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Abstract: This paper addresses the problem of control allocation applied to an over-actuated
hovercraft-type vehicle. A hierarchical control architecture, consisting of a high level controller
for trajectory tracking, and a control allocation algorithm, is developed and proved to be effective
in tracking a desired trajectory while optimizing some cost related to actuator constraints.
The control allocation algorithm exploits the redundancy of the system in order to keep the
actuator states inside their saturation limits and tries to minimize the power consumption of the
propellers. Unlike other papers on control allocation, actuator dynamics is taken into account.
The control architecture is tested through simulations that well illustrate the capabilities of the
proposed control design.
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1. INTRODUCTION

Mini and micro Unmanned Aerial Vehicles (UAV) are be-
ing subject of many research topics in the last decade. The
main motivations are the rich research problems they offer
and the enormous amount of potential applications they
have. Pertaining research topics include: control, motion
planning, multi-agent systems, task allocation, coordina-
tion and many more. On the application side, we find:
surveillance, industrial inspection, search and rescue, pho-
tography, 3D mapping, delivery and many more. A classi-
cal multirotor consists of a frame with 4 coplanar motor-
propeller actuators that generate forces and torques. This
is an under-actuated system, where the classical applica-
tion consists of tracking a particular position trajectory,
with the attitude dependent of the position trajectory.
This can be a limitation for certain applications such as
aerial manipulation, where the robot has to exert a specific
force/torque in contact with the environment. Only in the
last years researchers tried to overcome the limitation of
planar multi-propeller UAV in terms of under-actuation by
adding additional actuators. In (Odelga et al., 2016) the
authors propose to use two extra servos to tilt the angle
of the propellers and obtain a fully actuated quadrotor.
In (Rajappa et al., 2015) six tilted propellers, with a
fixed tilting angle can generate forces and torques in all
directions. In (Ryll et al., 2016) an exa-rotor can tilt all the
propellers in a coordinated fashion by means of an extra
actuator, resulting in an overactuated system and finally in
(Ryll et al., 2015) a quadrotor can rotate each tilt angle of
the four propellers for an over-actuation. Additional recent
examples of fully-actuated platform designs are provided
in (Brescianini and D’Andea, 2015) and (Park et al., 2016)
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In all these works the inputs (propeller speed and tilt
angle) are considered as ideal inputs, with no actuator
dynamics and with unlimited bandwidth. These limita-
tions can be however important when wanting to maximize
the bandwidth of a certain closed-loop control action and
should be taken into account in the control design. In par-
ticular, adding extra actuator now introduces new redun-
dant input directions that can be exploited for a maximally
effective use of the many actuators now available.
Allocation of redundant actuators has been a subject of
intensive works in the past two decades, especially with
reference to specific applications, such as the aerospace
Oppenheimer et al. (2006) and underwater Fossen and
Johansen (2006) areas. Historical solutions deciding the
optimal distribution of input authority among the avail-
able actuators typical rely on the online solution of an
optimization problem, which can be computationally in-
tensive, especially in light of the fact that different ac-
tuators are often in place to best deal with hard or soft
limitations, which then result in nonlinear cost functions to
be miminized (see, e.g., the scheme surveyed in Johansen
and Fossen (2013) and Oppenheimer et al. (2010)).
In this paper we consider a simplified platform (the
ROSPO platform) that can emulate the over-actuated
multi-rotor configuration. It consists of a frame with a
variable number of modules composed by a tilting tur-
ret and a motor-propeller actuator. As compared to a
UAV, this platform is simplified because its dynamics is
constrained to a 2D plane, having thus only 3 degrees
of freedom. Despite the simplified setting, this platform
well represents the main challenges behind having a large
number of actuators, thereby introducing redundancy and
requiring some input allocation strategy. The goal is to
test a control paradigm suitable merging a high level
controller with a static input allocation technique for an
over-actuated platform with actuators with a first order
dynamics and limited input magnitude. In particular, we



