
HAL Id: hal-01496891
https://laas.hal.science/hal-01496891

Submitted on 14 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-Driven Approach to the Optimal Configuration of
Time-Triggered Flows in a TTEthernet Network

Sofiene Beji, Abdelouahed Gherbi, John Mullins, Pierre-Emmanuel Hladik

To cite this version:
Sofiene Beji, Abdelouahed Gherbi, John Mullins, Pierre-Emmanuel Hladik. Model-Driven Approach to
the Optimal Configuration of Time-Triggered Flows in a TTEthernet Network. 9th System Analysis
and Modelling (SAM 2016), Oct 2016, Saint-Malo, France. �10.1007/978-3-319-46613-2_11�. �hal-
01496891�

https://laas.hal.science/hal-01496891
https://hal.archives-ouvertes.fr


Model-driven Approach to the Optimal
Configuration of Time-triggered Flows in a

TTEthernet Network

Sofiene Beji1, Abdelouahed Gherbi2, John Mullins1, and Pierre-Emmanuel
Hladik3

1 Department of Computer and Software Engineering
École Polytechnique de Montréal

firstname.lastname@polymtl.ca
2 Department of Software and IT Engineering, École de Technologie Supérieure,

Montréal, QC, Canada
abdelouahed.gherbi@etsmtl.ca

3 LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France
pehladik@laas.fr

Abstract. The SAE standard Time-triggered Ethernet defines a strong
networking infrastructure, which supports the engineering of avionic sys-
tems. Avionic functions are often designed independently and integrated
to form the avionic system. The iterative integration approach helps in
controlling the design complexity of evolving avionic systems and aims
at minimizing the cost associate with the reconfiguration of scheduling
parameters of already integrated parts. On the other hand, the itera-
tive approach requires to specify and manage a huge set of constraints,
which are then solved to compute the optimal scheduling parameters. In
this paper, we focus on this issue of manual specification of these con-
straints by the system engineer. We propose a model-driven approach,
which provides the required abstractions and automation to support the
system engineer in using effectively the iterative integration approach.
The abstractions consist in a metamodel, which describes the system at
a given integration step and a metamodel for the constraints. The au-
tomation consists in a model transformation which enables generating
automatically the relevant constraints at integration step.

Keywords: Time-Triggered Ethernet, IMA, Model-driven approach, Meta-
model, Model transformation

1 Introduction

Avionic embedded systems are now engineered following the principles of Inte-
grated Modular Avionics (IMA) architecture [1]. The IMA architecture is charac-
terized essentially by the sharing of distributed computing resources called mod-
ules. Since avionic systems are inherently safety-critical systems, sharing these
resources requires to guarantee some safety properties such as the collision-free.



2 S. Beji et al.

Moreover, IMA-based avionic systems are distributed systems which depend on
a robust and deterministic networking infrastructure. The Avionic Full Duplex
Switched Ethernet (AFDX) [2] has long been adopted as a networking stan-
dard for the avionic systems. Therefore, the IMA and AFDX became the main
components of a typical architecture model for the recent civil aircrafts such
as B787 and A380. More recently, the SAE standard Time-Triggered Ethernet
(TTEthernet) is emerging as a new standard of the avionic network [3]. With
respect to AFDX, the TTEthernet standard enables to achieve a best usage of
the network resources and is more deterministic. In particular, the TTEthernet
network schedule is established off-line.

The avionic functions designed independently need to be integrated within
an existing system deployed on a TTEthernet-networked IMA architecture. The
integration of avionic system is a complex engineering task. We have presented
in [4] an iterative integration approach, which enables the integration of multi-
ple IMA partitions as well as TTEhernet frames. This approach addresses the
issue of finding an appropriate scheduling for the partitions and frames. The
synthesized schedule may require the reconfiguration of the already integrated
frames or partitions which lead to a supplementary re-certification cost that we
aim to minimize. We consider this issue as Constraints Optimization Problem
(COP) [13] where we satisfy not only a set of constraints but also we optimize
the reconfiguration cost function.

In order for avionic engineers to use the iterative integration approach, they
have to specify both the existing system and the new avionic functionality using
a set of formal constraints. These constraints can then solved effectively using
Constraints Programming (CP) techniques. The number and complexity of these
constraints grow up very sharply even for small system examples. Therefore,
using effectively the iterative integration approach faces a challenging constraints
management complexity. In order to overcome this issue, we propose in this paper
a model-driven engineering approach, which provides the required abstractions
(i.e. metamodels) and defines the transformation process to enable the automatic
generation of these constraints.

