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Refined exponential stability analysis

of a coupled system ?

Mohammed Safi ∗ Lucie Baudouin ∗ Alexandre Seuret ∗

∗ LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.

Abstract: The objective of this contribution is to improve recent stability results for a system
coupling ordinary differential equations to a vectorial transport partial differential equation by
proposing a new structure of Lyapunov functional. Following the same process of most of the
investigations in literature, that are based on an a priori selection of Lyapunov functionals and
use the usual integral inequalities (Jensen, Wirtinger, Bessel...), we will present an efficient
method to estimate the exponential decay rate of this coupled system leading to a tractable
test expressed in terms of linear matrix inequalities. These LMI conditions stem from the new
design of a candidate Lyapunov functional, but also the inherent properties of the Legendre
polynomials, that are used to build a projection of the infinite dimensional part of the state of
the system. Based on these polynomials and using the appropriate Bessel-Legendre inequality,
we will prove an exponential stability result and in the end, we will show the efficiency of our
approach on academic example.

Keywords: Transport equation, Lyapunov stability, integral inequalities.

1. INTRODUCTION

When modeling a control problem phenomenon using a
state space formulation, the trade off between capturing a
certain level of complexity and obtaining a model on which
the tools we have can be applied is inevitable. Considering
systems modeled by ordinary differential equations (ODE)
ensures huge literature and quantity of very well developed
control tools whereas the choice of a partial differential
equation (PDE) model brings in a very different set of
approaches and references. Our work lies in the more
narrow domain of the stability study of coupled ODE-
PDE system and should be seen as a first step in the
understanding of a possible way to get a simple common
ground to consider at the same time both of the two states
of such a heterogeneous system.

PDE systems stand out as having important applications
in the modeling and control of physical networks: hydraulic
(Coron et al. (2008)), gas pipeline networks (Gugat et al.
(2011)) and road traffic (Coclite et al. (2005)) for instance.
Systems coupling PDEs to ODEs have attracted some
more attention in the last decade as in Krstic (2009),
Hasan et al. (2016), Stinner et al. (2014) and Friedmann
(2015). Stability analysis and stabilization of such systems
have also appeared recently in e.g. Susto Gian and Krstic
(2010), Prieur et al. (2008) and Tang et al. (2015).

To control these coupled systems, the backstepping ap-
proach can be considered. It was originally developed for
parabolic and second-order hyperbolic PDEs, as well as
for several challenging physical problems such as turbulent
flows magnetohydrodynamics Vazquez and Krstic (2008).
In many recent works, it is used to stabilize ODE-PDE
systems. For example, a first order hyperbolic PDE cou-
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pled to an ODE has been stabilized by this approach in
Krstic and Smyshlyaev (2008).

In this article, we are considering a vectorial transport
equation, whose state is of infinite dimension, coupled with
a classical system of ODEs. The stability of this specific
kind of coupled systems has already been investigated
recently in Castillo et al. (2015), Baudouin et al. (2016)
and Safi et al. (2016) and one should mention that it can
also be considered as specific formulation of a Time-Delay
System (TDS). Actually, there is a very large literature
in TDS and among many others, we can refer to Xu and
Sallet (2002), Mondie et al. (2005) and Xu et al. (2006).
In our paper, following the classical Lyapunov method for
stability study (see e.g. Gu et al. (2003), Fridman (2014),
Gyurkovics and Takacs (2016) and Seuret and Gouaisbaut
(2015)), we will provide an efficient approach for assessing
stability of this first ODE-PDE system.

Most of the contributions on stability in the TDS frame-
work are based on the good selection of a Lyapunov-
Krasovskii functional (LKF) leading to sufficient stability
conditions (see Gu et al. (2003)), and a polynomial ap-
proximation to estimate the infinite dimensional state of
the system, which is not a new idea (see Papachristodoulou
and Peet (2006), Peet (2014) and Ahmadi et al. (2014)).
But in this work, we aim at showing that a better design
of the LKF may improve stability studies of such coupled
systems and gives interesting results for the convergence
rate of this system, getting closer to what an appropriate
frequency analysis can give.

