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The SAE standard Time-triggered Ethernet defines a strong networking infrastructure, which supports the engineering of avionic systems. Avionic functions are often designed independently and integrated to form the avionic system. The iterative integration approach helps in controlling the design complexity of evolving avionic systems and aims at minimizing the cost associate with the reconfiguration of scheduling parameters of already integrated parts. On the other hand, the iterative approach requires to specify and manage a huge set of constraints, which are then solved to compute the optimal scheduling parameters. In this paper, we focus on this issue of manual specification of these constraints by the system engineer. We propose a model-driven approach, which provides the required abstractions and automation to support the system engineer in using effectively the iterative integration approach. The abstractions consist in a metamodel, which describes the system at a given integration step and a metamodel for the constraints. The automation consists in a model transformation which enables generating automatically the relevant constraints at integration step.

Model-driven Approach to the Optimal Configuration of Time-triggered Flows in a TTEthernet Network

Sofiene Beji 1 , Abdelouahed Gherbi 2 , John Mullins 1 , and Pierre-Emmanuel Hladik 3 1 Introduction

Avionic embedded systems are now engineered following the principles of Integrated Modular Avionics (IMA) architecture [START_REF]Integrated modular avionics (ima)[END_REF]. The IMA architecture is characterized essentially by the sharing of distributed computing resources called modules. Since avionic systems are inherently safety-critical systems, sharing these resources requires to guarantee some safety properties such as the collision-free.

Moreover, IMA-based avionic systems are distributed systems which depend on a robust and deterministic networking infrastructure. The Avionic Full Duplex Switched Ethernet (AFDX) [START_REF]Avionics full duplex switched ethernet (afdx)[END_REF] has long been adopted as a networking standard for the avionic systems. Therefore, the IMA and AFDX became the main components of a typical architecture model for the recent civil aircrafts such as B787 and A380. More recently, the SAE standard Time-Triggered Ethernet (TTEthernet) is emerging as a new standard of the avionic network [START_REF]Time-triggered ethernet (ttethernet)[END_REF]. With respect to AFDX, the TTEthernet standard enables to achieve a best usage of the network resources and is more deterministic. In particular, the TTEthernet network schedule is established off-line.

The avionic functions designed independently need to be integrated within an existing system deployed on a TTEthernet-networked IMA architecture. The integration of avionic system is a complex engineering task. We have presented in [START_REF] Beji | Smtbased cost optimization approach for the integration of avionic functions in ima and ttethernet architectures[END_REF] an iterative integration approach, which enables the integration of multiple IMA partitions as well as TTEhernet frames. This approach addresses the issue of finding an appropriate scheduling for the partitions and frames. The synthesized schedule may require the reconfiguration of the already integrated frames or partitions which lead to a supplementary re-certification cost that we aim to minimize. We consider this issue as Constraints Optimization Problem (COP) [START_REF] Rossi | Handbook of constraint programming[END_REF] where we satisfy not only a set of constraints but also we optimize the reconfiguration cost function.

In order for avionic engineers to use the iterative integration approach, they have to specify both the existing system and the new avionic functionality using a set of formal constraints. These constraints can then solved effectively using Constraints Programming (CP) techniques. The number and complexity of these constraints grow up very sharply even for small system examples. Therefore, using effectively the iterative integration approach faces a challenging constraints management complexity. In order to overcome this issue, we propose in this paper a model-driven engineering approach, which provides the required abstractions (i.e. metamodels) and defines the transformation process to enable the automatic generation of these constraints.

The paper is organized as follows. Section 2 presents the background knowledge and the model for the iterative integration problem. In Section 3, we introduce our model-driven engineering approach. We dedicate Section 4 and Section 5 to present the meta-models of our approach. We define in Section 6 the transformation process that generates the constraint program for a given integration problem. Our case study is presented in Section 7. We present the related works in Section 8 and we conclude the paper in Section 9.

Iterative Integration on TTEthernet Networks: Backgrounds and Model

The TTEthernet is a layer 2 protocol standardized under SAE AS6802 [START_REF]Time-triggered ethernet (ttethernet)[END_REF]. It defines a strategy of clock synchronization in a distributed system. The TTEthernet supports two classes of traffic: time-triggered traffic and event-triggered traffic. The time-triggered traffic is relevant mainly for the critical applications.