The paper is organized as follows. Section 2 presents the background knowl-
edge and the model for the iterative integration problem. In Section 3, we intro-
duce our model-driven engineering approach. We dedicate Section 4 and Section
5 to present the meta-models of our approach. We define in Section 6 the trans-
formation process that generates the constraint program for a given integration
problem. Our case study is presented in Section 7. We present the related works
in Section 8 and we conclude the paper in Section 9.

2 Iterative Integration on TTEthernet Networks:
Backgrounds and Model

The TTEthernet is a layer 2 protocol standardized under SAE AS6802 [3]. It
defines a strategy of clock synchronization in a distributed system. The TTEth-
ernet supports two classes of traffic: time-triggered traffic and event-triggered



Model-driven Approach to the Optimal Configuration of TTEthernet Flow 3

traffic. The time-triggered traffic is relevant mainly for the critical applications.
In this work, we are only interested in time-triggered (TT) traffic. In contrast to
the event-triggered traffic, the time-triggered one is static and fixed time win-
dows are reserved for the transmission of each frame on a given dataflow link.

A TTEthernet network can be represented by a graph G = (V, E) where V
represents the nodes of the network and E the set of physical links. The nodes are
of two types: the set of End-Systems (ES ) and the set of Network-Systems (NS )
Each physical link connecting two nodes defines a bidirectional communications,
each of which is a dataflow link.

A TTEthernet frame fi is communicated from its source to its destinations
throughout fixed paths called virtual links. A virtual link vli is therefore asso-
ciated with each frame fi and defines a tree structure where its nodes are a set
of dataflow links. The root element of this tree is the first link on which a frame
fi is transmitted, denoted first(fi). The leaves are the last dataflow links on
which the frame fi is transmitted, designated last(fi). We denote by next(fi, l)
the next dataflow links on which the frame fi is transmitted taking as reference
the dataflow link l. We denote by f l

i the transmission of the frame fi on the
dataflow link l, f l

i,k the kth instance of the frame fi on the dataflow link l and
by Li the set of dataflow links on which fi is defined.

The transmission of each frame fi is characterized by the parameters: the
period of fi, fi.Period , and its transmission delay on a dataflow link fi.Length.
The periodic pattern describing the communication of all the frames is called
hyper-period (HP) and defined as the least common multiple of all frame periods.
We denote by Instances(fi) the number of instances considered for the frame fi
and formally defined as HP

fi.Period . The schedule of the kth instance of the frame

fi on the dataflow link l is determined by the variable f l
i .Offset which designate

the offset time with the respect to the beginning of HP . The offsets are the only
variables of the integration problem.

In the iterative integration problem as defined in [9] and [4], we have some
configured applications which communicate through a TTEthernet network and
we want to integrate new ones. To ensure the real-time requirements, we may
reconfigure the scheduling of the previous ones. We focus in the scope of this
paper on the reconfiguration of the network. This reconfiguration induces an
additional cost of the re-certification of the system. We designate by Cost(fi)
the cost of reconfiguring a frame fi on a given dataflow link. We denote by F
the set of considered frames, Fold the set of configured frames and Fnew the set
of frames to configure.

For a configured frame fi, we denote by f l
i/b.Offset(k) the offset of the kth

instance of the frame fi on the dataflow link l before the integration and by
f l
i/a.Offset(k) this offset after the integration. When it is clear from the context,

we simply designate the offset after the integration by f l
i .Offset(k). We define by

Rl
i(k) the reconfiguration function that returns 1 if the kth instance of frame fi

on the dataflow link l is reconfigured and 0 otherwise. The goal of the iterative
integration problem is then to minimize the total reconfiguration cost of the



4 S. Beji et al.

network. The reconfiguration cost of a frame instance f l
i,k is equal to Cost(fi)×

Rl
i(k)

3 Overall Approach

We present in this section our model-driven engineering approach to automat-
ically generate the constraints program that solves the problem of a given in-
tegration step. As shown by Figure 1, our approach relies on the definition of
two meta-models. The first one, called the Integration Specification Meta-Model,
characterizes an iterative integration problem on TTEthernet networks. The sec-
ond one called CP Integration Meta-Model defines the CP formalization to solve
this problem. An instance of the first meta-model describes a real case of the
iterative integration problem. We specify in this instance the configured frames
and the frames to be configured and how they are deployed on the network
architecture. An instance of the second meta-model models the CP program
that solves a specific iterative integration problem. A transformation tool, which
relies on the meta-models, enables transforming a given instance of the Inte-
gration Specification meta-model to the corresponding CP model. The latter is
then transformed to a CP code structured following the targeted CP language
specification and solved by a CP solver to find a new optimal configuration. By
defining an intermediate CP model before generating the CP integration code,
our approach can target different CP solvers. To test our approach, we have
used MiniZinc [6] as target CP language. We specify in the following section the
Integration Specification meta-model.

