
HAL Id: hal-01496284
https://laas.hal.science/hal-01496284

Submitted on 27 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Target Tracking via a Circular Formation of Unicycles
Lara Briñon Arranz, Alexandre Seuret, António Pascoal

To cite this version:
Lara Briñon Arranz, Alexandre Seuret, António Pascoal. Target Tracking via a Circular Formation
of Unicycles. IFAC WC 2017 - 20th IFAC World Congress, Jul 2017, Toulouse, France. pp.5947-5952.
�hal-01496284�

https://laas.hal.science/hal-01496284
https://hal.archives-ouvertes.fr


Target Tracking via a Circular Formation
of Unicycles ?
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Abstract: This paper deals with the problem of encircling a moving target with a fleet of
unicycle-like vehicles. A new control law is developed to steer the vehicles to a circular formation
whose center tracks the target. The novelty of this paper lies in the fact that the control law
only uses the velocity of the target and the relative positions of the agents with respect to it,
expressed in the local frame of each vehicle. Communication between agents is used to maintain
the vehicles equally spaced along the circular formation. Simulation results show the effectiveness
of the proposed strategy.
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1. INTRODUCTION

Formation control is a relevant problem in the wide area
of motion coordination of multi-agent systems that has
been the focus of research documented in the literature
(see Mart́ınez et al. (2007), Beard et al. (2001), Egerstedt
and Hu (2001) and the references therein). In particular,
circular formation control of multi-agent systems has been
the subject of considerable research effort over the last
years because of its multiple applications, such as target
tracking and source-seeking missions of the type described
in Leonard et al. (2007) and Ögren et al. (2004). Circular
formation for nonholonomic vehicles was studied by Mar-
shall et al. (2004) and Lan et al. (2010) using cyclic pursuit
strategies. Circumnavigation around a fixed target using
only bearing measurements was proposed by Zheng et al.
(2015). Circular collective motion of a network of unicycle
agents was studied by Sepulchre et al. (2008). In all of the
above, the center of the desired circular formation is fixed.

A relevant and challenging problem is to consider time-
varying formations in which the center of the formation
is time-varying. Indeed, time-varying configurations are
appropriate for some applications where the agents per-
form collaborative tasks that require the group to move
towards an a priori unknown direction and to adapot a
desired formation geometry. For instance, in source seeking
applications, the formation is driven to follow the gradient
of the signal emitted by a source of interest, see Ögren
et al. (2004) and Briñón-Arranz et al. (2016). Target
tracking problems also require the consideration of time-
varying formations. Cooperative approaches to meet this
challenge using a fleet of vehicles have been studied in the
literature (Klein and Morgansen (2006); Lan et al. (2010)).
Based on cyclic pursuit strategies, the work of Kim and
Sugie (2007) describe a cooperative control law for moving
target-capturing with a fleet of vehicles modeled as simple
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integrators. In Goncalves et al. (2010) and Frew et al.
(2008) a vector field control approach is presented that
enforces a simple integrator vehicle to converge to time-
varying target trajectories. Circular formation control with
a moving center for vehicles modeled by simple or double
integrator dynamics was addressed in Swartling et al.
(2014). In a recent paper by Yu and Liu (2016), the
circular formation control problem of multiple unicycle
vehicles was studied. Using cyclic pursuit techniques, the
control law proposed guarantees that the vehicles describe
a circular trajectory around a common fixed center using
only local information. Mallik et al. (2016) proposed a
deviated cyclic pursuit strategy to stabilize a group of
unicycle vehicles to a circular formation around a target,
using only bearing angle information of the target and the
neighbours. In the two references above, the theoretical
results hold for a fixed target and the potential application
of both proposed strategies in the case of time-varying
target is only shown through simulations.