In this work, we are only interested in time-triggered (TT) traffic. In contrast to the event-triggered traffic, the time-triggered one is static and fixed time windows are reserved for the transmission of each frame on a given dataflow link.

A TTEthernet network can be represented by a graph G = (V, E) where V represents the nodes of the network and E the set of physical links. The nodes are of two types: the set of End-Systems (ES ) and the set of Network-Systems (NS ) Each physical link connecting two nodes defines a bidirectional communications, each of which is a dataflow link.

A TTEthernet frame f i is communicated from its source to its destinations throughout fixed paths called virtual links. A virtual link vl i is therefore associated with each frame f i and defines a tree structure where its nodes are a set of dataflow links. The root element of this tree is the first link on which a frame f i is transmitted, denoted first(f i ). The leaves are the last dataflow links on which the frame f i is transmitted, designated last(f i ). We denote by next(f i , l) the next dataflow links on which the frame f i is transmitted taking as reference the dataflow link l. We denote by f l i the transmission of the frame f i on the dataflow link l, f l i,k the k th instance of the frame f i on the dataflow link l and by L i the set of dataflow links on which f i is defined.

The transmission of each frame f i is characterized by the parameters: the period of f i , f i .Period , and its transmission delay on a dataflow link f i .Length. The periodic pattern describing the communication of all the frames is called hyper-period (HP ) and defined as the least common multiple of all frame periods. We denote by Instances(f i ) the number of instances considered for the frame f i and formally defined as HP fi.Period . The schedule of the k th instance of the frame f i on the dataflow link l is determined by the variable f l i .Offset which designate the offset time with the respect to the beginning of HP . The offsets are the only variables of the integration problem.

In the iterative integration problem as defined in [START_REF] Lauer | Cost optimization strategy for iterative integration of multi-critical functions in ima and ttethernet architecture[END_REF] and [START_REF] Beji | Smtbased cost optimization approach for the integration of avionic functions in ima and ttethernet architectures[END_REF], we have some configured applications which communicate through a TTEthernet network and we want to integrate new ones. To ensure the real-time requirements, we may reconfigure the scheduling of the previous ones. We focus in the scope of this paper on the reconfiguration of the network. This reconfiguration induces an additional cost of the re-certification of the system. We designate by Cost(f i ) the cost of reconfiguring a frame f i on a given dataflow link. We denote by F the set of considered frames, F old the set of configured frames and F new the set of frames to configure. For a configured frame f i , we denote by f l i/b .Offset(k) the offset of the k th instance of the frame f i on the dataflow link l before the integration and by f l i/a .Offset(k) this offset after the integration. When it is clear from the context, we simply designate the offset after the integration by f l i .Offset(k). We define by R l i (k) the reconfiguration function that returns 1 if the k th instance of frame f i on the dataflow link l is reconfigured and 0 otherwise. The goal of the iterative integration problem is then to minimize the total reconfiguration cost of the network. The reconfiguration cost of a frame instance

f l i,k is equal to Cost(f i ) × R l i (k)
3 Overall Approach

We present in this section our model-driven engineering approach to automatically generate the constraints program that solves the problem of a given integration step. As shown by Figure 1, our approach relies on the definition of two meta-models. The first one, called the Integration Specification Meta-Model, characterizes an iterative integration problem on TTEthernet networks. The second one called CP Integration Meta-Model defines the CP formalization to solve this problem. An instance of the first meta-model describes a real case of the iterative integration problem. We specify in this instance the configured frames and the frames to be configured and how they are deployed on the network architecture. An instance of the second meta-model models the CP program that solves a specific iterative integration problem. A transformation tool, which relies on the meta-models, enables transforming a given instance of the Integration Specification meta-model to the corresponding CP model. The latter is then transformed to a CP code structured following the targeted CP language specification and solved by a CP solver to find a new optimal configuration. By defining an intermediate CP model before generating the CP integration code, our approach can target different CP solvers. To test our approach, we have used MiniZinc [6] as target CP language. We specify in the following section the Integration Specification meta-model. A Schedule characterizes the allocation of time windows of each frame on each dataflow link. Obviously, many frames can be scheduled on a dataflow link and a frame is transmitted on the different dataflow links that defines its associated virtual link. The Schedule of a frame on a dataflow link may be synchronized with another of the same one on another dataflow link. This case occurs when a frame must be relayed simultaneously on different dataflow links

CP Integration Meta-Model

Our CP Integration Meta-Model is depicted by Figure 3. It is composed of a set of VariableDeclaration metaclasses, a set of Constraint metaclasses and a SolveItem metaclass. For readability purpose, we do not include in Figure 3 the comprehensive set of the relationships between these metaclasses. A SolveItem models a directive to the solver, which consists in the definition of two attributes, type, which is the type of the problem either a satisfaction or minimization problem; and objective, which is the optimized objective in the case of an optimization problem. In our case, the optimized objective is the reconfiguration cost.