Fig. 1. The ROSPO platform.

allocate the control action based on a scheme presented
in Passenbrunner et al. (2016), using suitable projection
matrices capable of performing some kind of decoupling
between the desired wrench to be applied to the physical
system, and the cost function that should be optimized
during operation. The scheme has the advantage of being
computationally quite cheap, even though optimality is
only gauranteed asymptotically. In this paper we should
the effectiveness of the proposed control paradigm on the
ROSPO platform. A control law on a similar platform
but without the over-actuation was proposed by Aguiar
et al. (2003). The over-actuation on 2D motions is instead
a well studied problem for ships and vessels as in (Berge
and Fossen, 1997) and as widely overviewed in Fossen and
Johansen (2006); Fossen et al. (2009).
The paper is organized as follows: in Section 2 we present
the platform and its dynamical model. In Section 3 we
describe the control architecture for the system, composed
by an allocation strategy and a high level controller for
motion tracking. Finally in Section 4 we present some
simulations for the platform with the proposed controller.

2. MODEL

Figures 1 and 2 show the ROtor-graSPing Omnidirec-
tional (ROSPO) platform and its schematic representation
including the main symbol definitions, respectively. The
system is composed by a rigid rectangular frame sustained
by four omnidirectional passive spherical wheels and n
actuating modules. Each module consists of a turret, which
is orientable by means of a servo motor. Each turret carries
a propeller driven by a BLDC motor. In the particular case
shown in Fig 1 it is n = 3, however, the developed theory
extends naturally to a generic number of turrets n ≥ 3.

The actuating modules can produce a thrust by spinning
the propeller and can independently rotate the whole
turret to orient the exerted force. The platform can move
on the ground with very low friction thanks to “ball
transfer unit” wheels. To describe the dynamical model
of the platform we have to define two reference systemsW
and B. W is the fixed ‘world’ inertial frame while B is the
body frame whose origin is the Center of Mass (CoM) of
the platform and whose axes are aligned with the platform
itself.

The system dynamics can be defined by the following
differential equations:

Fig. 2. Schematic representation of the ROSPO platform
and main symbol definitions.

ṗ = v

mv̇ =

n∑
i=1

R(ψ)fBi

ψ̇ = ω

jω̇ =

n∑
i=1

(Πri)
T fBi

(1a)


θ̇i = uθ,i
ẇi = uw,i

fBi = kww
2
i

[
cos(θi)
sin(θi)

]
,

(1b)

where m and j are constant scalars representing the
total mass and moment of inertia of the system, p =

[px py]
T ∈ R2 is the position of the center of mass of

the system in W, v ∈ R2 the velocity of the center
of mass of the system in W, ψ ∈ R is the yaw angle
of the system defined as the angle between the x axes
of B and W, ω is the angular velocity of the platform,

R(ψ) =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
∈ SO(2) is the rotation matrix

transforming the orientation from B toW, fBi ∈ R2 are the
forces produced by each actuator module, expressed in B,
ri ∈ R2 are the positions of each actuator module w.r.t. the
center of mass of the system, Π =

[
0 1
−1 0

]
, θi is the angle

of the the i-th actuator module expressed in B, defined as
the angle between the produced force and the x axis of B,
uθ,i is the spinning rate of the i-th actuator angle, wi is
the spinning rate of the propeller of each actuator module,
uw,i is the spinning acceleration, with i = 1, . . . , n and kw
is a constant aerodynamic parameter. Equations (1a) can
be referred to as the platform model, while equations (1b)
as the actuators’ dynamics.