Time-varying circular formation control for nonholonomic
agents is a far more challenging problem. Based on previ-
ous circular formation control results described in Sepul-
chre et al. (2008), a new controller design to make nonholo-
nomic vehicles converge to a circular motion following a
time-varying reference for its center is provided by Briñón-
Arranz et al. (2014). The main idea is to apply affine
transformations to the circular trajectories of a stable
autonomous exosystem and to enforce the multi-agent sys-
tem to track these transformed trajectories. The absolute
positions of the agents in a global reference frame as well
as the velocity and acceleration of the time-varying center
are needed to compute the designed tracking controller
to ensure global asymptotic stabilization of the circular
formation. A distributed reconfigurable control law is pro-
posed in Lan et al. (2010) to enforce a group of vehicles
to follow and encircle a moving target while adopting an
evenly spaced formation. Only the target velocity and local
information in addition to communication between neigh-



bouring agents are needed. However, the proposed strategy
ensures only local stability. Furthermore, the tracking po-
sition errors with respect to the target are locally bounded
but do not converge to zero.

The main objective of this paper is to devise a method
to track the position of a moving target with a circular
formation of unicycle vehicles. Each agent is able to
measure its relative position with respect to the target in
its own reference frame. Based on the ideas from Briñón-
Arranz et al. (2014), an autonomous stable exosystem
is used to generate the circular trajectories and a new
tracking control design stabilizes the agents to a circular
motion around the moving target. Only the velocity of
the target expressed in the local frame is known, the
acceleration is not required. In addition, the vehicles have
communication capabilities and thus, they are able to
communicate with their neighbors in order to achieve a
uniform radial distribution of the circular formation.

The paper is organized as follows. Section 2 starts by
introducing the model adopted for the vehicles and the
communication network topology, after which the problem
of target tracking via a circular formation of unicyles is
formulated. The proposed control strategy is presented
in Section 3. Section 4 describes the main contribution,
a nonlinear control law to stabilize the agents to a cir-
cular formation tracking a time-varying center. The per-
formance of the proposed strategy is analyzed through
numerical simulations in Section 5. Finally, the paper
contains the main conclusions and discusses issues that
warrant future research.

2. PROBLEM FORMULATION

2.1 Model of the agents

In what follows, a group of N vehicles are modeled as
unicycles, subject to simple nonholonomic constraints,
such that the kinematic model of agent i = 1, . . . , N is
defined by

ṙi =R(θi) [vi, 0]
T

θ̇i =ui
(1)

where ri ∈ R2 is the position vector of vehicle i in a
given inertial frame, θi its heading angle, R(θ) denotes
the rotation matrix from body to inertial reference frame
defined by R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
, and (vi, ui) are the control

inputs consisting of linear and rotation speed.

2.2 Communication topology

In the set-up adopted, each vehicle can communicate with
a set of neighboring vehicles. We assume that the commu-
nication network of the multi-agent system is represented
by an undirected graph. The set of vertices of the graph
is denoted by V = {1, . . . , N}, E represents the set of
edges such that (i, j) ∈ E if agents i and j communicate
with each other. Thus, G = (V,E) is the corresponding
undirected graph and L its Laplacian matrix. Let Ni =
{j ∈ V : (i, j) ∈ E} be the set of neighbors of agent i and
|Ni| its number of neighbors. If the graph G is connected
then Lx = 0 if and only if x = 1x0.

2.3 Key objective

The key objective is to derive a cooperative control law
such that a group of agents reaches a formation encircling
and tracking a moving target describing a trajectory
c(t) ∈ C1(R→R2), i.e. c(t) is a continuously differentiable
function of time. To accomplish this task, the agents will
be deployed in a uniform distributed pattern along a
circular formation whose center is the moving target.

In the present approach we consider that the only infor-
mation available for each vehicle is its relative position
with respect to the target expressed in its body frame, i.e.,
R(θi)

T (ri− c), rather than in the global inertial frame. It
is also assumed that the velocity of the target ċ(t) is known
for all the vehicles, also expressed in the local coordinate
frame of each agent, i.e., R(θi)

T ċ.