Integration Specification 

Meta-Model
CP Integration Meta-Model

TTEthernet Network

 Model
CP Integration Model

Transformation Tool

<<instance of>>

CP Integration Program

<<instance of>>

<<uses>> <<uses>>

Fig. 1: Approach Overview



Model-driven Approach to the Optimal Configuration of TTEthernet Flow 5

4 Integration Specification Meta-Model

This meta-model is depicted in Figure 2. An integration problem is based on the
definition of integration steps, which are represented by the metaclass Integra-
tionStep. This metaclass has an attribute step which indicates the step order of
the integration. It has also the attributes switchTreatmentDelay and HP which
designate respectively the required delay for a switch to handle a frame and the
Hyper-Period for all the frame periods. An IntegrationStep is composed of a set of
frames to configure and the set of already configured frames if any. A Configured-
Frame differs from a FrameToConfigure by the indication of the actualOffsets
attribute which indicates the schedule before the integration of each instance of
the considered frame on each dataflow link. A Frame is characterized by sev-
eral attributes including period, length, reconfigurationCost, nbInstances, etc. A

VirtualLink

ID:int 
source:DataflowLink

destinations:DataflowLink[]
dataPaths:DataPaths[]

DataPath

ID:int
dataFlow:DataflowLink[]

1..*

DataflowLink

ID:int
ScheduledFrames:Schedule[]

1..*

source
1

Frame

ID:int
period:int
length:int

reconfigurationCost:int
nbInstances:int
memBound:int
maxLatency:int

Schedule

Offset:int[]
avail:int[]

dataflowLink:DataflowLink
frame:Frame

synchronizedSchedule:Set<Schedule>

1..* 1..*

1

1

destinations
1..*

IntegrationStep

ID:int
step:int

switchTreatmentDelay:int
HyperPeriod:int

0..*

1..*

FrameToConfigure

ConfiguredFrame

actualOffsets:
ArrayList<int[3]>

SynchronizedWith

0..*

0..*

Fig. 2: The Integration Specification Meta-Model

VirtualLink is associated with each frame. Each VirtualLink is characterized by
a source and destinations DataflowLink. A VirtualLink can be hence composed
of a number of DataPaths. Each DataPath defines a path from the source to
one destination. It is constituted by the adjacent sequence of a dataflow links.
A Schedule characterizes the allocation of time windows of each frame on each



6 S. Beji et al.

dataflow link. Obviously, many frames can be scheduled on a dataflow link and
a frame is transmitted on the different dataflow links that defines its associated
virtual link. The Schedule of a frame on a dataflow link may be synchronized
with another of the same one on another dataflow link. This case occurs when a
frame must be relayed simultaneously on different dataflow links

5 CP Integration Meta-Model

Our CP Integration Meta-Model is depicted by Figure 3. It is composed of a
set of VariableDeclaration metaclasses, a set of Constraint metaclasses and a
SolveItem metaclass. For readability purpose, we do not include in Figure 3 the
comprehensive set of the relationships between these metaclasses. A SolveItem
models a directive to the solver, which consists in the definition of two attributes,
type, which is the type of the problem either a satisfaction or minimization prob-
lem; and objective, which is the optimized objective in the case of an optimization
problem. In our case, the optimized objective is the reconfiguration cost.

5.1 Variables Declaration

As shown by Figure 3, three types of variables are considered to solve the in-
tegration problem. The metaclass FrameInstanceOffsets specifies the offsets of
the different frame instances of a frame on a dataflow link. FrameInstanceOffsets
has the two attributes name and type.The attribute name is of type FrameIn-
stanceName and defines the name of the frame instances on one dataflow link.
The name is therefore uniquely identified by the IDFrame and the IDLink. The
attribute type is of type int[]. The metaclass FrameInstanceReconfig captures
the information whether the offsets of the already configured frame instances
are changed after the integration. It has two attributes name which is also the
name of the considered frame instances on a dataflow link and the attribute
type of type bool[]. The metaclass ReconfigurationCost specifies the cost of the
schedule after the integration.