Note that we wrote the actuator dynamics (1b) by recog-
nizing that an instantaneous variation of θi or wi is not
possible. Therefore, it makes sense to consider θ̇i = uθ,i
and ẇi = uw,i as the actual inputs. With this strategy we
may well represent the rate limitations of the actuators
as input constraints on uθ,i, uw,i and their maximum
excursions as state constraints on θi and wi. In particular
we enforce:

θi ≤ θi ≤ θi wi ≤ wi ≤ wi
uθ,i ≤ uθ,i ≤ uθ,i uw,i ≤ uw,i ≤ uw,i , (2)

where all the underlined and overlined terms are constant
scalar values. Constraints (2) imply that the spinning rates
of the propellers and the angle of the actuator turrets are
both limited, as well as the inputs to control them (due to
electro-mechanical and power limitations of the actuators).



The angle of each turret is limited due to servo-motors
limitations, while the maximum propeller speed is limited
for power and dissipation reasons. Finally the minimum
propeller speed is due to the fact that Electronic Speed
Controllers (ESC) without hall sensors (namely most of
the commercial ESC) do not perform well at low speed.

Equation (1) can be written in a more compact way as:

mv̇ = R(ψ)f
jω̇ = τ
θ̇i = uθ,i
ẇi = uw,i

fBi = kww
2
i

[
cos(θi)
sin(θi)

]
,

(3)

where f =
∑n
i=1 fBi ∈ R2 and τ =

∑n
i=1(Πri)

T fBi ∈ R can
be well understood as the total force and torque applied
to the system by the actuators.

3. CONTROL ARCHITECTURE

In a typical task for this platform, we want to control a
desired position and attitude trajectory. Hence the system
has three regulated outputs (two positions and one angle),
while the available inputs are 2n. This means that for
n ≥ 2 the system is over-actuated, while for n = 1 the
system is under-actuated. In this paper we consider the
case n ≥ 2. We can sum up the peculiarities of the system,
which correspond to:

• Nonlinear plant;
• Over-actuated system;
• Actuators with nonlinear dynamics;
• Actuators with constrained state and input.

We want to develop a hierarchical control architecture con-
sisting of a high level control for motion control (trajectory
tracking) and a control allocation algorithm to handle
the over-actuation in the actuators. In this architecture,
the high level controller specifies a desired wrench to be
applied to the system’s center of mass, while the low level
allocation action implements such a request on the actual
wrench (f , τ), with some optimality criterion.

The control architecture is depicted in Figure 3 and is
based on the static allocation scheme of Passenbrunner
et al. (2016). In that paper, both a static and a dynamic
strategy are proposed, where the dynamic one is necessary
in case certain signals are not available for measurement.
Since the ROSPO platform is equipped with full measure-
ment systems, we adopt here the static strategy, but the
use of the dynamic strategy could be envisioned in future
work to deal with uncertainties or remove measurement
signals from the ROSPO platform. The adopted allocation
strategy ensures regulation of a commanded virtual input
(uv,c) together with optimality with respect to a given cost
function. The construction is based on the assumption of
an invertible input matrix (such as the one in (1b)) and
first order strictly proper dynamics, and is parametrized
by a cost function to be optimized. More specifically, with
this allocation strategy the high level controller sees the
actuators and the allocator as a first-order linear filter
(whose eigenvalue is a design parameter), making it easy
to consider this virtual dynamics in the design of the high-
level controller.

For the high level control we design a controller for
trajectory tracking that considers also the effect of the
allocator (namely the linear first order dynamics) and

achieves global exponential stability for arbitrary class C3

reference functions.

3.1 Static Allocation

We design the control allocation algorithm following
Passenbrunner et al. (2016). We summarize briefly the
fundamental of the corresponding allocation technique.
Consider a virtual control uv ∈ Rnuv , a number of re-
dundant actuators na > nuv and a commanded virtual
control uv,c ∈ Rnuv coming from a high level controller.
The actuators should obey a first-order (possibly coupled)
dynamics:

ẋa = f(xa) + g(xa)u, uv = h(xa) (4)

with f : Rna → Rna , g : Rna → Rna×na , h : Rna → Rnuv .
In this platform we have na = 2n and nuv

= 3.