3. CONTROL DESIGN

In previous work by Briñón-Arranz et al. (2014), we
extended a circular formation control law presented in
Sepulchre et al. (2008) to time-varying formations, not
only circular, using an exosystem and a tracking control
design. A translation control was proposed in which the
agents are stabilized to a circular formation whose center
tracks a time-varying reference c(t). It was assumed that
the agents can compute their own absolute position ri and
moreover, in order to track the reference c(t), both the first
and second order derivatives, ċ(t) and c̈(t), were known. In
other words, c(t) ∈ C2(R→R2), i.e. c(t) was a continuous
and twice differentiable function of time.

In the present paper, the goal is to design a new formation
control law which relaxes the assumptions of the problem.
We improve substantially the above result by developing a
target tracking control law that only requires information
on the relative positions between the agents and the target.
Additionaly, instead of both the first and second order
derivatives, in this approach only the velocity of the target
ċ(t) expressed in the local frame of each agent is known.
Thus, c̈(t) is not required and no global information such
as the absolute positions of the agents and target are
needed. Consequently, the amount of required information
decreases considerably. We will see that this is made
possible at the price of introducing a position error which
can be made arbitrarily small.

3.1 Control strategy

Consider that each vehicle is able to compute the relative
position vector ri − c, where c represents the position of
the target. The objective for each agent is to encircle and
track the target, i.e., to describe a circular motion around
c(t). This objective can be also expressed as follows: design
control laws (vi, ui) for the multi-agent system (1) such
that the relative vector ri − c describes a circular motion
about the origin.

In order to exploit the circular control law described
in Sepulchre et al. (2008), we introduce an exosystem
represented by the multi-agent dynamics (3). The main
idea is thus to make the exosystem converge to a circular
motion centered at the origin and to use the exosystem
trajectories r̂i as references for each relative vector ri − c,
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Fig. 1. Structure for feedback design including a decen-
tralized exosystem. Each agent i computes its own
exosystem that communicates with other exosystems
by means of a communication protocol depending on
the distance between the agents (the Laplacian matrix
L depends on the agents’ states ri).

see Fig 1. Each agent is able to measure its relative position
expressed in its body frame, i.e., R(θi)

T (ri − c). The
error between the reference and the relative position vector
expressed in the body coordinates of agent i is defined by

ei = R(θi)
T ((ri − c)− r̂i) = R(θi)

T (ri − (r̂i + c)). (2)

The problem is then to design control laws (vi, ui) for the
multi-agent system (1) such that the position errors ei
converge to zero for all i = 1, . . . , N .

3.2 Autonomous stable exosystem

The collective motion of a group of nonholonomic agents
has been extensively studied in the literature (see Leonard
et al. (2007) and Sepulchre et al. (2008)). In these refer-
ences, the authors proposed a circular formation control
law for a group of nonlinear agents modeled as unicycle
dynamics. In all of the above references, the vehicles are
represented by (1) with unit linear velocity, i.e. vi = 1, ∀i.
In order to exploit these previous results, we consider an
autonomous exosystem represented by the unicycle model

˙̂ri =R(ψi) [v0, 0]
T

ψ̇i =ûi
(3)

where v0 = |ω0|R0 is the constant linear velocity, R0

denotes the desired radius, ω0 6= 0 is the angular velocity,
ψi represents the angular orientation of the velocity vector
˙̂ri, and ûi is the control input. In order to be self-
consistent, we state the following lemma which summarizes
the results presented by Sepulchre et al. (2008):

Lemma 1. Let ω0 6= 0 and κ > 0 be two control param-
eters and R0 > 0 be the radius of the desired circular
motion. Then, the control law

ûi = ω0(1 + κ ˙̂rTi r̂i)−
∂U

∂ψi
(4)

ensures that the multi-agent system (3) converges to a
circular motion centered at the origin of the coordinates
frame with radius R0 and the direction of rotation is
determined by the sign of ω0. Moreover, the agents are
distributed along the circle following a pattern defined by
an equilibrium point of the potential function U(ψ).