Notations: N is the set of positive integers, Rn is the n-
dimensional Euclidean space with vector norm | · |n. We
denote Rn×m the set of real matrices of dimension n×m.
In ∈ Rn×n is the identity matrix , 0n,m the null matrix,

and [A B
? C ] replaces the symmetric matrix

[
A B
B> C

]
. We



denote Sn ⊂ Rn×n (respectively Sn+) the set of symmetric
(resp. symmetric positive definite) matrices and diag(A,B)
is a bloc diagonal matrix equal to [A 0

0 B ]. For any square

matrix A, we define He(A) = A+A>. Finally, L2(0, 1;Rn)
represents the space of square integrable functions over
the interval ]0, 1[⊂ R with values in Rn and the partial
derivative in time and space are denoted ∂t and ∂x, while
the classical derivative are Ẋ = d

dtX and L′ = d
dxL.

2. PROBLEM FORMULATION

2.1 System data

We consider the following system governed by the coupling
of a transport PDE and a finite dimensional system of
ODE: Ẋ(t) = AX(t) +Bz(1, t) t > 0,

∂tz(x, t) + ρ∂xz(x, t) = 0, x ∈ (0, 1), t > 0,
z(0, t) = CX(t) +Dz(1, t), t > 0.

(1)

The state of this coupled system is composed not only of
the finite dimensional state variable X(t) ∈ Rn of the ODE
but also of the infinite dimensional state z(x, t) ∈ Rm of
the vectorial transport-PDE. The pair (X(t), z(x, t)) forms
the complete state of this coupled system and satisfies
the initial condition (X0, z0) ∈ Rn × L2(0, 1;Rm). The
matrices A, B, C and D are constant in Rn×n, Rn×m,
Rm×n and Rm×m. The parameter ρ of the transport-
PDE represents the propagation velocity applied to the
m components of the variable z(x, t).

The total energy E(t) of system (1) is given by :

E(X(t), z(t)) = |X(t)|2n + ‖z(t)‖2L2(0,1;Rm).

2.2 Motivation

The purpose of studying (1) is twofold: as a system
coupling infinite and finite dimensional states, the tools for
stability assessment have to be shaped accordingly; and as
the coupling of an ODE and a transport PDE, (1) mimics
a TDS and could specifically take advantage of the last
developments in this domain. More particularly, the study
of system (1) is also motivated by its capacity to represent
two types of time-delay systems:

- Systems with single delay (D = 0m,m) that have been
studied in many contributions on the subject (see Xu
et al. (2006) and Seuret and Gouaisbaut (2015)).

- Systems with commensurate (or, rationally depen-
dent) delays (D 6= 0m,m), where a single delay and
its multiples are involved(see e.g. Su (1995)).

Inspired by the stability study of these time-delay systems,
we aim at leading a stability study for system (1) using the
following type of Lyapunov functional

V (X(t), z(t)) = X>(t)PX(t)+2X>(t)

∫ 1

0

Q(x)z(x, t)dx

+

∫ 1

0

∫ 1

0

z>(x1, t)T (x1, x2)z(x2, t)dx1dx2

+

∫ 1

0

e
−2δ
ρ xz>(x, t)(S + (1− x)R)z(x, t)dx, (2)

where the matrices P ∈ Sn+, S,R ∈ Sm+ and the functions
Q ∈ L2(0, 1;Rn×m) and T ∈ L∞((0, 1)2;Sm) have to be
specified.

A Lyapunov functional is usually constructed from the
complete state of the system, and in this one, the first
quadratic term is dedicated to the vector state X(t) and
the last term to the infinite dimensional state z(x, t). The
two terms that remain in between are formed through
the functions Q(x) and T (x1, x2), and have the speci-
ficity of building a link between those finite and infinite
dimensional states, both constitutive of the ODE-PDE
coupling system. The challenge in the precise design of
this candidate Lyapunov functional (2) relies on the choice
of the functions Q and T that depend on the integration
parameters x, x1 and x2. In our approach, we will use
polynomial functions of a given degree (a basis of Legendre
polynomials) to construct a truncated decomposition of
those functions as follows

Q(x) =
∑N
k=0Q(k)Lk(x),

T (x1, x2) =
∑N
i=0

∑N
j=0 T (i, j)Li(x1)Lj(x2),

(3)

where N ∈ N, and where Lk, for k ∈ N, denote the shifted
Legendre polynomials of degree k considered over the in-
terval [0, 1]. These polynomials and their properties will be
detailed in the next section. Using the decomposition (3) of
the functions Q and T , the Lyapunov functional becomes

VN (X(t), z(t)) =

[
X(t)
ZN (t)

]> [
P QN
Q>N TN

] [
X(t)
ZN (t)

]
+

∫ 1

0

e
−2δ
ρ xz>(x, t)(S + (1− x)R)z(x, t)dx, (4)

where

QN = [Q(0) . . . Q(N)] in Rn,m(N+1),
TN = [T (i, j)]i,j=0..N in Rm(N+1),m(N+1)

and

ZN (t) =



∫ 1

0

z(x, t)L0(x) dx

...∫ 1

0

z(x, t)LN (x) dx

 ∈ Rm(N+1) (5)

is the projection of the m components of the infinite
dimensional state z(x, t) over the N + 1 first Legendre
polynomials.

