
An abstraction model and a comparative analysis of
Intel and ARM hardware isolation mechanisms

Guillaume Averlant, Benoı̂t Morgan, Éric Alata, Vincent Nicomette and Mohamed Kaâniche
LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France

Email: firstname.lastname@laas.fr

Abstract—Computer systems software and hardware architec-
tures have become increasingly complex today. Meanwhile, cyber-
attacks are becoming more and more sophisticated and target
any software or hardware components of these systems. Several
isolation mechanisms, at the software and the hardware layers,
are now available to provide the best protection against these
widespread attacks. This paper is aimed at reviewing especially
hardware segregation mechanisms available in today’s CPU in
order to provide better insights about the intended scope of the
protection and the different threats that could be addressed
by such mechanisms. An abstraction model presenting the
main components of current architectures and their interactions
through different communication channels is proposed to support
such analysis. The study focuses on Intel and ARM architectures,
and outlines various hardware isolation resources that provide
a security layer to the software running on these architectures.
A comparative analysis of these architectures is also presented
together with a discussion of open issues and future challenges.

INTRODUCTION

Nowadays, the security of recent computer systems is
challenged by their architectural complexity. This complexity,
resulting from the increasing number of features supported,
makes it unlikely to design and implement a system without
security vulnerabilities. Attacks against these systems are more
and more diversified. They target both the software layers at
all privilege levels as well as the hardware layers.

On this basis, each component can potentially be corrupted
by an attacker, and can affect the overall system integrity. To
limit the impact and propagation of such attacks, it is necessary
to isolate the different components from each other. More-
over, considering that more and more machines are deployed
in Cloud environments, hardware resources are increasingly
shared among different users who may belong to different
companies. In this context, it is essential to ensure data
confidentiality by properly isolating their environment. Finally,
the service provided by the system must be available. For this
reason, the operating system should ensure the fair distribution
of hardware resources between several tasks in order to prevent
abuse of resources or potential denial of service. Isolation
mechanisms also contribute to this fair distribution.

Currently, many manufacturers have already deployed iso-
lation mechanisms in their systems. Due to the lack of
standardization effort, they have therefore set up different
implementations that meet the same segregation requirements.
An open question that can be raised is related to the level
of protection offered by these implementations to provide an
adequate isolation and ensure integrity, confidentiality and

availability requirements of the entire system. To answer
this question, it is necessary to precisely understand these
mechanisms, to analyze their scope and the associated threats
that they are able to address, and also to determine to what
extent they are different from each other.

A few analyses of Intel and ARM architectures and of
the associated isolation mechanisms have been published in
the literature (e.g., [19], [5], [17]). The research reported
in [19] focuses on software architecture isolation techniques
and briefly describes related hardware supported mechanisms.
A detailed presentation of hardware security mechanisms is
provided in [5] for Intel architectures and, in a similar way, in
[17] for ARM architectures. However, to our knowledge, none
of the existing studies presents a comparative analysis of se-
curity related hardware isolation techniques provided in these
platforms, considering in particular technological advances
proposed recently. This corresponds to the objective and to
the main contribution of this paper. Additionally, this paper is
solely dedicated to hardware isolation mechanisms that involve
segregation by partitioning, whereas other technologies, like
Intel SGX [5], provide isolation by encryption.

More precisely, we present a generic model of a com-
puter hardware architecture, able to represent the different
components of this architecture. This model enables us to
highlight the existing communication channels between the
different components, to determine the various threats that may
target the modeled system, and also, to perform a comparative
analysis of the isolation mechanisms provided by the Intel and
ARM architectures. Finally, we identify the existing hardware
isolation mechanisms that can be used in order to mitigate
these threats. The proposed model is instantiated both for Intel
64 and ARM ARMv8-A platforms, which allows us to present
and compare the hardware isolation mechanisms of these two
platforms. The paper is organized as follows. Section I is
dedicated to the presentation of the model while Section II
reviews the associated threats. Then, Section III presents the
isolation mechanisms able to mitigate the various attacks and
finally, Section IV concludes and presents future works.

I. MODELING

In order to identify key locations suitable for setting up
security-related isolation mechanisms, this section presents
a generic model of current computer architectures that is
designed to highlight the role of each hardware component
and their interconnections. This model is aimed at providing



Fig. 1. Communications between the system units

a simple abstraction of these architectures to discuss potential
threats and existing isolation mechanisms. Accordingly, an in-
stance of this model is generated for each studied architecture
(Intel, ARM), to check its ability to consistently represent the
elements of these architectures and their communications.

A. The model

The different components of current hardware architectures
can be classified into four distinct categories (Figure 1)).

Each machine has one or multiple primary execution units
dedicated to general purpose and arithmetic operations, to
communicate with the other components and to manage the
hardware. These units have a privileged and central role in the
system architecture.

Secondary execution units are dedicated to a specific type
of service in order to provide this service more efficiently
than primary execution units. Sometimes they also perform
operations which cannot be supplied by primary execution
units (e.g., data storage, input/output, user interface...).

A third important element, the memory, shared between
primary and secondary units under certain conditions, offers a
wide and rather fast storage area, accessible in read and write
access, to host the code and data used by the various units.

Finally, the last type of component, the router, is a special
secondary unit used to interconnect several elements of the
system by implementing the needed communication protocols.
For the sake of simplicity, segregation issues associated with
the router are addressed the same way as other secondary units.

Let us note that there are two fundamental differences
between the two types of execution units. Each primary unit
always has a public interrupt controller that can be used by
other primary and secondary units. Moreover, only a primary
unit is able to configure the router interconnection channels.

B. Communications within the model

The previously identified components are interconnected
by buses. Communications can be described as accesses to
resources. They are classified into two subsets:

• Reads/writes of data in the memory, in secondary units
external registers or in primary units internal registers.

• Signals transmission, for interrupting a primary unit to
notify it of an event.