Variables Declaration

As shown by Figure 3 

Constraints

To solve the integration problem, we consider nine types of constraints illustrated in Figure 3. We introduce for the definition of these constraints a new type Quantifier which quantifies the instance order of a frame and has four attributes:

(1) ident which gives an identification name for the quantifier, (2) type which specifies the type of the quantifier (e.g. exists or forall ), (3) min the minimum value of the quantifier and (4) max the max value of the quantifier. or vice versa. The contention free constraints can be formalized as follows:

Contention-Free

∀f i , f j ∈ F, ∀l ∈ L i ∩ L j , ∀k ∈ [1..Instances(f i )], ∀k ∈ [1..Instances(f j )],
f l i .Offset(k) + f i .Length ≤ f l j .Offset(k ) ∨ f l j .Offset(k ) + f j .Length ≤ f l i .Offset(k)
In the CP Integration Meta-Model, a Contention-Free Constraint is modeled by the class ContentionFreeConstraint which has the attributes (1) q1 and q2 as two Quantifier s on respectively the instance order k and k , (2) fio1 and fio2 the offsets of respectively f l i and f l j and (3) length1 and length2 to designate the transmission delays of f i and f j on a dataflow link.

Path-Dependent Constraints: We introduce this constraint to express the sequential transmission of a frame f i along a data path of the virtual link vl i . Formally this constraint is defined as follows:

∀f i ∈ F, ∀l ∈ next(f i , l), ∀k ∈ [1..Instances(f i )], f l i .Offset(k) + f i .Length + switch delay ≤ (f l i .Offset(k))
where, switch delay denotes the processing delay of a frame by a switch. A Path-Dependent constraint is specified in our meta-model by the metaclass PathDe-pendentConstraint, which has the following attributes: (1) q1 as a Quantifier on the instance order k of f i , (2) fio1 and fio2 the offsets of respectively f l i and f l i , (3) length the parameter f i .Length and (4) switchDelay the processing delay of a frame by a switch.

Latency Constraints

In order to ensure that frames meet their deadline requirements, we define latency constraints. These constraints bound the transmission delay of a frame along their datapaths and are formalized as follows

∀f i ∈ F, ∀l ∈ last(f i ), ∀k ∈ [1..Instances(f i )], f l i .Offset(k) -f first(fi) i .Offset(k ) ≤ max latency i
We represent a latency constraint in our CP meta-model by the metaclass LatencyConstraint which has the attributes (1) q1 to represent the instance order k, (2) fio1 to designate the offsets of f f irst(fi) i , (3) fio2 to designate the offsets of f l i and (4) maxLatency the maximal tolerated bound of latency.

Reconfiguration Constraint

The reconfiguration constraints detect if the already configured frames are reconfigured after the integration of new frames. The reconfiguration constraints are formalized as follows

∀f i ∈ F old , ∀l ∈ L i , ∀k ∈ [1..Instances(f i )], (f l i/b .Offset(k) = f l i/a .Offset(k)) ⇔ (R l i (k) = 0)
In the CP Meta-Model, a reconfiguration constraint is modeled by the metaclass ReconfigurationConstraint which has the attributes (1)q1 to represent the instance order k, (2) fio1 to designate the offsets after the integration (3) fir1 to designate the reconfiguration variables R l i (k) and ( 4) previousOffsets which contains the previous offsets of f i on the dataflow link l.

Model Transformation Process

We detail in this section the transformation rules implemented in our Transformation Tool to generate automatically the CP Integration Model. We note by M odelIn the integration specification model and by M odelOut the CP integration model. In the remainder, we detail the transformation rule corresponding to each component of a CP Integration model.