The proof of Lemma 1 can be found in Sepulchre et al.
(2008). In order to clarify this result, we present here

a sketch of the proof. Define r̂ = (r̂T1 , . . . , r̂
T
N )T , ψ =

(ψ1, . . . , ψN )T , and consider the Lyapunov function

S(r̂, ψ) =
1

2

N∑
i=1

∥∥∥ ˙̂ri − ω0Rπ
2
r̂i

∥∥∥2 ≥ 0, (5)

where Rπ
2

= R(π2 ). At the equilibrium points of the previ-
ous Lyapunov function, i.e., S(r̂, ψ) = 0, the dynamics of

the exosystem (3) satisfy ˙̂ri − ω0Rπ
2
r̂i = 0, ∀i. Thus, the

position vector and the velocity vector are perpendicular,
i.e., ˙̂rTi r̂i = 0. This condition leads to the kinematic
relation for the rotation of a rigid body. In other words, at
equilibrium the vectors r̂i turn around the frame origin.
Considering the proposed control law (4) with U(ψ) = 0
and evaluating the derivative of S(r̂, ψ) along the solutions
of the resulting closed-loop system (3) yields

Ṡ(r̂, ψ) =

N∑
i=1

ω0r̂
T
i

˙̂rk(ω0 − ûi) = −κ
N∑
i=1

(ω0r̂
T
i

˙̂ri)
2 ≤ 0.

In conclusion, S(r̂, ψ) is a suitable Lyapunov function for
the exosystem (3), and by the LaSalle Invariance Principle
the solutions converge to the largest invariant set for which
Ṡ = 0. Consequently, the dynamics of the exosystem
satisfies ˙̂ri = ω0Rπ

2
r̂i which corresponds to a circular

motion around de origin.

3.3 Uniformly distributed circular formation

Inspired by the synchronization problem of coupled os-
cillators, Sepulchre et al. (2008) introduced a potential
function U(ψ) which depends on the relative headings and
induces a repulsion force to enlarge the angular distance
between two connected agents in the circle. The agents
then compute the control law (4) with

∂U

∂ψi
=

κu
|Ni|

∑
j∈Ni

b|Ni|/2c∑
m=1

sin(m(ψi − ψj))
m

, (6)

where κu is a positive constant and b|Ni|/2c is the largest
integer less than or equal to |Ni|/2. The evenly spaced
state corresponding to the uniform distribution of the
agents along the circle is a critical point of U(ψ). In this
situation, the stability of the autonomous exosystem can
be proved using, as in Lemma 1, the Lyapunov function
S̄(r̂, ψ) = κS(r̂, ψ) + U(ψ), where S(r̂, ψ) is defined
in (5). Differentiatig S̄(r̂, ψ) along the solutions of (4)

yields ˙̄S(r̂, ψ) ≤ 0 and thus, applying LaSalle Invariance
Principle we conclude that the uniform distribution state
is locally asymptotically stable for fixed connected graphs.

In our previous work, Briñón-Arranz et al. (2014), we
extended this result to distance-dependent communication
graphs. This means that each agent can only receive
information from its nearest neighbors. In this situation, a
communication area for each vehicle is introduced, defined
by the critical communication distance ρ which depends
on the characteristics of the communication devices and
the environment of the agents. The distance-dependent
graph is now time-varying because the position of vehicles
is changing in time. Based on graph theory, the distance-
dependent Laplacian matrix L(r(t)) is defined as:

Li,j =

{
|Ni|, if i = j,
−1, if ‖ri − rj‖ ≤ ρ,
0 otherwise.

(7)



In this situation, due to the geometrical properties of the
circle, if the critical communication distance ρ satisfies the
condition

ρ > 2R0 sin
π

N
, (8)

then the state in which the agents are evenly spaced is the
only critical point of U(ψ) and thus uniform distribution
of the agents along the circle is achieved. The details of the
proof can be found in Briñón-Arranz et al. (2014). Note
that each vehicle computes its own virtual exosystem (3)
and communicates the virtual quantity ψi to its neighbors.