We can then list the interactions between the components
of our model as illustrated in Figure 11:
∗-1) A primary unit is able to read and write to its own

internal registers in order to store data or to configure itself.
∗-2) Since the primary units are running independently of
the system, they must be able to be alerted upon the
occurrence of an important event. In particular, a primary
unit can interrupt the other primary units through signals.
They are also able to send signals to themselves (e.g.,
timers...).
∗-3) A primary unit can read and write multiple data
from/to memory. For example, these data can be used by
programs running on this primary unit. The code of these
programs is also read from memory.
∗-4) A primary unit can also communicate with a sec-
ondary unit in order to send the parameters of an opera-
tion to be performed or to retrieve the result of an opera-
tion. This communication is done through reading/writing
accessible registers of the secondary unit.
∗-5) In some cases, a secondary unit may be allowed to

communicate directly with other secondary units (peer-
to-peer communication). Thus, the resulting read/write
accesses are not checked by any primary unit.
∗-6) Similarly to the communication channel n◦2, a sec-
ondary unit must be able to notify any primary unit
upon occurrence of an event related to its specific function.
For example, a secondary unit can send a signal at the
completion of an operation.
∗-7) Most secondary units have their own internal memory.
However the latter has often a low capacity and is only
accessible from the unit itself. Therefore, in order to benefit
of more memory or to share data with other units (primary
or secondary), a secondary unit should be able to read and
write to system memory.

The communication channels between components being
identified, the next step is to generate instances of the stud-
ied architectures (Intel and ARM) in order to understand
their specific characteristics. For the sake of consistency,
the enumerated lists describing the communications for each
implementation refer to the numbering of Figure 1.

C. Intel

In this section, we apply our model to the Intel 64 archi-
tecture and more precisely to the Intel core 4th generation
Haswell machines, associated to the Intel C220 chipset. We
have explicitly chosen this platform because we needed to
actually test some features which are not well documented.
However, as all Intel 64 platforms are very similar, our work
is applicable to the whole Intel 64 family.

For Haswell processors, a ”processor” is actually composed
of four primary execution units, some secondary units like
the graphics processor, but also the first router Router 1
named System Agent. This router, formerly named north bridge

1For the sake of clarity, all communications of each PU and each SU are
not represented. They are spread over both instances of PU and SU.



Fig. 2. Model instantiation on Intel Haswell CPU and Intel C220 PCH

and then Memory Controller Hub (MCH), was physically
integrated into the processor since Intel Nehalem architecture.
It enables the communication between primary units through
the ring bus, and also with the memory, the integrated video
processor, the high performance PCI Express devices, and any
other secondary units. These communications are supported
by the Direct Media Interface (DMI) bus, connecting the
processor to the second router, the Platform Controller Hub
(PCH) (Figure 2).

The Intel C220 PCH router enables the communication
with the Router 1 by converting DMI messages to and from
other buses, registers, or protocols such as PCI Express. It
also includes other secondary units such as a gigabit Ethernet
controller, a Serial ATA controller, an USB controller, and
a specific co-processor, the Management Engine (ME) with
its firmware. The Management Engine enables the remote
management of machines, without interacting with the oper-
ating system hosted by the processor, and potentially within
degraded power management modes.

Finally, it is possible to extend the number of secondary
units via the PCI Express protocol. The C220 chipset offers
eight PCI Express 2 root ports enabling the connection of
additional secondary units, usually through expansion slots.

Intel PCH chipsets have also a specific characteristic. They
are shipped with an analog display controller (VGA) that
performs the signal modulation for the display from the video
memory (framebuffer). However, this buffer is provided by the
graphics processor itself, through a specific bus, the Flexible
Display Interface (FDI) [8, Vol. 2 / 1.2.1, 5.28.3, Vol. 1 /
2.7]. To simplify the model and because of lack of information
about this interface, the FDI bus is not included in our analysis.

Due to the backward compatibility requirement enforced
by Intel, the studied architecture is highly configurable, sup-
porting deprecated operating modes which are no longer used
at runtime. Moreover, some parts of the architecture that are
not meant to be configured by software are poorly, or not,
documented. This requires to deduce the characteristics of
some components and communication buses. This concerns in
particular the interrupts management between execution units,
especially in the PCH. As shown in Figure 3, a secondary
unit like the SATA controller has multiple ways to interrupt
the execution of a core [12, 3.6.2]:

• In the standard operating mode, it is possible to directly

transmit a PCI Express interrupt named Message Signaled
Interrupt (MSI). These messages are first sent to the local
interrupt controller, the local Advanced Programmable
Interrupt Controller (APIC) of one or more cores through
memory writes. They are then transmitted to the target
cores via the DMI bus.

• It can also perform an interrupt request to the historical
interrupt controller, the Programmable Interrupt Con-
troller 8259 (8259 PIC), or use the newer I/O Advanced
Programmable Interrupt Controller (I/O APIC) which
can handle more interrupts. Once the interrupt request
is accepted by the 8259 PIC or the I/O APIC, a bridge
across these components emits a PCI Express write on
the DMI bus targeting the core to be stopped [8, 5.10.1].

The management of an interrupt generated from a secondary
unit depends on the configuration of the PCH and of the unit
itself. Note that the I/O APIC is also able to operate in cascade
with the 8259 PIC. Once the interrupt is sent through the DMI
bus, it is first processed by the System Agent, and then sent on
the ring bus to interrupt the target core. Inter-core interrupts
are similarly handled by the system agent.

To sum up, the interrupts management outside the processor
is fairly complex but each case leads to the same type of
PCI Express writing messages. For this reason, we will only
consider MSI interrupts and, if necessary, interrupts generated
from the I/O APIC .

With this in mind, we detail in the following all types of
communication related to this specific architecture:

Intel-1) In the Intel 64 architecture, each primary unit has
several general purpose registers for data manipulation and
special control registers to configure its behavior.

Intel-2) The communication between the multiple execution
cores of the studied architecture is made possible by
interrupts. These interrupts are handled by the local APICs
of each core, and are sent or received through the ring bus.
They can be initiated by an execution core by writing in
the memory or in an internal register.

