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INTRODUCTION

In the context of the implementation of modern control systems through digital communication networks, event-triggering strategies have been proposed mainly to deal with communication, energy consumption and computational constraints (see, for example, [START_REF] Postoyan | Triggering mechanism using freely selected sensors for linear time-invariant systems[END_REF]; Postoyan et al. (2015); [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF]; [START_REF] Heemels | An introduction to event-triggered and self-triggered control[END_REF] and references therein.) In the event-triggered control framework, one can basically consider two approaches. The first one, which corresponds to the so-called emulation problem, considers that the controller is given a priori (see, for example, [START_REF] Heemels | An introduction to event-triggered and self-triggered control[END_REF], [START_REF] Wang | Event design in eventtriggered feedback control systems[END_REF], Postoyan et al. (2015), [START_REF] Seuret | Event-triggered sampling algorithms based on a Lyapunov function[END_REF] [START_REF] Abdelrahim | Stabilization of nonlinear systems using eventtriggered output feedback controllers[END_REF] and references therein). In this case, the focus is dedicated to the design of the event-triggering rule or function that leads to a stable closed-loop behavior while avoiding the occurrence of Zeno phenomenon. The second approach, which is referred as a codesign problem, performs the design of both the controller and the event-triggering rule, simultaneously, and is addressed in a few papers [START_REF] Aström | Event based control[END_REF]; [START_REF] Seuret | Event-triggered sampling for linear closed-loop systems with plant input saturation[END_REF][START_REF] Seuret | LQ-based event-triggered controller co-design for saturated linear systems[END_REF], [START_REF] Heemels | Periodic event-triggered control for linear systems[END_REF]; [START_REF] Abdelrahim | Co-design of output feedback laws and eventtriggering conditions for linear systems[END_REF]; [START_REF] Antunes | Dynamic programming formulation of periodic event-triggered control: Performance guarantees and co-design[END_REF]).

A large amount of papers addressing asymptotic stability of event-trigger control schemes consider state-feedback laws (see for instance [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF]; [START_REF] Heemels | An introduction to event-triggered and self-triggered control[END_REF]; [START_REF] Lehmann | Extension and experimental evaluation of an event-based state-feedback approach[END_REF]; [START_REF] Wu | Event-triggered control for linear systems subject to actuator saturation[END_REF]; [START_REF] Aranda-Escolastico | A novel approach for periodic event-triggering based on general quadratic functions[END_REF]; [START_REF] Wang | Event design in eventtriggered feedback control systems[END_REF]; [START_REF] Moreira | Event-triggered state-feedback control for continuous-time plants subject to input saturation[END_REF]). In this case, it is in general easier to prove stability and that Zeno behavior does not happen. However, in most practical applications the full state measurement is not available or even possible. The fact of using available information (measured or local signals) in order to build the event-triggered control law, from an emulation or a co-design point of view is a challenging problem: see, for example, Lehmann and Lunze (2011a), [START_REF] Almeida | Observer based self-triggered control of an acyclic interconection linear plants[END_REF], [START_REF] Abdelrahim | Stabilization of nonlinear systems using eventtriggered output feedback controllers[END_REF], [START_REF] Donkers | Outputbased event-triggered control with guaranteed L ∞ -gain and improved and decentralised event-triggering[END_REF], [START_REF] Tallapragada | Event-triggered dynamic output feedback control of LTI systems[END_REF], Postoyan et al. (2015), [START_REF] Wang | Event-triggering in distributed networked control systems[END_REF], [START_REF] Heemels | An introduction to event-triggered and self-triggered control[END_REF], [START_REF] Xia | Observer based event-triggered control for certain and uncertain linear systems[END_REF] and references therein. On the other hand, we can also notice that most of the works in the literature consider linear plants. Some papers dealing with generic results for nonlinear systems are [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], Postoyan et al. (2015), [START_REF] Abdelrahim | Stabilization of nonlinear systems using eventtriggered output feedback controllers[END_REF].