In this article, we aim specifically at showing that taking
the last integral term in (4) with an exponential weight

e
−2δ
ρ x, allows to derive a better estimate of the decay rate

of the system compared to Baudouin et al. (2016), which
uses a different method. In addition to the contribution of
Baudouin et al. (2016), an additional term (i.e. Dz(1, t))
has been included in the boundary condition of system (1)
so that a larger class of systems can be covered, as, for
instance, systems with commensurate delays.

3. PRELIMINARIES

3.1 Legendre polynomials

The shifted Legendre polynomials (see for instance Courant
and Hilbert (1953)) we will use are denoted {Lk}k∈N and



act over [0, 1]. The family {Lk}k∈N forms an orthogonal
basis of L2(0, 1;R) and we have precisely∫ 1

0

Lj(x)Lk(x) dx =
1

2k + 1
δjk,

where δjk represents Kronecker’s coefficient, equal to 1 if
j = k and 0 otherwise. The boundary values are given by:

Lk(0) = (−1)k, Lk(1) = 1. (6)

Moreover, the derivative of those polynomials is given by

d

dx
Lk(x) =


0, k = 0,
k−1∑
j=0

`kjLj(x), k ≥ 1.
(7)

with

`kj =

{
(2j + 1)(1− (−1)k+j), if j ≤ k − 1,
0, if j ≥ k. (8)

3.2 Bessel-Legendre inequality

The following lemma gives a Bessel-type inequality that
compares an L2(0, 1) scalar product with the correspond-
ing finite dimensional approximation product.

Lemma 1. Let z ∈ L2(0, 1;Rm) and R ∈ Sm+ . The follow-
ing integral inequality holds for all N ∈ N :∫ 1

0

z>(x)Rz(x) dx ≥ Z>NRNZN , (9)

with

RN = diag(R, 3R, . . . , (2N + 1)R), (10)

Proof : The proof is easily conducted, as we show in Bau-
douin et al. (2016), by considering the difference between
the state z and its projections over the N + 1 first Leg-
endre polynomials. Indeed, denoting yN (x, t) = z(x, t) −∑N
k=0(2k + 1)Lk(x)

∫ 1

0

z(ξ, t)Lk(ξ) dξ, the orthogonality

of the Legendre polynomials and the Bessel inequality
allows to obtain (9) from the positive definiteness and the

expansion of

∫ 1

0

y>N (x, t)RyN (x, t)dx, as in e.g. Seuret and

Gouaisbaut (2015). �

4. STABILITY RESULTS

4.1 Exponential stability

To assess exponential stability of system (1), we will show
that the Lyapunov functional (4) satisfies the following
inequalities:

ε1E(t) ≤ VN (X(t), z(t)) ≤ ε2E(t), (11)

V̇N (X(t), z(t)) + 2δVN (X(t), z(t)) ≤ −ε3E(t) (12)

for some positive scalars ε1, ε2 and ε3. From now on, we
will use the shorthand notation VN (t). Since VN partly
depends on a projection ZN of the state z, as written in
(4), then in order to compute the time derivative of VN (t)
in (12) we will need the time derivative of ZN (t). The
following property thus provides a simple expression.

Property 1. Consider z ∈ C(R+;L2(0, 1;Rm)) satisfying
the transport equation in system (1). The time derivative
of the projection vector ZN is given by :

ŻN (t) = ρLNZN (t) + ρ(1∗ND − 1N )z(1, t) + ρ1∗NCX(t),
(13)

where we used the notations

1N = [Im . . . Im]
> ∈ Rm(N+1),m,

1∗N =
[
Im −Im . . . (−1)NIm

]> ∈ Rm(N+1),m, (14)

LN = [`kjIm]j,k=0..N ∈ Rm(N+1),m(N+1),

the `kj being defined in (8).