The allocator generates u such that limt→∞ ‖uv−uv,c‖ =
0, while minimizing a cost function J : Rna → R.

In particular, the static allocation control is given by:

u = g(xa)−1 (−f(xa) + uy − uJ) (5)

where:

uy = γP∇h(xa)
(
∇h(xa)

T∇h(xa)
)−1

(uv,c − h(xa))

uJ = γJ∇⊥h(xa)∇J(xa)
(6)

with ∇(·) indicating the gradient of a function and
∇⊥h(xa) being the following projection matrix:

∇⊥h(xa) = I−∇h(xa)
(
∇h(xa)T∇h(xa)

)−1∇h(xa)T .
(7)

The two terms uy and uJ guarantee respectively the
regulation condition and the optimality condition. The
positive gain γP ∈ R+ is used to adjust the speed
of the linear first order filter governing the dynamical
relationship between uv,c and uc. Instead, gain γJ ∈ R+

is used to adjust the speed of the allocation term that
minimizes cost J .

For this specific application, according to (1), we can
define:

xa = [w1 θ1 · · · wn θn]
T

(8)

u = [uw1 uθ,1 · · · uw,n uθ,n]
T

(9)
f(xa) = 0, g(xa) = I (10)

h(xa) =


n∑
i=1

kww
2
i

[
cos(θi)
sin(θi)

]
n∑
i=1

(Πri)
T kww

2
i

[
cos(θi)
sin(θi)

]
 . (11)

A crucial aspect that influences the behavior and the
optimality of the allocator relies on the choice of the cost
function J .

For our application the cost function was chosen as follows:

J =

n∑
i=0

µ1

(
w̃i

∆w,i

)6

+ µ2

(
θ̃i

∆θ,i

)6

+ µww
2
i

 , (12)

with:
w̃i = wi − wm,i θ̃i = θi − θm,i

∆w,i = wi − wi ∆θ,i = θi − θi

wm,i =
wi + wi

2
θm,i =

θi + θi

2

(13)
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Fig. 3. The hierarchical control architecture comprising the high level controller and the low level allocator.

and where µ1, µ2, µw are positive scalar weights.

The first two terms in (12) impose a soft state constraint on
the states of the actuators according to (2). The functions
are indeed almost zero in the intervals [wi wi], [θi θi] and

very steep when approaching the state limits wi, wi, θi, θi.
The third term in (12) penalizes high rotational speeds of
the propellers, to reduce the energy consumption of the
platform.

Lemma 1. If
rank(∇h(xa)) = 3, (14)

system (1b) augmented with allocator (5)-(11) is such
that:

(1) for each initial condition θi(0), wi(0) and each virtual
commanded input t 7→ uv,c(t), the virtual control
satisfies:

u̇v = γP (−uv + uv,c)

(2) for any constant selection of uv,c, cost J defined in
(12) converges to the constrained minimum J∗:
J∗ = min

xa∈Rna
J(xa), subject to h(xa) = uv,c.

3.2 High Level Controller

Based on item (1) of Lemma 1, the allocator and the
actuators can be considered by the high level controller
as a first order linear filter having a pole in −γP . The
equivalent system is represented in Figure 4 and can be
written as:

mv̇ = R(ψ)S1uv
jω̇ = S2uv

u̇v = γP (−uv + uv,c),
(15)

where uv,c ∈ R3, uv ∈ R3 are the states of the first order
linear filter, S1 = [ 1 0 0

0 1 0 ] and S2 = [ 0 0 1 ].

The goal is to design a high level controller that stabi-
lizes (15) for a trajectory tracking purpose. The desired
trajectory can be expressed as pR(t), ṗR(t), · · · ,pR

(n)(t),

ψR(t), ψ̇R(t), · · · , ψ(n)
R (t), where pR(t) ∈ R2 is a desired

position trajectory in time, ψR(t) ∈ R a desired attitude
trajectory and the subsequent functions are their time
derivatives. We define the tracking error variables as:

p̃(t) = p(t)− pR(t)
ψ̃(t) = ψ(t)− ψR(t).