Intel-3) Data in main memory are accessed from a CPU
core by initiating DDR3 read and write commands. These

Fig. 3. Internal mechanisms for interrupts management



commands are created by the Integrated Memory Con-
troller (IMC) included in each primary unit, and are then
transmitted by the system agent to the main memory.

Intel-4) Primary units memory accesses to secondary units
are processed in various ways depending on the destina-
tion: i) Accesses to the integrated graphics processor are
directly transmitted by the ring bus; ii) Accesses to local
PCI Express secondary units are converted to PCI Express
messages by the system agent; iii) accesses to secondary
units interconnected by the PCH are converted to DMI
messages, and then to PCI Express messages if required.

Intel-5) Direct communications between Intel secondary
units integrated into the PCH are poorly documented.
Nevertheless, it is possible to study the case of PCI Express
devices. Due to the star topology of networks supported
by the processor and the PCH, PCI Express messages
must pass through one of the routers. Generally, direct
peer-to-peer memory accesses are not allowed. If they are
necessary, they must be performed by a primary unit.

Intel-6) Secondary units must be able to notify a primary
unit upon the completion of a requested operation, or at
the occurrence of an event. To do this, they can generate an
interrupt request. Depending on the source secondary unit,
this request is received from the DMI bus or converted
from the local PCI Express end point of the CPU. The
requests are finally transmitted to the local APIC of one
primary unit via the ring bus.

Intel-7) There are two types of memory accesses from
secondary units towards the main memory: those coming
from local secondary units linked directly to the system
agent, and those coming from the PCH through the DMI
bus. In both cases, they are converted into DDR3 memory
accesses by the local IMC included in the system agent.

D. ARM

ARM is primarily a seller of Intellectual Property (IP),
which is then integrated by manufacturers in their systems.
This technology is included in various devices, e.g., smart-
phones, tablets, and some low-power servers. We have instan-
tiated our model on a general implementation of an ARM
architecture in order to cover different use cases of this
architecture (Figure 4). In particular, we focus on an ARMv8-
A2 compatible architecture.

Unlike the Intel implementation, all primary units, routers
and secondary units are on a single System On Chip (SOC).
Communication between SOC components is performed via
Advanced Microcontroller Bus Architecture (AMBA) buses.

The CPU cores (primary units) are grouped into clusters,
with a maximum of four cores per cluster. The latter includes
a L2 cache shared between these cores. Moreover, a single in-
terrupt controller, named Generic Interrupt Controller (GIC),
is shared between all primary units. Each primary unit has a
direct access to the GIC’s internal registers.

2The profile ”A” is optimized for application use, whereas profiles ”M” and
”R” are intended for micro-controller and real-time requirements respectively.

Fig. 4. Model instantiation on a generic ARMv8-A architecture

The primary units are connected to the rest of the system by
a first router. This router, named Cache Coherent Interconnect
(CCI), physically maintains the cache consistency between
each interconnected element and the main memory. However,
the CCI router has a limited number of interconnections, and
it is not able to interface all types of AMBA buses. So, the
other secondary units must be connected through a new router,
named Network InterConnect (NIC), that supports all buses of
the AMBA standard. The number of interconnections can be
extended depending on the system requirements.

Regarding the secondary units, we typically have a GPU
directly connected to the CCI router. Furthermore, when a PCI
Express root port is provided on the SOC, it is also connected
to this same router. The other secondary units mainly consist of
USB, UART, I2C, SATA and SD controllers used by external
devices to interact with the SOC.

Let us now analyze the communications between the various
components of the ARM architecture:

ARM-1) CPU cores have several types of internal registers.
A set of general purpose registers is dedicated to store data
being processed. But there are also system registers that
aim at configuring the behavior of these cores.

ARM-2) As the primary units are connected to the same
interrupt controller, an execution core can generate a
Software Generated Interrupt (SGI) to one or more cores
within or outside the same cluster. An SGI can thus be
triggered by writing into a specific GIC register.

ARM-3) The read/write requests issued by a CPU core are
relayed by the cache coherency router to the Dynamic
Memory Controller (DMC). If a memory access to the
same address was previously carried out by another pri-
mary unit, the CCI has a specific behavior to optimize
memory fetch performances. For a read access, the pre-
vious cached data retrieved from the last access to this
address is returned. For memory writes, the related cache
lines are invalidated on each unit connected with the CCI.

ARM-4) On ARM architectures all secondary units accessi-
ble registers, are mapped into memory. Read/write requests
are thus routed to the target secondary unit by the routers
through the dedicated AMBA communication buses.

ARM-5) In the same way that secondary units have the
ability to access the main memory, they can reach any



register exposed by other secondary units. Peer-to-peer
communication is thus allowed.

ARM-6) There are two ways for secondary units to send
an interrupt signal to one or more primary units: i) if
an interrupt line is directly connected to the interrupt
controller, the targeted core is determined by the GIC
configuration; ii) if the secondary unit is DMA capable,
it can use the GIC memory-mapped registers to generate
the interrupt, and the targeted core is determined by the
secondary unit or the GIC depending on the interrupt type.

ARM-7) Secondary units have two ways to perform ac-
cesses to the main memory. If they are DMA capable, they
can perform read/write requests by themselves, just like
primary units. Otherwise they have to interrupt a primary
unit, so that this unit could perform the memory access
for them, or configure a DMA controller to carry out this
access. The cache consistency is maintained by the CCI
upon DMA accesses.

Both Intel and ARM architectures, as abstracted with our
model, are similar in many aspects, with some small differ-
ences due to their different aim, philosophy and evolution.
First the Intel architecture is split into two parts (the CPU and
the PCH), whereas on ARM the whole system is implemented
on the same SoC. The communication buses are also fairly
different. ARM uses only AMBA buses, primarily designed
for low consumption purpose but also extended to meet high
performance requirements, while Intel favors PCIe and propri-
etary buses. Lastly, as Intel enforces backward compatibility,
its interrupt scheme is more complex compared to ARM.