4. TARGET TRACKING WITH A CIRCULAR
FORMATION OF VEHICLES

In this section, we present a new control strategy to solve
the target tracking problem with a group of unicycle vehi-
cles. The main idea is to consider the circular trajectories
of the autonomous exosystem r̂i as references to be tracked
for the relative vectors ri − c. In other words, the aim is
to enforce convergence of each ri(t) to the desired position
r̂i(t) + c(t) composed by the circular trajectory generated
by the exosystem and the position of the target which
is moving with velocity ċ(t). Consider the tracking error
defined by (2). Then, the error dynamics satisfy

ėi =R(θi)
T (ṙi − ( ˙̂ri + ċ))− uiRπ

2
R(θi)

T (ri − (r̂i + c))

=[vi, 0]T −R(θi)
T ( ˙̂ri + ċ)− uiRπ

2
ei.

As described in Vanni (2007), we introduce the vector
δ = [−δ, 0]T , where δ is an arbitrarily small positive
constant, such that:

ėi =[vi, 0]T−R(θi)
T ( ˙̂ri+ċ)−uiRπ

2
(ei − δ)− uiRπ

2
δ

=∆[vi, ui]
T −R(θi)

T ( ˙̂ri + ċ)− uiRπ
2

(ei − δ),
(9)

where ∆ = ( 1 0
0 δ ). Note that the new error vector (ei −

δ) is the distance between a point located at distance δ
from the center of mass of the agent i in the x−axis of
its local reference frame and the desired position r̂i + c.
The addition of δ is similar to a feedback linearization
technique which makes the control variable ui appear
directly in the position error dynamics. Consequently, in
order to design simultaneously both control inputs of the
unicycle-like agents, the error is made to converge to a
neighborhood of the origin instead of to the origin itself.

Theorem 2. Consider a differentiable function c(t) : R →
R2. LetR0 > 0 be the radius of the desired circular motion,
ω0 6= 0, κ > 0, κu > 0 be three control parameters and
K ∈ R2×2 be a symmetric positive definite matrix. Then,
the control law

[vi, ui]
T = ∆−1

(
R(θi)

T ( ˙̂ri + ċ)−K(ei − δ)
)

(10)

where δ = [−δ, 0]T with δ being an arbitrary small positive

constant, ∆ = [ 1 0
0 δ ] , and the exosystem ˙̂ri is defined

by (3) with the control law ûi defined by (4) with (6),
makes all the agents defined by (1) converge to an evenly
spaced circular formation whose center tracks the time-
varying target position c(t). The direction of rotation
is determined by the sign of ω0. Moreover, the relative
distance between each agent i and the moving target, i.e.,
‖ri(t)− c(t)‖, converges to the set R = [R0 − δ,R0 + δ].

Proof. The proof is divided in two steps. First, the
autonomous exosystem is stabilized to a fixed circular

Fig. 2. Target encircling with a group of 5 agents governed
by control law (10). The figure shows three snapshots:
the initial condition represented by the empty red
agents and two states at t = 20s and t = 50s respec-
tively. The target is represented by a blue diamond
and the blue line displays the target trajectory. The
dashed red line denotes one agent’s trajectory.

motion, as presented in Section 3. Therefore, thanks to
the circular control law (4) with (6), when t → ∞ the

trajectories of the autonomous exosystem satisfy ˙̂ri(t) =
ω0Rπ

2
r̂i(t), ∀i, as proved in Lemma 1. The exosystem

is used as an autonomous reference generator and the
circular trajectories become references to be tracked by
system (1).

The second step consists of a tracking control strategy to
make each unicycle vehicle follow the desired time-varying
trajectory r̂i(t)+c(t). Consider the error dynamics defined
in (9). According to the proposed control law (10), the
closed-loop error dynamics become

ėi = −uiRπ
2

(ei − δ)−K(ei − δ). (11)

The stability of the error system (11) is studied using the
Lyapunov function given by

V (ei) =
1

2
‖ei − δ‖2. (12)

Differentiating V (ei) along the solutions of the closed-loop
dynamics (11) yields

V̇ (ei) =(ei − δ)T (−uiRπ
2

(ei − δ)−K(ei − δ))

=− (ei − δ)TK(ei − δ) ≤ 0.

Therefore, it is proven that ei = δ, ∀i is a globally
exponentially stable equilibrium point for the error system.