(16)

The goal of the high-level controller is to ensure limt→∞ p̃ =
0 and limt→∞ ψ̃ = 0, namely the trajectory converges to
the desired path.

To this end, we propose the following selection:

uv,c = B−1(u̇∗v −Au∗v)−Kũv (17)

where A = −γP I3, B = γP I3 and K ∈ R3×3 is a gain
matrix such that A−BK is Hurwitz. Selection (17) uses
the feedforward signal

u∗v =

mRT (ψ)
(
−kP p̃− kD ˙̃p + p̈R

)
j
(
−kP,ψψ̃ − kD,ψ ˙̃

ψ + ψ̈R

)  (18)

with ũv = uv − u∗v and where the four positive gains,
kP ∈ R>0, kD ∈ R>0, kP,ψ ∈ R>0, kD,ψ ∈ R>0, assign
a PD like behavior of the translational and rotational
dynamics.

Controller (17), (18) ensures a desirable closed-loop behav-
ior with the equivalent dynamics (15). This is established
in the next lemma.

Lemma 2. Consider the feedback interconnection between
plant (15) and controller (17), (18). For these dynamics,

the point (p̃, ψ̃, ˙̃p,
˙̃
ψ, ũv) = 0 is globally exponentially

stable.

3.3 Overall Control Structure

The overall control input is defined as:

[uw,1 uθ,1 · · · uw,n uθ,n]
T

= uy − uJ (19)

with uy and uJ defined in (6) and with a commanded
virtual control uv,c defined as in (17).

With this overall scheme in place, the following main result
can be proven by combining the results proven below in
Lemmas 1 and 2.

Theorem 3. Consider some class C3 functions pR(t), ψR(t)
as desired position and attitude trajectories for the plat-
form. Consider the overall closed loop system (1),(19),(6)-
(11),(17),(18). Consider a cost function J : Rna → R. The
overall closed loop system is such that:

• The trajectories p(t), ψ(t) of system (1) converge
globally and exponentially to pR(t), ψR(t).

• The commanded virtual control uv,c(t) converges to:
uv,c(pR(t), ψR(t)) that depends only by the reference
trajectories and its derivatives.

• For any constant reference trajectory leading to a
constant value of uv,c, xa converges to a stationary
point of

J(xa), subject to h(xa) = uv,c. (20)

In particular, if J is strongly convex, then xa con-
verges to the global minimum of (20).

4. SIMULATIONS

In this section we first describe the parameters of our
system and then we present the main results of the
simulations. All the parameters are taken from the real
ROSPO platform and estimated by experiments. The
experimental platform has n = 3 actuator modules, but
is modular and other modules can be easily attached. For
our system ((1a) and (1b)) we identified m = 5.1 kg,
j = 0.42 kgm2 and kw = 6.5 · 10−4 Ns2. The inertia was
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architecture.

Fig. 5. Cost function J in (12) for a single actuator module
(turret and propeller). The overall cost involves the
sum of these terms.

estimated considering the mass of the platform structure
(3.6 kg) equally distributed over its area (80cm x 40cm)
and considering the mass of each single turret (0.5 kg)
as a point mass. Scalar gain kw was estimated on a test
bench with a 6-axis force sensor, using a commercial BLDC
motor, and a custom ESC with closed-loop speed control.
The three actuator modules have the following positions
r1 = [0.2 , 0.35], r2 = [0.2 ,−0.35] and r3 = [−0.2 , 0].