Through these two implementations, we have shown that
our model is relevant to properly represent the target systems
of our study. In the next section, we provide a detailed analysis
of the communications between each component of our model.
This analysis is a necessary step to identify possible threats
targeting the studied systems.

II. ACCESS CONTROL & THREATS

To identify the security-related threats based on the analy-
sis of the communication channels described in our generic
architecture model, we need to represent in the model the
access control mechanisms aiming at authorizing or denying
the corresponding communications. We define the notion of
context that allows us to specify the necessary and sufficient
rules for an execution unit to access a given resource (Figure
5). The implementation of access controls related to these
contexts is performed in two locations:

• In primary units for accesses carried out by software
running on primary units.

• In routers for accesses carried out by primary and sec-
ondary units.

A context is associated with every unit of the system.
It consists of the combination: i) the set of all accessible
resources of the unit; and ii) its current privilege level. This
context may change over time. Moreover, a privilege level is
assigned to every resource. Therefore, each resource is only
accessible by units having a higher privilege level.

Fig. 5. Context restricting resource access of several units

These rules can be summarized as follows: Let C = (pu,R)
be the current context of a unit U , with pu ∈ N its current
privilege and R the set of its accessible resources. Let r be a
resource with pr ∈ N its privilege. We have:

U
access−−−−→

allowed
r ⇔ r ∈ R and pu ≥ pr (1)

A. Attack assumptions

We focus on the atomic accesses of system units to re-
sources (read/write accesses and interrupts). Indeed, hardware
isolation mechanisms have been designed to provide the basic
building blocks to system designers to create atomic access
control mechanisms. Each of these mechanisms taken alone is
probably not sufficient to deal with complex attack scenarios,
which involve the collaboration of several entities and the
execution of several atomic operations. Addressing such at-
tack scenarios requires dealing with an additional complexity,
partly due to the ”semantic gap”. However, these scenarios
necessarily consist of several elementary accesses. Therefore,
appropriate countermeasures to mitigate such attacks will nec-
essarily rely on one or several isolation mechanisms outlined
later in this paper.

We initially assume that the studied platforms are not
malicious, i.e. the primary units, buses and the main memory
are not malevolent. However, we consider that an attacker can
gain control of three different system components:

• A piece of software running on a CPU core at any
privilege level.

• A piece of software part of a virtual machine.
• A secondary unit.

B. Threats

Malicious hardware and software try to circumvent the
resource access controls. These violations correspond to the
non-existing arcs on the resource access graph (Figure 5) and
can be classified into two types:

1) Access to resources that should not be accessible (r /∈ R)
2) The privilege level required is not respected (pu � pr)
For every communication in the system (summarized in

Table I), there are two threats matching these two types of
access violations. These threats are numbered in the form
C.V , C identifies the communication, V the violation type.



TABLE I - TABLE SUMMARIZING THE COMMUNICATIONS

N◦ Unit Resource
1 P.U. reading or writing an internal P.U. register
2 P.U. transmitting a signal to a P.U.
3 P.U. reading or writing a memory area
4 P.U. reading or writing a S.U. register
5 S.U. reading or writing a S.U. register
6 S.U. transmitting a signal to a P.U.
7 S.U. reading or writing a memory area

For example, 3.2 corresponds to an unauthorized access to a
memory access by a primary unit which does not possess the
required privilege level. A user process accessing a memory
area dedicated to the kernel is an example of such a threat.

Similarly, the threat 7.1 identifies a secondary unit which
is able to access a memory area that is not supposed to be
accessible by this unit. Writing data from a secondary unit
to the memory area containing the kernel code is an attack
related to this kind of threat.

Finally, the threat 3.1 refers to a prohibited memory access
by a primary unit to a memory area that does not belong to
its context resource set. An example, is an attack by a virtual
machine targeting a memory area owned by another virtual
machine running on the same system.

In order to cope with these threats, many manufacturers
have introduced hardware isolation mechanisms within their
systems. This is the case for Intel and ARM whose solutions
are presented and compared in the following section.

III. EXISTING ISOLATION MECHANISMS

The isolation technologies existing in both studied archi-
tectures can be described as access control mecanisms that
cope the threats identified in the preceding section. In the
following, we highlight some isolation mechanisms addressing
the identified threats. The numbers in bold and in brackets
(C.V ) refer to the threats defined in Section II which are
addressed by the described techniques. Then a comparison
analysis is performed at the end of this section.

A. Intel

The Intel Core Haswell architecture associated with the Intel
C220 PCH implements a significant number of access controls
to ensure the system security. We focus on the essential
ones, and especially on those visible from the perspective of
software developers.

1) The primary units: The primary units, or cores, have
various operating modes which widely make use of the concept
of contexts by restricting the available memory areas and
registers. The Haswell processors cores implement the Intel 64
architecture which offers the 64-bit execution mode currently
used at runtime. However, for backward compatibility reasons,
they support a multitude of older and less efficient modes in
which the cores start before being reconfigured into 64-bit
mode. They are presented in the following according to their
historical chronological order, which also corresponds to their
activation order at startup.

The primary units start in the historical mode called real
mode. It provides the runtime environment used by the first
software developed for the IBM PC, which contained an Intel
8088 CPU. This mode is today no longer used and does not
have any access control mechanism. That is why the core is
quickly reconfigured into the protected mode.

The protected mode, brought by Intel 80286 and extended
by the 80386 [7, Vol. 1 / 3.1.1], is much more suited to
isolation purposes. It provides the segmentation and pagina-
tion mechanisms that enable virtualization of the CPU core
address space, with two translation phases performed by the
Memory Management Unit (MMU). Software handles logical
addresses, translated first into linear addresses by segmentation
and then into physical addresses with the tree structures of
pagination (1.1, 2.1, 3.1, 4.1). Segmentation mostly provides
the management of privilege levels called rings which affect,
among others, instructions and registers accessible by software
(1.2, 2.2). The address translation process also allows to
associate a required privilege level to a memory segment or
a page (1.2, 2.2, 3.2, 4.2). With segmentation and pagination,
it is thus possible to run more or less privileged software
on the primary unit. Each of them embodies the notion of
contexts that we have defined earlier. A compatibility mode,
called virtual-8086 mode, that allows to run 16-bit code in a
protected environment, is also available.