Proof : First, let us compute the time derivative of the
projection of the infinite dimensional state z(x, t) over
the kth Legendre polynomial Lk. Using the transport
equation in (1), integration by parts and properties (6) and
(7) of the Legendre polynomials, we obtain the following
expression:

d

dt

∫ 1

0

z(x, t)Lk(x) dx = −
∫ 1

0

ρ∂xz(x, t)Lk(x) dx

= − [ρz(x, t)Lk(x)]
1
0 +

∫ 1

0

ρz(x, t)
d

dx
Lk(x) dx

= −ρz(1, t) + (−1)kρz(0, t)

+
∑max[0,k−1]
j=0 `kjρ

∫ 1

0

z(x, t)Lj(x) dx.

Consequently, using the notations recently introduced and
omitting the time variable t, we have

d

dt
ZN (t) = ρLNZN (t)− ρ1Nz(1, t) + ρ1∗Nz(0, t).

The proof is concluded by injecting the boundary condition
z(0, t) = CX(t) +Dz(1, t) in the previous expression. �

Remark 1. As mentioned before, the vector ZN corre-
sponds to the projections of the state z of the PDE
dynamics over a set of polynomials of limited degree in
L2(0, 1;Rm). We can note in (13) that the components
of ZN are computed by several integration of a combi-
nation of z(1, t) and z(0, t), since the matrices LN are
strictly lower triangular for any integer N . Therefore, the
augmented variable ZN cannot be exponentially stable.
However, in this work we are interested in stability of the
global coupled system and not only the augmented system
given in Property 1.

Based on the previous discussions, the following theorem
is stated.

Theorem 2. Consider system (1) with a given transport
speed ρ > 0. Recall that the matrices LN , 1N and 1∗N are
defined in (14), the matrix RN is given by (10) and define
the following Rm(N+1),m(N+1) matrices

SN = diag(S, 3S, . . . , (2N + 1)S),
IN = diag(Im, 3Im, . . . , (2N + 1)Im).

(15)

If there exists an integer N > 0 such that there exists
δ > 0, P ∈ Sn+, QN ∈ Rn,(N+1)m, TN ∈ S(N+1)m, S and
R ∈ Sm+ , satisfying the following LMIs

ΦN =

[
P QN
Q>N TN + e−

2δ
ρ SN

]
� 0, (16)



ΨN (ρ, δ) =

[
Ψ11 Ψ12 Ψ13

∗ Ψ22 Ψ23

∗ ∗ Ψ33

]
≺ 0, (17)

where

Ψ11 =He(PA+ ρQN1
∗
NC) + 2δP + ρCT (S +R)C,

Ψ12 = PB + ρQN (1∗ND − 1N ) + ρC>(S +R)D,

Ψ13 =A>QN + ρC>1∗>N TN + ρQNLN + 2δQN ,

Ψ22 =−ρe−
2δ
ρ S + ρD>(S +R)D,

Ψ23 =B>QN + ρ(1∗ND − 1N )>TN ,

Ψ33 = ρHe(TNLN ) + 2δTN − ρe−
2δ
ρ RN ,

then system (1) is exponentially stable. Indeed, there exists
a constant K > 0 and a guaranteed decay rate δ∗ > δ such
that the energy of the system verifies, for all t > 0,

E(t) ≤ Ke−2δ
∗t
(
|X0|2n + ‖z0‖2L2(0,1;Rm)

)
. (18)

Proof : To prove this stability result, we have to show
that the Lyapunov functional VN given in (4) verifies the
inequalities (11) and (12) for some positive scalars ε1, ε2
and ε3. The proof falls then into four steps.

Exponential stability: As soon as we will obtain that
the Lyapunov functional VN satisfies (11) and (12), we
can prove the exponential stability of system (1), since we
get easily

V̇N (t) + (2δ +
ε3
ε2

)VN (t) ≤ 0.

Indeed, integrating on the interval [0, t] and using 2δ∗ =
2δ+ ε3

ε2
, inequality VN (t) ≤ VN (0)e−2δ

∗t holds for all t > 0

and using(11) once again, we get

ε1E(t) ≤ VN (t) ≤ VN (0)e−2δ
∗t ≤ ε2E(0)e−2δ

∗t,

which yields (18).

