
h for the problem of stabilizing is 0 in the examples studied
which leads to the following assumption: if there exists a
controller gain K for a given h > 0 and α > 0, then System
(14) is controllable for h = 0.

For the observer-based control, the system to be studied
has the same A matrix than before and C = I2. The
same hmax and hmin are obtained using Theorem 3 and
Theorem 2 for this example. Same conclusions can be
drawn.

7. CONCLUSION

In this paper, we have provided a set of LMIs to assess
the exponential convergence of time-delay systems using
the Wirtinger-based inequality. We have also shown a
comparable performance with existing theorems. However,
the feature of the main result of this paper is the use
for stabilization and observation of a special class of
time-delay systems. An extension to non-linear systems
is not straightforward but should be considered. Further
work will improve the efficiency of the control and the
bound for the exponential estimate by using Bessel-based
inequalities. Another possible research interest would be
in proving the assumption made in the last part and
some robustness study on the unknown parameter h for
example.

Appendix A. BESSEL-LIKE INEQUALITY

The aim for this part is to state a Bessel-like inequality
with the scalar product with R � 0:

〈xt, yt〉 =

∫ 0

−h

∫ 0

θ

e2αsx>t (s)Ryt(s)dsdθ.



A vector p(xt) can be assimilated as the projection of xt
on the function e−2α· with the following notations:

p(xt) : [−h, 0] → Rn

τ 7→
∫ 0

−h

∫ 0

θ

xt(s)dsdθ
e−2ατ

Ξ

(A.1)

and Ξ =

∫ 0

−h

∫ 0

θ

e−2αsdsdθ =
e2αh − 2hα− 1

4α2
.

The norm of the error is positive so that we have:

〈xt − p(xt), xt − p(xt)〉 = 〈xt, xt〉 − 2〈xt, p(xt)〉
+〈p(xt), p(xt)〉

> 0.

(A.2)

Expending two terms leads to:

〈xt, p(xt)〉 =
1

Ξ

∫ 0

−h

∫ 0

θ

x>t (s)R

∫ 0

−h

∫ 0

θ1

xt(s1)ds1dθ1dsdθ

=
1

Ξ

∫ 0

−h

∫ 0

θ

x>t (s)dsdθR

∫ 0

−h

∫ 0

θ

xt(s)dsdθ,

(A.3)
and

〈p(xt), p(xt)〉 =
1

Ξ2

∫ 0

−h

∫ 0

θ

[∫ 0

−h

∫ 0

θ1

x>t (s1)ds1dθ1

]
R×[∫ 0

−h

∫ 0

θ1

xt(s1)ds1dθ1

]
e−2αsdsdθ

=
1

Ξ

∫ 0

−h

∫ 0

θ

x>t (s)dsdθR

∫ 0

−h

∫ 0

θ

xt(s)dsdθ.

(A.4)

Using equations (A.2), (A.3) and (A.4) lead to:∫ 0

−h

∫ 0

θ

e−2αs x>t (s)Rxt(s)dsdθ >

1

Ξ

∫ 0

−h

∫ 0

θ

x>t (s)dsdθR

∫ 0

−h

∫ 0

θ

xt(s)dsdθ.

(A.5)
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