The IA-32e mode is the latest mode added by Intel. It
consists of two modes of operation [7, Vol. 1 / 3.1.1], the
32 or 16-bit compatibility mode and the 64-bit mode. The
64-bit mode removes the address translation provided by
segmentation, considered obsolete, in favor of the pagination
which is much more accurate. However, this new mode doesn’t
provide new isolation mechanisms.

With the massive introduction of virtualization, Intel pro-
posed an extension of Intel 64 which enables to enhance the
performance of CPU cores virtualization. This new extension,
named Intel VT-x [7, Vol. 3 / 23.1-3], brings a new execution
mode and a dedicated instruction set, to serve this purpose.
Indeed, a CPU core can enter in VMX operation mode in
which a guest software is executed under the supervision of a
privileged software, the hypervisor (or Virtual Machine Mon-
itor (VMM)). The latter is thus executed under the VMX root
operation mode and benefits from the new VMX instruction
set. Therefore, the guest software, running in VMX non-root
operation mode, has a restricted access to privileged actions,
such as using some specific registers (1.*, 2.2, 4.2). Further-
more, an extra virtualization level of the memory, controlled
by the hypervisor, is added. This new translation mechanism,
named Extended Page Tables (EPT), is very similar to the
pagination of the IA-32e mode and simplifies the address space
management of virtual machines (2.*, 3.*, 4.*). The incoming
and outgoing signals of CPU cores are controlled as well by
the hypervisor through the local APIC virtualization (2.2, 6.1).

A transversal execution mode (management mode), has been
also integrated since the Intel386 SL processor [7, Vol. 1 / 3.1].
It offers a privileged execution environment to perform specific
management operations on a given platform (power manage-



TABLE II - SUMMARY OF INTEL CONTROL MECHANISMS

Threat origin How Control mechanism 1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 5.1 5.2 6.1 6.2 7.1 7.2

Primary Unit
without

virtualization

R/W Reg.
Rings

√ √

SMM
√

TXT
√ √

R/W Mem.

MMU
√ √ √ √ √ √ √ √

SMM
√ √ √

Router 1
√

TXT
√ √ √

Primary Unit
with

virtualization

R/W Reg. Virtual core
√ √

Virtual APIC
√

R/W Mem.
Virtual core

√

Virtual APIC
√

Virtual MMU
√ √ √ √ √ √ √ √

Secondary Unit R/W Mem.

Router 1
√ √

Router 2
√

I/O MMU
√ √ √ √ √ √

TXT
√

Virtual Apic & SMM
√

ment, hardware configuration, etc.). This mode, designed to
host some of the system firmware code, uses another address
space separated from other modes, named SMRAM (3.1), as
well as full access to machine resources. The only event that
could toggle a primary unit in this mode is the reception of a
System Management Interrupt (SMI) signal (2.1, 6.1).

2) The first router: Some above-mentioned access control
mechanisms require the collaboration of the CPU cores with
the Router 1. Indeed, physical addresses handled by primary
units may not represent an address of a DRAM memory block
(bank, row, column). Memory accesses are translated by the
Router 1, or System Agent, and then routed to the appropriate
memory block or secondary unit. For example, accesses to
the segment [0xa0000; 0xbffff] are dedicated to the
Legacy Video Area. However, if the CPU core is in SMM
mode, the access is routed to the SMRAM. This verification,
performed as near as possible to the cores helps to ensure the
protection against SMM mode attacks by cache poisoning [6].
A DRAM area is furthermore reserved for the management
engine co-processor for security reasons. Therefore, accesses
from the primary units are restricted by the System Agent as
well [11, Vol. 2 / 2.3, 2.5.2] (3.1).

Router 1 is located at the center of the architecture in terms
of memory access and signal transfer. It is also responsible for
controlling secondary units accesses to the physical memory
space. As we mentioned in Section II, some of the memory
read or write accesses are routed towards local or remote
secondary units (via the DMI bus). This is the case in the
opposite direction as well. Indeed, secondary units can access
a certain part of the DRAM but are unable to access the
SMRAM, the management engine, and the DMA protected
segments, etc. [11, Vol. 2 / 2.5, 2.5.2, 2.15, 1.16] (7.1).

Each secondary unit can be used in different contexts, which
raises security issues. That is why Intel introduced a new kind
of component, named I/O MMU, specified by the Intel VT-
d extensions [10]. This component is able to perform more
specific access controls on read/write accesses and on signals
from the secondary units, while taking into account their
associated contexts. These controls are respectively named

DMA remapping (5.*, 7.*) and IRQ remapping (6.*). In our
architecture, an I/O MMU is used for local secondary units and
another one for remote secondary units of the PCH [11, Vol. 2
/ 4.4, 4.5]. Therefore, several secondary units are controlled by
the same I/O MMU. The address translation phase is divided
into two stages [10, 3.2]. The first one is used to identify the
related secondary unit in order to retrieve its vision of memory
[10, 3.4]; this process is called device to domain mapping. The
second step translates virtual addresses into physical addresses
by using the memory vision of the device; this process is
similar to the one performed by the paging mechanism of
a CPU core. Additionally, address translation is divided into
two phases, similarly to MMU virtualization, to enable DMA
remapping at virtual machines level; the first translation phase
structures are controlled by a virtual machine, and those of
the second phase are configured by the hypervisor [10, 3.1,
3.5-8]. Therefore the I/O MMU was designed to block attacks
originating from secondary units which perform read and write
accesses in accessible segments of the main memory [13].