5.2 Constraints

To solve the integration problem, we consider nine types of constraints illustrated
in Figure 3. We introduce for the definition of these constraints a new type
Quantifier which quantifies the instance order of a frame and has four attributes:
(1) ident which gives an identification name for the quantifier, (2) type which
specifies the type of the quantifier (e.g. exists or forall), (3) min the minimum
value of the quantifier and (4) max the max value of the quantifier.

Contention-Free Constraints: A Contention-Free Constraint expresses the
mutual exclusion of a transmission on a dataflow link. Given two frames fi and
fj transmitted on a dataflow link l, the end of transmission of an instance of fi



Model-driven Approach to the Optimal Configuration of TTEthernet Flow 7

Model

VariableDeclaration
Constraint

1..*
1..*

1

SolveItem

type:(satisfy,minimize)
objective:int 
(ReconfigurationCost)

FrameInstanceOffsets

name:FrameInstanceName
type:int[]

FrameInstanceReconfig

name:FrameInstanceName
type:bool[]

ReconfigurationCost:int

ReconfigurationCostConstraint

FrameInstanceName

IDFrame:int
IDLink:int

PeriodicityConstraint

q1:Quantifier
fio1:FrameInstanceOffsets
valueMin:String
valueMax:String

PathDependentConstraint

q1:Quantifier
fio1:FrameInstanceOffsets
fio2:FrameInstanceOffsets
length:int
switchDelay:int

SimultaneousRelayConstraint

q1:Quantifier
fio1:FrameInstanceOffsets
fio2:FrameInstanceOffsets

Quantifier

ident:String
type:exist or forall
min: int 
max: int

CompatibilityWithEnd-System 
Constraint

q1:Quantifier
fio1:FrameInstanceOffsets
avail:int[]

ContentionFreeConstraint

q1:Quantifier
q2:Quantifier
fio1:FrameInstanceOffsets
fio2:FrameInstanceOffsets
lenght1:int
length2:int

BoundedSwitchMemory 
Constraint

q1:Quantifier
fio1:FrameInstanceOffsets
fio2:FrameInstanceOffsets
memBound:int

LatencyConstraint

q1:Quantifier
fio1:FrameInstanceOffsets
fio2:FrameInstanceOffsets
maxLatency:int

ReconfigurationConstraint

q1:Quantifier
fio1:FrameInstanceOffsets
fir1:FrameInstanceReconfig
previousOffsets:int[]

ElementaryReconfigurationCost

q1:Quantifier
fir1:FrameInstanceReconfig
frameReconfigCost:int

1..*

Fig. 3: The CP Integration Meta-Model

on l occurs before the beginning of transmission of a given frame instance of fj



8 S. Beji et al.

or vice versa. The contention free constraints can be formalized as follows:

∀fi, fj ∈ F ,∀l ∈ Li ∩ Lj ,∀k ∈ [1..Instances(fi)],∀k
′
∈ [1..Instances(fj)],(

f l
i .Offset(k) + fi.Length ≤ f l

j .Offset(k
′
)
)
∨(

f l
j .Offset(k

′
) + fj .Length ≤ f l

i .Offset(k)
)

In the CP Integration Meta-Model, a Contention-Free Constraint is modeled by
the class ContentionFreeConstraint which has the attributes (1) q1 and q2 as
two Quantifiers on respectively the instance order k and k

′
, (2) fio1 and fio2

the offsets of respectively f l
i and f l

j and (3) length1 and length2 to designate the
transmission delays of fi and fj on a dataflow link.

Path-Dependent Constraints: We introduce this constraint to express the
sequential transmission of a frame fi along a data path of the virtual link vli.
Formally this constraint is defined as follows:

∀fi ∈ F ,∀l
′
∈ next(fi, l),∀k ∈ [1..Instances(fi)],(

f l
i .Offset(k) + fi.Length + switch delay

)
≤ (f l

′

i .Offset(k))

where, switch delay denotes the processing delay of a frame by a switch. A Path-
Dependent constraint is specified in our meta-model by the metaclass PathDe-
pendentConstraint, which has the following attributes: (1) q1 as a Quantifier on

the instance order k of fi, (2) fio1 and fio2 the offsets of respectively f l
i and f l

′

i ,
(3) length the parameter fi.Length and (4) switchDelay the processing delay of
a frame by a switch.