Variables

For the variables of the CP Model, we define the transformation rule given by Algorithm 1 that generates the FrameInstanceOffset instances. In Line 1, we select from the input model an instance of the metaclass Schedule, denoted by A. We create in Line 2 an instance of the FrameInstanceOffsets metaclass corresponding to A that we denote by B. In Line 3 -5, we assign the relevant attributes. 

Algorithm 1 Generation of FrameInstanceOffset Instances

Constraints

For the constraints, we present only the transformation rule that define the ContentionFreeConstraint instances. This rule is specified by Algorithm 2. In Line 1-2, we select from the input model two instances A and B of the metaclass Schedule. In order to define correctly a Contention-Free Constraint, we must check in Line 3 -4 that A and B are two instances that define a schedule of two different frames in the same dataflow link. To ensure constraint unicity, we impose that the ID of the frame associated with A is inferior that of B. We create then in Line 4 a new instance C of the ContentionFreeConstraint metaclass. In Line 5-6 , we define the two quantifiers of the created instance C. q1 is reserved for the schedule of the frame associated with the instance A and q2 for that of B. In Line 7 -11, we define the attributes fio1 and length1 that correspond respectively the schedule and the transmission delay of the frame associated with A. Similarly, in Line 12 -16, we define the schedule and the transmission delay of the frame associated with B. 

Algorithm 2 Generation of

SolveItem

For the SolveItem, we have one instance by a CP Model (i.e. a singleton). We generate this instance by following the Algorithm 3. In Line 1, we check the existence of any already configured frame. This allows the definition of the nature of the problem. If no frame is already configured which is the case in Line 2 -3, we assign the value satisfy to the type of the problem. In the contrary case, shown in Line 5 -6, the problem is rather of type minimize and the objective to minimize is the ReconfigurationCost.

Algorithm 3 Generation of SolveItem

1: if (nbInstancesOf (M odelIn.IntegrationStep.Conf iguredF rame) = 0) then 2:
M odelOut.SolveItem.type = satisfy 3:

M odelOut.SolveItem.objective = null 4: else 5:

M odelOut.SolveItem.type = minimize 6:

M odelOut.SolveItem.objective = Reconf igurationCost 7: end if

Case Study

In this section, we illustrate our model-driven engineering approach through the integration of the communication part of the distributed system whose physical architecture is illustrated by Figure 4. We identify in this figure the different dataflow links by numbers and we illustrate the direction of each flow by a dashed arrow.

The temporal characterization of the frames is given by Table 1. We propose as shown by the first column to integrate the set of frames in three integration steps. The IDs of the frames are indicated in the second column. The frame periods are given by the third column. We reserve the fourth column to the indication of the information availability dates at the ES level. The fifth column indicates the transmission delays of the frames on a dataflow link. We indicate in the last column the structure of the virtual link. We adopt in this field the notation l s -{l d1 , ..., l dn } to indicate that the associated frame is transmitted first in l s and the simultaneously in l d1 to l dn . The reconfiguration cost of each frame in this example is equal to 1.

In the following, we use this case study to illustrate through two examples: (1) the integration specification in input as instance of the Integration Specification Meta-Model, (2) an instance of the CP Integration Meta-Model corresponding to the spec input, and (3) the associated MiniZinc code relative the to the CP model.

Although this example illustrates the integration of only 26 virtual links, we note that the resolution of each integration step requires about one thousand of code lines. We only illustrate some relevant aspects of our approach using two small examples. We set in the first example as goal to show the generation of some CP variables and frame constraints through the example of a Contention-Free Constraint. In the second example, we explain a constraint that exploits the structure of the virtual link.

Example 1

Focusing in the first integration step and more precisely the integration of frames f 3 and f 4 , we notice that f 3 is scheduled on the dataflow links with the IDs 3 and 2. f 4 is scheduled on the dataflow links 3 and 8. The integration specification model corresponding to this part is given by Figure 5. We illustrate only by Figure 6, two instances f io1 and f io2 of the class FrameInstanceOffsets are defined in our output CP model to represent the schedules s1 and s2. As the number of instances of f 3 considered in the integration specification model is equal to 4, the type attribute of the variable fio1 has a value of int [START_REF] Beji | Smtbased cost optimization approach for the integration of avionic functions in ima and ttethernet architectures[END_REF]. The corresponding MiniZinc Code is given by Figure 7. We note that we limit our offsets to the interval [1..120] to have an enough large finite domain that represents the different possible values. Now that we have illustrated the different variables of FrameInstanceOffsets fio1 name :FrameInstanceName type=int [START_REF] Beji | Smtbased cost optimization approach for the integration of avionic functions in ima and ttethernet architectures[END_REF] FrameInstanceName name