Besides I/O virtualization, I/O sharing is also an issue when
running multiple VMs that want to access a same device.
The sharing can be done at the hypervisor level using device
emulation, but it leads to poor performances. On the other
hand, the device can be assigned to only one VM (direct
assignment) to improve the performance, but with a negative
impact on scalability. However, another technology, named
Single Root I/O Virtualization and Sharing (SR-IOV) [16], has
recently been brought up by Intel for this purpose. A device
compatible with this technology provides multiple virtual
functions assignable by a VMM to its VMs. These virtual
functions leverage Intel VT-d to directly communicate with the
VMs without involving the VMM. This way, the sharing can
be done without loosing performance, and while maintaining
the isolation layer brought by Intel VT-d.

3) The second router: PCH is responsible for interconnect-
ing remote secondary units with the processor through the
DMI bus [8, 5.2, 9.4]. As explained earlier, access controls
from the DMI bus are performed upstream via the I/O MMU.
As seen in Section I, all the communication between internal



secondary units of the PCH, as well as between secondary PCI
Express units, are transmitted through the PCH and processed
by the PCI-to-PCI bridge. This component prohibits memory
accesses from secondary units to DMI decoded areas, i.e.,
memory areas where the secondary units registers are mapped
[8, 5.2, 9.4] (5.1). In our architecture, peer-to-peer memory
requests are not allowed between secondary units.

4) Startup and chain of trust: As explained in previous
sections, the processor and its primary units start in a degraded
mode and then set up progressively a more efficient runtime
environment, as well as suitable access controls to enhance
system security. This configuration is carried out by software.
The firmware, bootloaders, hypervisors and kernels take care
of this task. It is therefore important to ensure their integrity.
The principle of chain of trust, where each loaded software
component gradually checks at startup the integrity of the next
one, provides the required trust [6, 3.1]. These verifications
are preferably assisted by dedicated hardware such as Trusted
Platform Modules (TPM) [18] [8, 5.26].

These mechanisms ensure the integrity of the system at
startup, but do not protect against the exploitation of software
and hardware vulnerabilities at runtime. Malicious operations
may for example aim at disabling some hardware access con-
trol mechanisms like the I/O MMU [14]. In order to address
such threats, Intel proposed new hardware extensions, named
Safer Mode Extensions (SMX) [7, Vol. 2C / 5], specified by
Trusted Execution Technology (TXT). With these extensions,
after a verified boot, it is possible to protect memory ranges
from secondary units and to lock some features and hardware
registers to prevent their reconfiguration, even as part of an
attack, by entering in a Measured Launched Environment
(MLE) [9, 1 and 2] (1.1, 2.1, 4.1, 7.1).

Table II summarizes the isolation mechanisms present in
this Intel architecture and the associated threats. The first two
columns identify the source of these threats (as assumed in
II-A) and the corresponding initiating action. Grey cells refer
to threats that are not applicable in this architecture.

B. ARM

The growing usage diversity of ARM processors has led
ARM to incorporate several isolation mechanisms in its ar-
chitecture as well. This is especially the case for the most
recent one, the ARMv8-A architecture, which are included
in our smartphones for example. ARM relied on the concepts
developed for Intel x86 processors to provide its own isolation
mechanisms. However, the approach chosen by ARM is much
closer to the operating mode of current operating systems
as shown in the following paragraphs. In the following, we
present these mechanisms focusing first on those implemented
in the primary units, and then on those hosted in the other
components of the system. Finally, a specific discussion is
dedicated to the TrustZone isolation technology.

1) Inside primary units: Four privilege levels are defined,
named Exception Levels (EL) [1, D1.1], for the software
running on the primary units:

• EL0, the lowest privilege level, is devoted to applications.

• EL1 is dedicated to kernel and interrupt management.
• EL2 is devoted to virtual machine managers (VMM).
• EL3 is the most privileged level. Its usage is detailed later

on in the section presenting TrustZone technology.
These privilege levels restrict especially the access rights

to the system registers of a primary unit (1.2); these system
registers being in charge of controlling the software execution
at various levels on the CPU core. For example, sending an
interrupt (SGI) to other system cores (2.2) or setting up the
MMU require the EL1 privilege level.

The MMU [1, D4.2.1] is also a central component of
isolation mechanisms present in the primary unit. It allows
to define translation tables converting virtual addresses used
by programs running on the CPU core, into physical addresses
of the system (3.1, 4.1). Moreover, it is possible, by specifying
access rights, to restrict the access to these virtual addresses,
according to the software privilege level (3.2, 4.2). Its behavior
is similar to the Intel 64 pagination.

The EL2 privilege level and associated virtualization ex-
tensions [1, D1.5] provide isolation within the primary unit.
The latter enables to share resources of the CPU core and of
the system between multiple virtual machines (VMs) running
in EL1. To be more specific, these extensions enable the
virtualization of physical CPU cores through the virtualization
of their registers (1.*, 2.1), of the VMs memory space (3.*,
4.*) and their incoming interrupts (2.1, 6.1). That way, the
VMM is able to change its VMs access to some resources
(memory access and system registers) by getting back the
execution control flow when a VM tries to use them. Memory
virtualization is implemented by allowing the hypervisor to
define one more translation table that converts VMs physical
addresses to real ones. An hypervisors is also able to mask or
trigger virtual interrupts to their VMs.

2) Outside primary units: Isolation mechanisms are also
implemented outside primary units. For example, the interrupt
controller (GIC) is able to mask the interrupts received from
primary and secondary units, or to distribute them to one or
more physical or virtual CPU cores [3] (2.1, 6.1).

Just as primary units have a vision of the memory that can
be modified through the MMU, secondary units have a specific
entity dedicated to this task. The latter, so-called System MMU
(SMMU), stands in-between one or more secondary units and
their associated router. Each secondary unit connected to a
SMMU is identified by a StreamID, which is then associated
with one or more translation tables of virtual addresses into
physical addresses [4, 2.1]. Indeed, a SMMU handles two
address translation levels. Its behavior is analogous to the
MMU of a primary unit running a VMM. This feature is
especially useful when a VMM wants to virtualize the first
level of address translation set up by its VM for a secondary
unit. The resulting addresses may reference data in memory,
registers of secondary units or even registers of the GIC used
to emit interrupts to primary units (5.*, 6.*, 7.*).