Latency Constraints In order to ensure that frames meet their deadline re-
quirements, we define latency constraints. These constraints bound the trans-
mission delay of a frame along their datapaths and are formalized as follows

∀fi ∈ F ,∀l ∈ last(fi),∀k ∈ [1..Instances(fi)],

f l
i .Offset(k)− f

first(fi)
i .Offset(k) ≤ max latencyi

We represent a latency constraint in our CP meta-model by the metaclass
LatencyConstraint which has the attributes (1) q1 to represent the instance

order k, (2) fio1 to designate the offsets of f
first(fi)
i , (3) fio2 to designate the

offsets of f l
i and (4) maxLatency the maximal tolerated bound of latency.

Reconfiguration Constraint The reconfiguration constraints detect if the
already configured frames are reconfigured after the integration of new frames.
The reconfiguration constraints are formalized as follows

∀fi ∈ Fold,∀l ∈ Li,∀k ∈ [1..Instances(fi)],

(f l
i/b.Offset(k) = f l

i/a.Offset(k))⇔ (Rl
i(k) = 0)



Model-driven Approach to the Optimal Configuration of TTEthernet Flow 9

In the CP Meta-Model, a reconfiguration constraint is modeled by the meta-
class ReconfigurationConstraint which has the attributes (1)q1 to represent the
instance order k, (2) fio1 to designate the offsets after the integration (3) fir1
to designate the reconfiguration variables Rl

i(k) and (4) previousOffsets which
contains the previous offsets of fi on the dataflow link l.

6 Model Transformation Process

We detail in this section the transformation rules implemented in our Transfor-
mation Tool to generate automatically the CP Integration Model. We note by
ModelIn the integration specification model and by ModelOut the CP integra-
tion model. In the remainder, we detail the transformation rule corresponding
to each component of a CP Integration model.

6.1 Variables

For the variables of the CP Model, we define the transformation rule given
by Algorithm 1 that generates the FrameInstanceOffset instances. In Line 1,
we select from the input model an instance of the metaclass Schedule, denoted
by A. We create in Line 2 an instance of the FrameInstanceOffsets metaclass
corresponding to A that we denote by B. In Line 3− 5, we assign the relevant
attributes.

Algorithm 1 Generation of FrameInstanceOffset Instances

1: for each A = InstanceOf (ModelIn.Schedule) do
2: create B=new InstanceOf (ModelOut.FrameInstanceOffsets)
3: B.type← int[A.Frame.nbInstances]
4: B.name.IDFrame ← A.frame.ID
5: B.name.IDLink ← A.dataF lowLink.ID
6: end for

6.2 Constraints

For the constraints, we present only the transformation rule that define the
ContentionFreeConstraint instances. This rule is specified by Algorithm 2. In
Line 1−2, we select from the input model two instances A and B of the metaclass
Schedule. In order to define correctly a Contention-Free Constraint, we must
check in Line 3 − 4 that A and B are two instances that define a schedule of
two different frames in the same dataflow link. To ensure constraint unicity, we
impose that the ID of the frame associated with A is inferior that of B. We create
then in Line 4 a new instance C of the ContentionFreeConstraint metaclass. In
Line 5−6 , we define the two quantifiers of the created instance C. q1 is reserved



10 S. Beji et al.

for the schedule of the frame associated with the instance A and q2 for that of
B. In Line 7 − 11, we define the attributes fio1 and length1 that correspond
respectively the schedule and the transmission delay of the frame associated with
A. Similarly, in Line 12− 16, we define the schedule and the transmission delay
of the frame associated with B.

Algorithm 2 Generation of ContentionFreeConstraint Instances

1: for each A = InstanceOf (ModelIn.Schedule) do
2: for each B = InstanceOf (ModelIn.Schedule) do
3: if (A.frame.ID < B.frame.ID)and(A.dataflowLink = B.dataflowLink)

then
4: create C=new InstanceOf (ModelOut.ContentionFreeConstraint)
5: C.q1← newQuantifier(”i”, forall, 1, A.Frame.nbInstances)
6: C.q2← newQuantifier(”j”, forall, 1, B.Frame.nbInstances)
7: for each D = InstanceOf (ModelOut.FrameInstanceOffsets) do
8: if (D.name.IDFrame = A.frame.ID)and(D.name.IDLink =

A.dataflowLink.ID) then
9: C.fio1← D

10: C.length1← A.frame.length
11: end if
12: end for
13: for each D = InstanceOf (ModelOut.FrameInstanceOffsets) do
14: if (D.name.IDFrame = B.frame.ID)and(D.name.IDLink =

B.dataflowLink.ID) then
15: C.fio2← D
16: C.length2← B.frame.length
17: end if
18: end for
19: end if
20: end for
21: end for

6.3 SolveItem

For the SolveItem, we have one instance by a CP Model (i.e. a singleton). We
generate this instance by following the Algorithm 3. In Line 1, we check the
existence of any already configured frame. This allows the definition of the nature
of the problem. If no frame is already configured which is the case in Line 2− 3,
we assign the value satisfy to the type of the problem. In the contrary case,
shown in Line 5 − 6, the problem is rather of type minimize and the objective
to minimize is the ReconfigurationCost.