IDLink=3 IDFrame=3

FrameInstanceOffsets fio2 name :FrameInstanceName type=int [START_REF] Beji | Smtbased cost optimization approach for the integration of avionic functions in ima and ttethernet architectures[END_REF] FrameInstanceName name

IDLink=3 IDFrame=4

Offsets variable of frame f3 on dataflow link with ID 3

Offsets variable of frame f4 on dataflow link with ID 3 The constraint programming approach to the scheduling problems in avionic systems is now a very active and popular research field. Several formal definitions and frameworks have been proposed for reasoning about the problem of scheduling in IMA architecture (e.g. [START_REF] Lee | Scheduling tool and algorithm for integrated modular avionics systems[END_REF][START_REF] Lee | Resource scheduling in dependable integrated modular avionics[END_REF]), the problem of scheduling in Time-Triggered Networks (e.g [START_REF] Steiner | An evaluation of smt-based schedule synthesis for time-triggered multi-hop networks[END_REF][START_REF] Tamas-Selicean | Synthesis of communication schedules for ttethernet-based mixed-criticality systems[END_REF][START_REF] Majumdar | Performance-aware scheduler synthesis for control systems[END_REF][START_REF] Huang | Static scheduling of a time-triggered network-on-chip based on smt solving[END_REF]) and the cost optimization problems for evolving avionic systems (e.g. [START_REF] Lauer | Cost optimization strategy for iterative integration of multi-critical functions in ima and ttethernet architecture[END_REF]). The most related work to ours is the recent paper of Lauer et al. [START_REF] Lauer | Cost optimization strategy for iterative integration of multi-critical functions in ima and ttethernet architecture[END_REF] and the one of Steiner [START_REF] Steiner | An evaluation of smt-based schedule synthesis for time-triggered multi-hop networks[END_REF]. In [START_REF] Lauer | Cost optimization strategy for iterative integration of multi-critical functions in ima and ttethernet architecture[END_REF], the authors address the problem of an iterative integration in an IMA Architecture. Its objective is to find an optimal scheduling configuration that minimizes the cost of the integration. However, it does only consider the integration of IMA partitions and the proposed iterative approach handles only the scheduling of system model that evolves by adding a single partition at each iteration. The work in [START_REF] Beji | Smtbased cost optimization approach for the integration of avionic functions in ima and ttethernet architectures[END_REF] extends the work in [START_REF] Lauer | Cost optimization strategy for iterative integration of multi-critical functions in ima and ttethernet architecture[END_REF] to consider a SMT-based approach that handles not only the integration of IMA partitions but also TTEthernet flows.

The combination of model-driven software engineering approach and constraints programming approach has been the focus of some other research works including [START_REF] Kleiner | Model search: Formalizing and automating constraint solving in mde platforms[END_REF] and [START_REF] Chenouard | Model-driven constraint programming[END_REF]. In [START_REF] Kleiner | Model search: Formalizing and automating constraint solving in mde platforms[END_REF], the authors propose a formalization of constraint programming solving tasks in a model-driven process chain. In [START_REF] Chenouard | Model-driven constraint programming[END_REF], the authors discuss the need for a visual high level modeling language and the quality of metamodeling techniques to implement the transformations. In particular, they present a platform called s-COMMA, which efficiently implements the chain from modeling to solving constraint problems.

Conclusion

In this paper, we have proposed a model-driven engineering approach to support the automatic synthesis of programs that resolve the integration of TT flows of TTEthernet. The proposed approach relies on the definition of two meta-models. The first one specifies an integration problem on TTEthernet networks. The second one describes the structure of the corresponding CP program. Further to the two meta-models, this approach is based also on the definition of transformation processes that automatizes the generation of the CP model to a given integration problem. The resulted CP model is transformed to a CP code which is resolved by a CP solver to find the new optimal configuration of the network. As Future Work, we plan to extend our approach by considering the schedule of IMA partitions. We expect no difficulties to extend the two meta-models to consider the integration of IMA partitions and their associated constraints. We will define also the necessary transformation process to automatize the synthesis of IMA constraints.
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