3) TrustZone: TrustZone is an isolation technology imple-
mented in several parts of an ARMv8-A system. It enables
the definition of two hermetic ”worlds”: the normal world and



TABLE III - SUMMARY OF ARM CONTROL MECHANISMS

Threat origin How Control mechanism 1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 5.1 5.2 6.1 6.2 7.1 7.2

Primary Unit
without

virtualization

R/W Reg.
Privileges (EL)

√ √

GIC
√ √

TrustZone
√ √ √

R/W Mem. MMU
√ √ √ √

TrustZone
√ √ √ √

Primary Unit
with

virtualization

R/W Reg. Virtual Core
√ √ √

Virtual Int. + GIC
√

R/W Mem. Virtual MMU
√ √ √ √

Secondary
Unit

R/W Mem.
System MMU

√ √ √ √ √ √

GIC
√

TrustZone
√ √ √

Signal GIC
√

the secure world. The resources belonging to the secure world
become inaccessible from the normal world through a set of
isolation mechanisms outlined in the following paragraphs.

First, let us focus on the EL3 privilege level of a primary
unit. The most privileged level is actually dedicated to change
the security level of a primary unit [1, D1.4]. Indeed, it is
the only privilege level able to switch a CPU core from the
normal world to the secure world and vice versa (1.2). When
a primary unit belongs to the secure world, it can use EL1 and
EL03 privilege levels the same way as in the normal world.
Therefore, it is possible to create an operating system running
in EL14, isolated from software belonging to the normal world,
and able to communicate with resources reserved to the secure
world (1.1, 2.1, 3.*, 4.*).

Besides primary units, secondary units may also belong to
the secure world. Thus, they have the ability to issue ”secure”
interrupts that will be processed by the GIC [3, 4.6.1] and
forwarded to the secure world of targeted cores (6.1). Fur-
thermore, these secondary units can access memory resources
of the secure world (5.1, 7.1). However, an additional control
can be performed by the SMMU [4, 2.2 and 7.3].

Finally a new entity called TrustZone Address Space Con-
troller (TZC) [2], manages the segmentation of the memory
areas belonging to the secure world and the normal world. It
is also able to check the security level of each memory access
to properly isolate the memory areas of the secure world.

Therefore, TrustZone enables a strict separation between the
different hardware parts of the system, as well as software
running on the primary units. Consequently, the threats related
to the communications between the normal world and the
secure world can be handled by the segregation mechanisms
implemented within TrustZone technology.

The Table III provides a summary of all segregation mech-
anisms outlined above.

C. Comparative analysis

There are many similarities regarding the philosophy be-
hind the Intel and ARM platforms isolation mechanisms. For
example, the ELs in ARMv8-A platform are similar to the

3EL2 and virtualization extensions are not available in the secure world.
4There is a ”secure” version of some system registers, for example those

dedicated to the MMU configuration.

rings on Intel platform. Both architectures also contain a MMU
to provide virtual address translation for software running on
primary units. Furthermore, the emergence of architectures that
provide more capabilities to secondary units has urged Intel
and ARM to improve their isolation technologies targeting
peripherals (VT-d for Intel and SMMU for ARM). In addi-
tion, virtualization extensions are implemented on these two
platforms and provide similar isolation functionalities. In other
words, Intel and ARM provide a set of isolation techniques
that are relevant to cope with each attack scenario identified in
section II-A. More precisely, none of the columns of the table
II and the tableIII are empty, whether or not the environment
is virtualized. All these aforementioned mechanisms are rather
close in terms of philosophy and provide a common base to
both architectures. However, they still have some specificities.

On one hand, the different Intel architectures have always
been designed and developed with the aim of providing
backward compatibility, i.e., interoperability with older legacy
architectures. Consequently, there are often multiple ways to
perform the same operation, and several isolation mechanisms
stacked up over time (e.g., pagination over segmentation). As a
consequence, more communication channels must be isolated
in comparison with the ARM architecture (e.g., threats 2.1 and
2.2 for the MMU), and some mechanisms complete each other.
Nevertheless, Intel still promotes innovative technologies with
adapted isolation mechanisms. For example, Intel is the only
one to provide a technology to improve the performances
of peripheral sharing between multiple VMs (SR-IOV) with
corresponding adjustments in the I/O MMU. Nonetheless,
a similar technology could be developed by ARM if its
processors were used more often in servers.

On the other hand, the fact that backward compatibility is
not a requirement allows ARM to build new architectures by
rethinking their isolation mechanisms. Therefore, these mech-
anisms seem less scattered inside the architecture and more
thorough. Moreover, even if the Intel isolation mechanisms
have influenced those implemented by ARM, the latter has
still developed genuine and innovative solutions to address
segregation issues. The most obvious example is TrustZone
technology which provides a complete ecosystem to perform
privileged actions on the system (like SMM mode), the ability
to verify the ”chain of trust” at startup (like SMX and TPM),



and to host secure and isolated applications which can be used
for DRM or other cryptographic purposes.

IV. CONCLUSION

In this paper, we analyzed hardware isolation mechanisms
included in the latest Intel and ARM platforms, and more
precisely in the Intel 64 and ARMv8-A architectures. We can
highlight the following contributions. We proposed a generic
model to represent the components of each studied architecture
and their communications. This abstraction enabled us to
identify possible threats that the modeled systems may face.
Then, we presented the isolation mechanisms implemented
on each platform, and highlighted the threats addressed by
them. A comparative analysis of these two platforms and their
isolation mechanisms was also carried out.

We first noticed that many concepts about existing segrega-
tion technologies are shared between these two architectures.
However, the resulting implementations have several differ-
ences. This is particularly due to the lack of standardization
of these technologies, as well as of the different strategies
adopted by Intel and ARM concerning their architectures.