Existence of ε1: On the one hand, since S � 0 and
ΦN � 0, there exists a sufficiently small ε1 > 0 such that

S � ε1e
2δ
ρ Im, ΦN =

[
P QN
∗ TN + e−

2δ
ρ SN

]
� ε1

[
In 0
∗ IN

]
.

On the other hand, VN defined by (4) satisfies, ∀t ≥ 0,

VN (t) ≥
[
X(t)
ZN (t)

]>
ΦN

[
X(t)
ZN (t)

]
− e−

2δ
ρ Z>N (t)SNZN (t)

+e−
2δ
ρ

∫ 1

0

z>(x, t)Sz(x, t)dx.

Replacing ΦN by its lower bound depending on ε1 and
introducing ε1 in the last integral term, we have

VN (t) ≥ ε1|X(t)|2n + ε1

∫ 1

0

z>(x, t)z(x, t)dx

−Z>N (t)(e−
2δ
ρ SN − ε1IN )ZN (t)

+

∫ 1

0

z>(x, t)(e−
2δ
ρ S − ε1Im)z(x, t)dx.

By noting that S−ε1e
2δ
ρ Im � 0, Lemma 1 ensures that the

sum of the two last terms is positive and we thus obtain
that there exists ε1 > 0 such that VN (t) ≥ ε1E(t).

Existence of ε2: There exists a sufficiently large scalar
β > 0 that allows

[
P QN
Q>N TN

]
� β

[
In 0
∗ IN

]
,

such that, under the assumptions S � 0 and R � 0, we
get

VN (t) ≤ β |X(t)|2n + βZ>N (t)INZN (t)

+

∫ 1

0

e
−2δ
ρ xz>(x, t)(S + (1− x)R)z(x, t)dx

≤ β|X(t)|2n + βZ>N (t)INZN (t)

+

∫ 1

0

z>(x, t)(S +R)z(x, t)dx.

Applying Lemma 1 to the second term of the right-hand
side gives

VN (t) ≤ β|X(t)|2n +

∫ 1

0

z>(x, t)(βIm + S +R)z(x, t)dx

≤ β|X(t)|2n + ε2‖z‖2L2(0,1;Rm) ≤ ε2E(t),

where ε2 = β + λmax(S) + λmax(R). Therefore, the proof
of (11) is complete.

Existence of ε3: Defining a kind of finite dimensional
augmented state vector, of size n+ (N + 2)m given by

ξN (t) =
[
X>(t) z>(1, t) Z>N (t)

]>
,

and using Property 1 and the definition of ΨN (ρ, δ), several
calculations, based on (1), lead to the following expression
of the time derivative of VN , we obtain

V̇N (t) + 2δVN (t) ≤ ξ>N (t)ΨN (ρ, δ)ξN (t) (19)

+ρe−
2δ
ρ Z>N (t)RNZN (t)− ρe−

2δ
ρ

∫ 1

0

z>(x, t)Rz(x, t)dx.

These calculations are omitted because of space limita-
tions. Following the same procedure as for the existence
of ε1, the LMI (17) ensures that there exists a sufficiently
small ε3 > 0 such that

R � 1

ρ
ε3e

2δ
ρ Im, ΨN (ρ, δ) ≺ −ε3

 In 0 0
0 0 0
0 0 IN

 .
Hence, using these two LMIs in (19) yields

V̇N (t) + 2δVN (t) ≤ −ε3
(
|X(t)|2n +

∫ 1

0

|z(x, t)|2 dx
)

+Z>N (t)( ρe−
2δ
ρ RN − ε3IN )ZN (t)

−
∫ 1

0

z>(x, t)(ρe−
2δ
ρ R− ε3Im)z(x, t)dx.

Since R − 1
ρε3e

2δ
ρ Im � 0, Lemma 1 ensures that the sum

of the two last terms of the previous equation is nega-
tive. Thus the Lyapunov functional VN satifies V̇N (t) +
2δVN (t) ≤ −ε3E(t), which concludes on the exponential
stability of system (1). �

5. NUMERICAL EXAMPLE

To test our approach, we consider the following academic
time-delay system

Ẋ(t) =

[
−2 0
0 −0.9

]
X(t) +

[
−1 0
−1 −1

]
X(t− h), (20)

which is given under the form of system (1) by ρ = 1
h and

A =

[
−2 0
0 −0.9

]
, B =

[
−1 0
−1 −1

]
,



C =

[
1 0
0 1

]
, D =

[
0 0
0 0

]
.