Finally, we analyze the resulting closed-loop dynamics of
multi-agent system (1). According to the stability analysis
of the error system, when t goes to∞, ei tends to δ and ėi
converges to 0. Therefore, at steady state, in view of the
previous definition of the error, it follows that

ri − (r̂i + c) =R(θi)δ

ṙi − ( ˙̂ri + ċ) =uiRπ
2

(ri − r̂i − c).

Consequently, the following equality holds:

ṙi − uiRπ
2
R(θi)δ = ˙̂ri + ċ.

Let zi = ri −R(θi)δ define the point located at distance
δ from the center of mass in the x-axis of the local
coordinates frame of agent i. The key idea is to control



Fig. 3. Evolution of the x-component of the position error
ex,i for a simulation of 5 agents. Two simulations
with different values of parameter δ are displayed:
δ = 0.1 (blue lines) and δ = 0.8 (red dashed lines).

zi and make it converge to a circular motion with a time-
varying center. Because the exosystem converges to a fixed
circular motion, at steady state the following equation
holds for all i = 1, . . . , N :

żi = ˙̂ri + ċ = ω0Rπ
2
r̂i + ċ = ω0Rπ

2
(ri −R(θi)δ − c) + ċ.

We can conclude that the closed-loop dyanamics describe
a time-varying circular motion around the target given by

żi = ω0Rπ
2

(zi − c)︸ ︷︷ ︸
circular motion

+ ċ︸︷︷︸
target velocity

.

To conclude, the artificial point zi at a distance δ from the
center of mass of the agent converges to a moving circular
motion around the time-varing center c(t). Therefore, the
agents ri converge also to a circular motion tracking the
target. In addition, the agents exchange information with
their neighbors, the virtual angular quantity ψi, in order
to maintain an evenly spaced distribution along the circle.

The previous Lyapunov analysis proved global exponential
convergence of the error which implies that for all positive
constant ε, there exists a time instant tε > 0 such that,

‖ei(t)− δ‖ ≤ ε, ∀t ≥ tε.
Considering the definition of the error in (2) and develop-
ping the previous inequality, we have that for all t ≥ tε
the following expression holds:∣∣‖R(θi)

T (ri(t)− c(t))‖ − ‖R(θi)
T r̂i(t) + δ‖

∣∣ ≤ ε.
We know that the trajectories of the exosystem converge
to circular motions centered at the origin and with radius
R0, i.e., ‖r̂i‖ = R0, for all i. Then, the distance between
the position of each agent i and the target satisfies

R0 − δ − ε ≤ ‖ri(t)− c(t)‖ ≤ R0 + δ − ε, ∀t ≥ tε.
The previous inequality holds for any arbitrarly small
value of ε and consequently, at steady state, the radius
of the final circular formation R converges to the set
R = [R0 − δ,R0 + δ], thus concluding the proof.

Remark 1. In the definition of the control law (10), one
can see that the input variables ui are multiplied by
1/δ, which corresponds to the inverse of the norm of the
artificial error vector δ. Therefore, if one wishes to achieve
an almost perfect tracking, i.e. δ � 0, then the control
inputs ui may reach large values. Conversely, if one wants
to limit the amplitude of the control input ui, one will have
to enlarge the tracking error, showing a tradeoff between

Fig. 4. Evolution of the control inputs ui for a simulation
of 5 agents. Two simulations with different values of
parameter δ are displayed: δ = 0.1 (blue lines) and
δ = 0.8 (red dashed lines).

the reduction of the position error and the limitation of
the control inputs ui.

The control law (10) presents several advantages with
respect to the time-varying circular control law proposed
in Briñón-Arranz et al. (2014). First of all, the new con-
trol strategy allows designing directly the control inputs
(vi, ui) for each agent i, instead of deriving a dynamic
controller where v̇i is a control input in order to deal with
time-varying references c(t). In addition, the control law
singularities that appear in Briñón-Arranz et al. (2014),
such that vi = 0, are avoided with the new approach.
Secondly, the proposed control law (10) only requires the
relative position vector (ri − c) expressed in the body
frame and the target velocity ċ(t) to be computed, while,
in Briñón-Arranz et al. (2014), the dynamic controller
depends on absolute measurements of the center position
c, velocity ċ and acceleration c̈, as well as the absolute po-
sition of each vehicle ri. Hence, despite the issue exposed in
Remark 1, the control law (10) presents several advantages
for tracking and encircling a time-varying target.