These architectures are constantly evolving. In particular,
Intel has designed the skylake architecture with a new exten-
sion named Memory Protection Extensions (MPX). This new
technology enables the CPU to perform fine grained access
controls on memory areas in order to prevent buffer overflows.
To our knowledge, there is still no equivalent for ARM that
employs a slower evolution scheme, with major technological
leaps and less backward compatible solutions. However, we
can strongly assume that if this extension becomes more
mainstream, it will be integrated as well.

We believe that future architectures will increasingly use
heterogeneous CPU cores. As a consequence, their design
may be quite different, some of them may embed previously
mentioned isolation technologies while others may not include
some of them. We can for example mention Intel Active Man-
agement Technology AMT, ARM specialized co-processor,
AMD Project Skybridge, and manycore architecture in general.
Therefore, new issues will certainly arise from this special
usage, and the combination of existing isolation mechanisms
for each architecture may not be sufficient.

Furthermore, with InfiniBand technology, it is now possible
to remotely access high performance storage area such as
RAM. With the evolution of PCIe specifications, peripherals
will most probably be moved away of physical computers.
We do not consider such communication buses in this paper,
but they have to be considered in future work as a part of the
attack surface. Consequently, future isolation mechanisms will
have to be designed to consider these buses and memories.

The mechanisms that were studied in this paper are very
important from the security standpoint because, if properly
employed, they are effective and difficult to circumvent or
corrupt. However, these isolation techniques alone are not
enough to counter any type of attack. It is first and foremost
necessary to check their complementarity to cover all potential
threats. In addition, these hardware segregation mechanisms

only provide fundamental protections between components
and can hardly be effective against complex attack scenarios
(e.g., using the contribution of several components) because of
the classic ”semantic gap” problem. It is therefore necessary to
use other complementary protection mechanisms, at a higher
level of abstraction, which are semantically richer.

REFERENCES

[1] ARM Limited. ARM Architecture Reference Manual ARMv8, for
ARMv8-A architecture profile. http://infocenter.arm.com/help/topic/
com.arm.doc.ddi0487a.h/index.html.

[2] ARM Limited. ARM CoreLink TZC-400 TrustZone Address Space
Controller Technical Reference Manual. http://infocenter.arm.com/help/
topic/com.arm.doc.100325 0001 02 en/index.html.

[3] ARM Limited. ARM Generic Interrupt Controller Architecture Speci-
fication, GIC architecture version 3.0 and version 4.0. http://infocenter.
arm.com/help/topic/com.arm.doc.ihi0069b/index.html.

[4] ARM Limited. ARM System Memory Management Unit Architecture
Specification, SMMU architecture version 2.0. http://infocenter.arm.
com/help/topic/com.arm.doc.ihi0062d.b/index.html.

[5] Victor Costan and Srinivas Devadas. Intel sgx explained. Tech-
nical report, Cryptology ePrint Archive, Report 2016/086, 2016.
https://eprint.iacr.org/2016/086.

[6] Loı̈c Duflot and Olivier Levillain. ACPI et routine de traitement de la
SMI. In Actes du 7ème symposium sur la sécurité des technologies de
l’information et des communications (SSTIC), pages 132–168, 2009.

[7] Intel Corporation. Intel R© 64 and IA-32 Architectures Software De-
veloper’s Manual Combined Volumes:1, 2A, 2B, 2C, 3A, 3B, and
3C. www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-manual-325462.pdf.

[8] Intel Corporation. Intel R© 8 Series/C220 Series Chipset Family Platform
Controller Hub (PCH). http://www.intel.com/content/dam/www/public/
us/en/documents/datasheets/8-series-chipset-pch-datasheet.pdf.

[9] Intel Corporation. Intel R© Trusted Execution Technology (Intel R©
TXT) Software Development Guide, Measured Launched Environment
Developer’s Guide. http://www.intel.com/content/dam/www/public/us/
en/documents/guides/intel-txt-software-development-guide.pdf.

[10] Intel Corporation. Intel R© Virtualization Technology for Directed
I/O. http://www.intel.com/content/dam/www/public/us/en/documents/
product-specifications/vt-directed-io-spec.pdf.

[11] Intel Corporation. Mobile 4th Generation Intel R© Core TM
Processor Family, Mobile Intel R© Pentium R© Processor
Family, and Mobile Intel R© Celeron R© Processor Family.
http://www.intel.com/content/dam/www/public/us/en/documents/
datasheets/4th-gen-core-family-desktop-vol-1-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/
datasheets/4th-gen-core-family-desktop-vol-2-datasheet.pdf.

[12] Intel Corporation. MultiProcessor Specification. http://www.intel.com/
design/pentium/datashts/24201606.pdf.

[13] Fernand Lone Sang, Vincent Nicomette, and Yves Deswarte. Ironhide :
plate-forme d’attaques par entrées-sorties. In Actes du 10ème symposium
sur la sécurité des technologies de l’information et des communications
(SSTIC), pages 237–265, 2012.

[14] Benoı̂t Morgan, Éric Alata, Vincent Nicomette, and Mohamed Kaâniche.
Bypassing IOMMU protection against I/O Attacks. In 7th Latin-
American Symposium on Dependable Computing (LADC’16), 2016.

[15] PCI-SIG. PCI Express R© Base Specification Revision 2.1. https://pcisig.
com/specifications/pciexpress/base2/.

[16] PCI-SIG. Single Root I/O Virtualization 1.1 Specification. https://pcisig.
com/specifications/iov/single root/.

[17] Junaid Shuja, Abdullah Gani, Kashif Bilal, Atta Ur Rehman Khan,
Sajjad A. Madani, Samee U. Khan, and Albert Y. Zomaya. A Survey
of Mobile Device Virtualization: Taxonomy and State of the Art. ACM
Comput. Surv., 49(1):1:1–1:36, April 2016.

[18] Trusted Computing Group. Tpm specification version 1.2 : Design prin-
ciples. http://www.trustedcomputinggroup.org/tpm-main-specification/.

[19] Arun Viswanathan and BC Neuman. A survey of isolation techniques.
University of Southern California, Information Sciences Institute, 2009.