This example was studied in Baudouin et al. (2016)
using a different Lyapunov functional. Figure 1 gives the
maximum decay rate δ for each value of the transport
speed ρ and for several values of N using the LF (4). We
can note that accelerating the system by a refind value
of the transport speed ρ may improve its decay rate. The
value of δ reaches a maximum value δmax > 2.5 at the
order N = 1, which corresponds to the particular case
Wirtinger-based inequality (see Seuret and Gouaisbaut
(2013)), rather than δmax ' 2.5 at the order N = 4 in
Baudouin et al. (2016).
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Fig. 1. Evolution of the decay rate δ obtained with Theo-
rem 2 with respect to ρ for several value of N .

To explain the large difference between the two studies, we
can note in Figure 2 that the analysis in Baudouin et al.
(2016) was limited by the constraint (ρ− 2δ)R− 2δS � 0
which is presented by the dashed line δ = ρ

2 . In fact, we
have −2δS ≺ 0 and to satisfy this constraint and obtain
a positive term in (ρ − 2δ)R, the decay rate δ has to
be strictly lower than the half of the transport speed ρ.
The new analysis with Lyapunov functional (4) allow us
to avoid this constraint and reduce the conservatism of
our study and which is illustrated with the blue curve in
Figure 2.
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Baudouin et al. (2016) 
Theorem 1 (N=4)

δ = ρ/2

Fig. 2. Comparison between the decay rate δ obtained in
Theorem 2 and in (Baudouin et al., 2016) with respect
to ρ and for N=4.

The most important result to illustrate our approach
appears in Figure 3 which shows that we obtain the same
values as frequency analysis in Breda et al. (2015), for the

exponential decay rate δ of the energy at the order N = 4.
We remark also that we can improve the convergence rate
by limiting the transport speed in system (1) since we have
a maximum decay rate δmax = 4.3562 for the transport
speed ρ = 3.5010.
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Fig. 3. Comparison of the decay rate δ obtained by
Theorem 2 with N = 4 and obtained by Breda et al.
(2015) using a frequency approach for several values
of ρ.

Now, to test a more general case, we take the same
dynamic matrix A with D 6= 0 by considering the following
system

Ẋ(t) =

[
−2 0
0 −0.9

]
X(t)

+

[
−1 0
−1 −1

]
(0.05X(t− h

2 ) + 0.95X(t− h)),

which takes the shape of(1) for ρ = 2
h and

A =

[
−2 0
0 −0.9

]
, B =

[
−1 0 −1 0
−1 −1 −1 −1

]
,

C =

0.05 0
0 0.05
0 0
0 0

 , D =

 0 0 0 0
0 0 0 0
19 0 0 0
0 19 0 0

 .
Using Theorem 2, the maximum transport speed for sta-
bility is estimated as follows

N=0 N=1 N=2 N=3

Variables 41 75 125 191

δ = 0 ρmin = 0.253 0.233 0.232 0.232

δ = 0.01 ρmin = 0.391 0.367 0.366 0.365

Table 1. Minimal allowable transport speed

When considering this example as a time delay system,
the following table shows that the results are very close
to those found in Gu et al. (2003), and to the analytical
limit, even for small values of N .

Gu et al. (2003) Nd1 = Nd2 = 1 Nd1 = Nd2 = 2

hmax 8.585 8.596

Theorem 2 N=4 N=5

hmax 8.594 8.596

Table 2. Comparison in term of time delay with
Gu et al. (2003)



The variables Nd1 and Nd2 in Gu et al. (2003) present
the discretization degrees, respectively for the delay terms
h1 = h

2 and h2 = h.

6. CONCLUSION

In this document, we show as a first result that the struc-
ture of the proposed Lyapunov functional may improve
the estimation of the convergence rate of system (1) and
gives better assessment stability results. By changing the
design of the LF, we give a novel approach for the stability
analysis of coupled ODE - transport PDE systems issued
from recent developments on time-delay systems.

Indeed, we provide an efficient result of stability of a
coupled ODE-transport PDE system in terms of tractable
LMIs depending on the transport speed ρ and the order N
of a polynomial approximation of the infinite dimensional
part of the state.

Moreover, the estimation of the decay rate that we gener-
ate with this approach is very close, in a definite order N ,
to the frequency results which are more precise, and we
show that the maximum of this estimation is greater than
the one found in (Baudouin et al., 2016).
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