Model-driven Approach to the Optimal Configuration of TTEthernet Flow 11

Algorithm 3 Generation of SolveItem

1: if (nbInstancesOf (ModelIn.IntegrationStep.ConfiguredFrame) = 0) then
2: ModelOut.SolveItem.type = satisfy
3: ModelOut.SolveItem.objective = null
4: else
5: ModelOut.SolveItem.type = minimize
6: ModelOut.SolveItem.objective = ReconfigurationCost
7: end if

7 Case Study

In this section, we illustrate our model-driven engineering approach through the
integration of the communication part of the distributed system whose physical
architecture is illustrated by Figure 4. We identify in this figure the different
dataflow links by numbers and we illustrate the direction of each flow by a
dashed arrow.

The temporal characterization of the frames is given by Table 1. We propose
as shown by the first column to integrate the set of frames in three integration
steps. The IDs of the frames are indicated in the second column. The frame
periods are given by the third column. We reserve the fourth column to the
indication of the information availability dates at the ES level. The fifth column
indicates the transmission delays of the frames on a dataflow link. We indicate
in the last column the structure of the virtual link. We adopt in this field the
notation ls − {ld1

, ..., ldn
} to indicate that the associated frame is transmitted

first in ls and the simultaneously in ld1 to ldn . The reconfiguration cost of each
frame in this example is equal to 1.

In the following, we use this case study to illustrate through two examples: (1)
the integration specification in input as instance of the Integration Specification
Meta-Model, (2) an instance of the CP Integration Meta-Model corresponding
to the spec input, and (3) the associated MiniZinc code relative the to the CP
model.

Although this example illustrates the integration of only 26 virtual links, we
note that the resolution of each integration step requires about one thousand of
code lines. We only illustrate some relevant aspects of our approach using two
small examples. We set in the first example as goal to show the generation of
some CP variables and frame constraints through the example of a Contention-
Free Constraint. In the second example, we explain a constraint that exploits
the structure of the virtual link.

7.1 Example 1

Focusing in the first integration step and more precisely the integration of frames
f3 and f4, we notice that f3 is scheduled on the dataflow links with the IDs 3
and 2. f4 is scheduled on the dataflow links 3 and 8. The integration specifica-
tion model corresponding to this part is given by Figure 5. We illustrate only



12 S. Beji et al.

NS
1

CC

CC

ES
5

ES
6

CC

CC

ES
1

ES
2

CC

ES
4

CC

ES
3

1

2

3 4

5

6

7

8

910
12

11

Fig. 4: Physical Architecture of the sys-
tem

Integration Frame Frame Availabilities Frame Virtual
step Id period length Link

1

3 30 [7,35,65,95] 1 3-2
4 30 [5,33,63,93] 1 3-8
40 60 [21,21] 2 3-2
41 60 [15,15] 4 3-8
42 60 [17,17] 1 1-4
43 60 [17,17] 3 7-4

1030 60 [9,9] 2 1-4
1031 60 [9,9] 1 7-4

2

2 30 [9,41,67,97] 2 3-8
10 60 [51,51] 3 3-2
11 60 [31,31] 7 3-8
12 60 [27,27] 3 3-8
13 30 [25,61,75,107] 4 7-2
14 60 [71,71] 1 1-8
15 60 [89,89] 2 7-4

1000 30 [17,53,89,105] 1 1-4
1001 30 [19,55,69,101] 2 7-4
1002 60 [63,63] 1 1-4
1003 60 [7,7] 1 7-4

3

0 60 [35,95] 1 9-4
1 30 [0,30,60,90] 1 3-10

109 60 [22,82] 11 11-{2,4,6,8,10}
110 60 [14,74] 5 11-{2,4,6,8,10}
111 60 [7,67] 2 11-{2,4,6,8,10}
140 60 [61,81] 4 3-6
141 60 [44,104] 1 5-4

Table 1: Temporal characteristics
of integrated frames

the schedules s1 and s2 of frames f3 and f4 on the dataflow link l3. As shown

Frame f3

ID=3
period=30
length=30

reconfigurationCost=1
nbInstances=4

maxLatency=120

Frame f4

ID=3
period=30
length=30

reconfigurationCost=1
nbInstances=4

maxLatency=120

DataflowLink l3

ID=3

DataflowLink l2

ID=2

DataflowLink l8

ID=8

Schedule s1

avail=[7,35,65,95]