For the high-level controller we considered the following
proportional and derivative gains ensuring a desirable

linear response of the linear error dynamics ( ˙̃p, ˙̃v,
˙̃
ψ, ˙̃ω):

kP = 0.15, kP,ψ = 0.1, kD = 0.6 and kD,ψ = 0.4. Matrix
K was selected with a pole placement algorithm, placing
the eigenvalues of the dynamics at [−2,−4,−3] which is
a reasonable choice in terms of the experienced input size.
These values were chosen in order to keep the inputs uθ,i
and uw,i reasonably below their maximal values.

Finally, for the cost function (12) in the allocator block
we had to consider the following physical constraints of
the actuators: wi = 95 Hz, wi = 9 Hz, θi = 4π and
θi = −4π. The weight parameters in (12) have been
selected as µ1 = 300, µ2 = 750 and µw = 1/2000, in order
to have comparable values of the penalty terms appearing
in (12) and corresponding to the different soft saturations
imposed by the allocation strategy. The cost function for
a single actuator module can be seen in Figure 5, where
one can appreciate its increasing behavior close to the soft
actuator limits.

For the simulation we set the following allocation gains:
γP = 1 and γJ = 4. The reference trajectory for the high-
level controller is an ∞-shaped track. The corresponding
function is the following:{

pR,x(t) = ρ cos(c1t)
pR,y(t) = ρ sin(c2t)
ψR(t) = c3t+ π/2

, (21)

with ρ = 4, c1 = 0.2, c2 = 0.4 and c3 = −0.18. The last
equation of the reference ψR for ψ imposes a constant yaw
rate along the ∞-shaped path.
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The simulation step was set equal to 10 ms. We imposed an
error at the initial position of the platform in order to show
the transient behavior of our controller. Figure 6 shows in
dashed line the desired path and in solid red line the actual
path followed by the platform. The rectangles on the path
show the position and orientation of the platform at some
time instants. The three thin orange lines appearing on
each rectangle show the orientation of the turrets. The
length of those lines is proportional to the force generated
by each module. Only the first 30 seconds out of the 150
of the simulation were plotted, to avoid making the plot
too crowded and to better highlight the initial transient.
These 30 seconds correspond to an almost complete “∞”
track.

A clearer representation of the desired positions and actual
positions for the whole simulation is presented in Figure 7,
which shows how the closed-loop system quickly reaches
the desired position and the error converges to zero asymp-
totically.

The effect of the allocator and of its term uJ are evident
in Figure 8, showing the evolution of the cost function in
two simulation runs with γJ = 0 and γJ = 4, respectively.
Clearly, the case γJ = 0 corresponds to ignoring the cost
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J , because uJ becomes identically zero. From the figure we
may appreciate how in the case γJ = 4 the allocator is able
to keep the cost function quite low, and in our particular
case this keeps the actuator states, wi and θi, inside their
limits (see the graphs on the right side of Figure 9).
Without uJ the actuators states (in particular θi) exceed
their saturation limits just after 100 s of simulation.

Figure 9 shows the state values of the actuators (wi and θi)
during the whole simulation, showing that the saturation
limits are never reached when using the full scheme with
allocation (right plots).
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Fig. 9. Actuators states in two cases: in (a) the opti-
mization term uJ is disabled (left plots); in (b) the
optimization term uJ is enabled (right plots).

5. CONCLUSIONS

We considered the control allocation problem in an over-
actuated hovercraft vehicle. A hierarchical control archi-
tecture has been proposed, consisting of a high level con-
troller and a control allocation algorithm. Global exponen-
tial convergence to zero of the trajectory tracking error has
been proved for the proposed scheme. Simulation results
have been given, based on a realistic model of an exper-
imental platform, which confirm the desirable features of
the proposed control scheme. In particular, our simula-
tions show desirable convergence properties and also show
how the control allocation algorithm is capable of keeping
the actuator states inside their saturation bounds. Future
work will consider friction of the hovercraft, will analyze
the robustness of the control scheme and will implement
an anti-windup controller to handle actuator saturation
phenomena that may occur during the transient responses.

Finally, the new control design will be tested on the real
ROSPO experimental platform.
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