In the current paper we focus on the emulation design of eventtriggered control for a particular class of nonlinear systems, which regards linear plants subject to input cone-bounded nonlinearities. This type of input nonlinearities can model, for instance, practical actuators nonlinearities or imperfections (e.g. saturation, deadzone, hysteresis, etc), as well as implementation control constraints such as quantization effects. Moreover, we are concerned by the use of only local information or measurable signals. To do so, a state observer-based approach is considered. In this context, we follow the same vein as in [START_REF] Tallapragada | Event-triggered dynamic output feedback control of LTI systems[END_REF] to tackle the design of the eventtriggering strategy for observer-based state feedback based on the decrease of a Lyapunov function. Recall that in the eventtriggered control context, the plant evolves in continuous time, whereas the control signal is updated depending on discretetime events. Then, the resulting closed-loop system can be cast as a hybrid or impulsive system. Instead of considering the classical hybrid framework to study mixed continuous and discrete dynamics as defined in [START_REF] Goebel | Hybrid Dynamical Systems. Modeling, Stability and Robustness[END_REF], we use an alternative direction as proposed in [START_REF] Tarbouriech | Observer-based event-triggered control codesign for linear systems[END_REF][START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF]. In this case, sufficient conditions based on linear matrix inequalities (LMI) are proposed to ensure the global asymptotic stability of the origin of the nonlinear closedloop system under the event-trigger control strategy. Moreover, following the idea presented in [START_REF] Mazo | An ISS selftriggered implementation of linear controllers[END_REF], Zeno behaviors are avoided thanks to the introduction of a minimum dwell-time, which is explicitly forced as a design parameter of the LMI conditions. These conditions are then cast in convex optimization problems to compute the parameters of the eventtrigger rule aiming at reducing the number of control updates. The paper can then be considered as a comprehensive version of [START_REF] Tarbouriech | Observer-based event-triggered control codesign for linear systems[END_REF], since we extend the class of systems under consideration to some particular class of nonlinear systems. The originality of the paper relies on the fact that the approach is based on the satisfaction of a continuoustime stability criterion as well as a discrete-time one, in which a minimum dwell-time is a direct tunable parameter.

The paper is organized as follows. In Section 2, the system under consideration is described, together with the problem we intend to solve. Conditions to solve the event-triggered control problem in an emulation context are proposed in Section 3 first in a generic format and second through linear matrix inequalities, in which the dwell-time appears as a tuning parameter. Section 4 provides a simple optimization criterion, in order to cope with the implicit objective of reducing the number of control updates by playing on the event-trigger rule parameters. In Section 5, an example illustrates the efficiency of the proposed approach. Finally, Section 6 presents some concluding remarks and directions for potential future works.

Notation. Z, R n , R n×n denote respectively the sets of integers, n-dimensional vectors and n × m matrices. For any matrix A, A denotes its transpose and He{A} = A + A . For any square matrix A, trace(A) denotes its trace. For two symmetric matrices of the same dimensions, A and B, A > B means that A -B is symmetric positive definite. I and 0 stand respectively for the identity and the null matrix of appropriate dimensions. For a partitioned matrix, the symbol * stands for symmetric blocks. . stands for the Euclidean norm.

PROBLEM STATEMENT

System data

Consider the following continuous-time plant:

ẋp (t) = A p x p (t) + B p u(t) + B p f f (u(t)), y p (t) = C p x p (t) + D p f f (u(t)), (1) 
where x p (t) ∈ R n , u(t) ∈ R m , y p (t) ∈ R p are the state, the input and the output of the plant, respectively. Matrices A p , B p , B p f , C p and D p f are constant and of appropriate dimensions. Pairs (A p , B p ) and (C p , A p ) are supposed to be controllable and observable, respectively. Function f (u) : R m → R l is a nonlinearity affecting the input u. It can represent a neglected nonlinearity, uncertainty or imperfection affecting the input [START_REF] Johansson | Observer-based strict positive real (SPR) feedback control system design[END_REF]). In other words, f (u) allows to represent the error with respect to a linear input. For example, in the case of magnitude saturation of the input, f (u) corresponds to the deadzone sat(u)u (see, for example [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF], [START_REF] Zaccarian | Modern anti-windup synthesis[END_REF], [START_REF] Turner | A non-square sector condition and its application in deferred-action anti-windup compensator design[END_REF]). Another interesting case, which can be described through f (u), consists in capturing the fact that only a part of the input is saturated whereas the other part remains linear (see, for example, Tarbouriech et al. (2016a)). One can also cite the case of linear systems in the presence of some other isolated nonlinearities, such as quantization or backlash, which can also be represented by equation (1) (see, for example, [START_REF] Liberzon | Switching in Systems and Control[END_REF], [START_REF] Tarbouriech | Stability analysis and stabilization of systems with input backlash[END_REF], [START_REF] Jayawardhana | The circle criterion and input-to-state stability[END_REF] and references therein). This nonlinearity is therefore supposed to be continuous and to satisfy a cone-bounded property (see, for example, [START_REF] Khalil | Nonlinear systems[END_REF], [START_REF] Castelan | Control design for a class of nonlinear continuous-time systems[END_REF]). That means that this nonlinearity satisfies the following property f (u) S( f (u) + Ru) ≤ 0 (2) where S ∈ R l×l is any diagonal positive definite matrix. Matrix R ∈ R l×m is supposed to be a diagonal positive matrix that is fixed by the designer and depends on the nonlinearity characteristics. Moreover, it is assumed that Property (2) is globally satisfied, i.e. it is valid for all u ∈ R m .