Schedule s2

avail=[5,33,63,93]

Fig. 5: Integration Specification Model of Example 1



Model-driven Approach to the Optimal Configuration of TTEthernet Flow 13

by Figure 6, two instances fio1 and fio2 of the class FrameInstanceOffsets are
defined in our output CP model to represent the schedules s1 and s2. As the
number of instances of f3 considered in the integration specification model is
equal to 4, the type attribute of the variable fio1 has a value of int[4]. The corre-
sponding MiniZinc Code is given by Figure 7. We note that we limit our offsets
to the interval [1..120] to have an enough large finite domain that represents the
different possible values. Now that we have illustrated the different variables of

FrameInstanceOffsets fio1

name :FrameInstanceName
type=int[4]

FrameInstanceName  name

IDLink=3
IDFrame=3

FrameInstanceOffsets fio2

name :FrameInstanceName
type=int[4]

FrameInstanceName  name

IDLink=3
IDFrame=4

Offsets variable of frame f3 on dataflow link with ID 3

Offsets variable of frame f4 on dataflow link with ID 3

Fig. 6: CP Variables considered in Example 1

Fig. 7: Declaration of the variables of Example 1 in MiniZinc

the CP Integration Model, we present the contention-free constraint of Exam-
ple 1. This constraint is defined by the instance c1 of the metaclass Contention
FreeConstraint as illustrated by Figure 8. The instance c1 contains the infor-
mation required to generate the corresponding MiniZinc code as illustrated by
Figure 9

7.2 Example 2

The frame f3 is transmitted on the virtual link vl3 which is composed by the
datapath 3 − 8. The transmission of f3 on its associated datapath induces the
definition of a Path-Dependent Constraint that has the structure presented by
Figure 10. In addition to the attributes switchDelay and length, to define this



14 S. Beji et al.

ContentionFreeConstraint 
c1

q1 : Quantifier
q2 : Quantifier

fio1=Model2.fio1
fio2=Model2.fio2

length1=1
length2=1

Quantifier q1

ident="i"
type=forall
min=1
max=4

Quantifier q1

ident="i"
type=forall
min=1
max=4

Fig. 8: Contention-Free Constraint considered in Example 1

Fig. 9: Example 1:Contention-Free Constraint Code in MiniZinc

constraint, we consider from Example 1 the instance fio1 to characterize the
offsets of f3 on the dataflow link 2. We consider also the instance fio3 that
defines the offsets associated to the transmission of f3 on the dataflow link 2.
The corresponding MiniZinc code corresponding to this constraint is given by
Figure 11

Quantifier q1

ident="i"
type=forall
min=1
max=4

PathDependentConstraint 
c2

q1:Quantifier
fio1=ModelOut.fio1
fio2:FrameInstanceOffsets
switchDelay=1
lenght=1

FrameInstanceOffsets 
fio3

name:FrameInstanceName
type=int[4]

FrameInstanceName 
n3

IDFrame=3
IDLink=2

Fig. 10: CP Integration Model of Example 2

Fig. 11: Example 2: Path-Dependent Constraint Code in MiniZinc



Model-driven Approach to the Optimal Configuration of TTEthernet Flow 15

8 Related Works

The constraint programming approach to the scheduling problems in avionic
systems is now a very active and popular research field. Several formal defini-
tions and frameworks have been proposed for reasoning about the problem of
scheduling in IMA architecture (e.g. [11, 10]), the problem of scheduling in Time-
Triggered Networks (e.g [14, 15, 12, 7]) and the cost optimization problems for
evolving avionic systems (e.g. [9]). The most related work to ours is the recent
paper of Lauer et al. [9] and the one of Steiner [14]. In [9], the authors address
the problem of an iterative integration in an IMA Architecture. Its objective is
to find an optimal scheduling configuration that minimizes the cost of the inte-
gration. However, it does only consider the integration of IMA partitions and the
proposed iterative approach handles only the scheduling of system model that
evolves by adding a single partition at each iteration. The work in [4] extends
the work in [9] to consider a SMT-based approach that handles not only the
integration of IMA partitions but also TTEthernet flows.

The combination of model-driven software engineering approach and con-
straints programming approach has been the focus of some other research works
including [8] and [5]. In [8], the authors propose a formalization of constraint
programming solving tasks in a model-driven process chain. In [5], the authors
discuss the need for a visual high level modeling language and the quality of
metamodeling techniques to implement the transformations. In particular, they
present a platform called s-COMMA, which efficiently implements the chain
from modeling to solving constraint problems.