5. SIMULATION RESULTS

In this section, simulation results are presented. For all
the simulations, the trajectory of the time-varying target
is defined by c(t) = [2+0.2t, 2+3 sin(0.08t+2)]T in meters
where t is in seconds, and the parameters of the exosystem
control law (4) are chosen as ω0 = 1rad/s, R0 = 2m, κ = 1
and κu = 1. The critical communication radius is ρ = 1.2
which satisfies condition (8).

In Fig. 2, a simulation with 5 agents modeled by (1)
following and encircling the time-varying target c(t) is
shown. The only information available for each agent i is
its relative position with respect to the target, i.e., ri − c,
and the velocity of the target ċ both expressed in its local
reference frame. The control parameters in (10) are K = I
and δ = 0.1, where I denotes the identity matrix.

The influence of parameter δ is analyzed in both Fig. 3
and 4. Firstly, the evolution of the position errors ei for a
5 agents simulation governed by (10) with K = I and two
different values of δ is shown in Fig. 3. The blue solid lines
display the case in which δ = 0.1 and the red dashed ones
the case δ = 0.8. As shown in the figure, the position error
converges to [−δ, 0]T , such that ex,i(∞) = −0.1 for the



Fig. 5. Evolution of the relative distance of each agent
with respect to the target ||ri − c|| for a simulation
of 5 agents following and encircling the time-varying
target c(t).

first case and ex,i(∞) = −0.8 for the second one. Fig. 4
illustrates the evolution of the control inputs ui for the
same two simulations with δ = 0.1 (blue solid lines) and
δ = 0.8 (red dashed lines). The bound on the control input
depends strongly on the control parameter δ: ‖ui‖ ≤ 65.02
when δ = 0.1 and ‖ui‖ ≤ 2.768 when δ = 0.8. Note that
the control inputs ui converge to the value of the angular
velocity ω0. These figures illustrate that the smaller the
value of δ the smaller the position error and the greater
the control inputs are, as stated in Remark 1.

Fig. 5 displays the evolution of the relative distances with
respect to the target ||ri − c|| for the previous simulation
with 5 agents shown in Fig. 2. The control parameters in
(10) are again K = I and δ = 0.1. The vehicles converge
to a circular motion centered at the target position and
whose radius R converges to the set R = [R0 − δ,R0 + δ]
defined in Theorem 2.

6. CONCLUSIONS

In this paper, a new control strategy to track the position
of a moving target with a circular formation of nonholo-
nomic vehicles is presented. The proposed control law only
requires the relative positions of the vehicles with respect
to the target and the velocity of the time-varying target
both expressed in their local frame. The control law is pro-
vided with a tuning parameter, δ, that allows for a tradeoff
between tracking error and bounded control inputs ui. In
addition, the vehicles send and receive information from
their neighbors in order to achieve a uniform configuration
along the circular formation.

Future work will focus on applying cooperative strategies
based on consensus in order to estimate the target position.
Another future direction is to study the performance of
the proposed control law when the velocity of the target is
unknown as well as to analyze its robustness with respect
to external disturbances and model uncertainty.

REFERENCES

Beard, R. W., Lawton, J., Hadaegh, F. Y., 2001. A coor-
dination architecture for spacecraft formation control.
IEEE Trans. on Control Sys. Technology 9, 777–790.
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tuto Superior Técnico-Dept. of Electrical Engineering.
Lisbon, Portugal.

Yu, X., Liu, L., 2016. Distributed circular formation con-
trol of ring-networked nonholonomic vehicles. Automat-
ica 68, 92–99.

Zheng, R., Liu, Y., Sun, D., 2015. Enclosing a target by
nonholonomic mobile robots with bearing-only measure-
ments. Automatica 53, 400–407.
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