9 Conclusion

In this paper, we have proposed a model-driven engineering approach to support
the automatic synthesis of programs that resolve the integration of TT flows of
TTEthernet. The proposed approach relies on the definition of two meta-models.
The first one specifies an integration problem on TTEthernet networks. The sec-
ond one describes the structure of the corresponding CP program. Further to
the two meta-models, this approach is based also on the definition of transfor-
mation processes that automatizes the generation of the CP model to a given
integration problem. The resulted CP model is transformed to a CP code which
is resolved by a CP solver to find the new optimal configuration of the network.
As Future Work, we plan to extend our approach by considering the schedule
of IMA partitions. We expect no difficulties to extend the two meta-models to
consider the integration of IMA partitions and their associated constraints. We
will define also the necessary transformation process to automatize the synthesis
of IMA constraints.

Acknowledgment This work was supported by the Natural Sciences and En-
gineering Research Council of Canada (NSERC).



16 S. Beji et al.

References

[1] Integrated modular avionics (ima). AERONAUTICAL RADIO, INC., ARINC
653, 2006.

[2] ARINC 664, part 7: Avionics full duplex switched ethernet (afdx). AERONAU-
TICAL RADIO, INC., 2009.

[3] AS6802: Time-triggered ethernet (ttethernet). SAE Aerospace, 2011.
[4] Sofiene Beji, Sardaouna Hamadou, Abdelouahed Gherbi, and John Mullins. Smt-

based cost optimization approach for the integration of avionic functions in ima
and ttethernet architectures. In Proceedings of the 2014 IEEE/ACM 18th Inter-
national Symposium on Distributed Simulation and Real Time Applications, pages
165–174. IEEE Computer Society, 2014.

[5] Raphaël Chenouard, Laurent Granvilliers, and Ricardo Soto. Model-driven con-
straint programming. In Proceedings of the 10th international ACM SIGPLAN
conference on Principles and practice of declarative programming, pages 236–246.
ACM, 2008.

[6] Optimisation Research Group. Minizinc 2.0.
http://www.minizinc.org/ide/index.html, 02 2016.

[7] Jia Huang, Jan Olaf Blech, Andreas Raabe, Christian Buckl, and Alois Knoll.
Static scheduling of a time-triggered network-on-chip based on smt solving. In
Proceedings of the Conference on Design, Automation and Test in Europe, pages
509–514. EDA Consortium, 2012.

[8] Mathias Kleiner, Marcos Didonet Del Fabro, and Patrick Albert. Model search:
Formalizing and automating constraint solving in mde platforms. In European
Conference on Modelling Foundations and Applications, pages 173–188. Springer,
2010.

[9] Michaël Lauer, John Mullins, and Moez Yeddes. Cost optimization strategy for
iterative integration of multi-critical functions in ima and ttethernet architecture.
In Computer Software and Applications Conference Workshops (COMPSACW),
2013 IEEE 37th Annual, pages 139–144. IEEE, 2013.

[10] Y-H Lee, Daeyoung Kim, Mohamed Younis, Jeff Zhou, and James McElroy. Re-
source scheduling in dependable integrated modular avionics. In Dependable Sys-
tems and Networks, 2000. DSN 2000. Proceedings International Conference on,
pages 14–23. IEEE, 2000.

[11] Y-H Lee, Daeyoung Kim, Mohammed Younis, and Jeff Zhou. Scheduling tool and
algorithm for integrated modular avionics systems. In Digital Avionics Systems
Conference, 2000. Proceedings. DASC. The 19th, volume 1, pages 1C2–1. IEEE,
2000.

[12] Rupak Majumdar, Indranil Saha, and Majid Zamani. Performance-aware sched-
uler synthesis for control systems. In Proceedings of the ninth ACM international
conference on Embedded software, pages 299–308. ACM, 2011.

[13] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint pro-
gramming. Elsevier, 2006.

[14] Wilfried Steiner. An evaluation of smt-based schedule synthesis for time-triggered
multi-hop networks. In Real-Time Systems Symposium (RTSS), 2010 IEEE 31st,
pages 375–384. IEEE, 2010.

[15] Domitian Tamas-Selicean, Paul Pop, and Wilfried Steiner. Synthesis of commu-
nication schedules for ttethernet-based mixed-criticality systems. In Proceedings
of the eighth IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, pages 473–482. ACM, 2012.