In this paper, we consider an observer-based state feedback controller to stabilize the plant (1) and therefore to drive the output to zero. This controller is defined by:

   ẋ(t) = A p x(t) + B p u(t) + B p f f (u(t)) -L(y p (t) -ŷ(t)), ŷ(t) = C p x(t) + D p f f (u(t)), u(t) = K x(t),
(3) where x(t) ∈ R n and ŷ(t) ∈ R p are the state and the output of the observer, respectively. Furthermore, L ∈ R n×p and K ∈ R m×n are the observer and controller gains, respectively. By considering the continuous-time system described by (3), the control design is carried out according to the separation principle. The observer gain L is then designed to make A p + LC p Hurwitz. In this case, the state estimation error dynamics is given by ė(t) = (A p + LC p )e(t), (4) where e(t) = x p (t)x(t) ∈ R n , is globally asymptotically stable, i.e. lim t→∞ e(t) = 0. Consequently, the estimation output error e y (t) = C p e(t) also asymptotically converges to zero, i.e. lim t→∞ e y (t) = 0. On the other hand, the dynamics of the observer with the state feedback controller u(t) = K x(t) is given by: ẋ

(t) = (A p + B p K) x(t) + B p f f (K x(t)) -Le y (t). (5) 
In this paper, we want to address the problem of an aperiodic event-triggered-based sampled-data implementation of such an observer-based controller. This paper can be viewed as an extension of the technique developed in [START_REF] Tarbouriech | Observer-based event-triggered control codesign for linear systems[END_REF] to the particular class of nonlinear systems represented by equation (1).

Sampled-data control implementation

We are interested in studying the way to implement the control input u. We consider that u is not continuously implemented but is updated at certain instants {t k } k∈N , which form a sequence of strictly increasing positive scalars. The control action is supposed to be held constant between two successive sampling instants (t k and t k+1 ) through a zero order holder. Nevertheless, differently from classical digital control approaches, the sampling interval t k+1t k is not assumed to be constant but can be seen as an additional control action.

Thus, the closed-loop system can be represented by

   ẋp (t) = A p x p (t) + B p u(t k ) + B p f f (u(t k )), ẋ(t) = A p x(t) + B p u(t k ) + B p f f (u(t k )) -Le y (t), u(t k ) = K x(t k ), ∀t ∈ [t k , t k+1 ). (6) 
Taking into account (4), performing a change of coordinates, the closed-loop dynamics (6) can be expressed in terms of x and e, as follows:

   ẋ(t) = (A p + B p K) x(t) + B p δ(t) +B p f f (K x(t) + δ(t)) -Le y (t), ė(t) = (A p + LC p )e(t), (7) 
where we use the same formulation as in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] to define δ(t):

δ(t) = u(t k ) -u(t) = K( x(t k ) -x(t)). ( 9 
)
This function δ(t) can be seen as a measure of the difference between the fictive continuous-time control value and its sampled and held version, which is currently implemented. Note that δ(t) depends only on the observer variables and is therefore available at the controller node.

Problem formulation

This work focuses on the event-triggered implementation of the controller represented by (3). Then, an event generator algorithm has to be included in the controller to decide whether or not the control input has to be updated, based on the available information. Adapting the event-triggered control strategy proposed in Tallapragada andChopra (2012, 2013), the sampling instants are determined from the following logic:

t k+1 = min{t ≥ t k + T, s.t. g(δ(t), y a (t)) ≥ 0}.
(10) where y a represents the vector of available information to the controller (which corresponds in our case to y a (t) = [ x(t) , e y (t) ] ) and the function g : R m × R n+p → R has to be efficiently defined such that the asymptotic stability of the closed-loop system (7) under the event-triggered rule described in (10) is ensured. Moreover, note that the trigger criterion given by ( 10) ensures that the next sampling time will occur at least T time units ahead the last one. Thus, T can be seen as a minimal dwell-time, which allows to prevent Zeno solutions. For t ≥ t k + T the control is not be updated until g(δ(t), y a (t)) ≥ 0.

EVENT-TRIGGERED STRATEGY DESIGN

Our aim is to provide an event-triggered strategy to update the control signal applied to the plant based solely on available signals, that is, using only u(t), f (u(t)), x(t) and y p (t). According to (10), this corresponds to design T and g in order to ensure the asymptotic stability of the sampled-data system (6). To do so, we first provide a general formulation, inspired from Tallapragada and Chopra (2012), [START_REF] Tallapragada | On event triggered tracking for nonlinear systems[END_REF], which corresponds to extend Theorem 1 of [START_REF] Tarbouriech | Observer-based event-triggered control codesign for linear systems[END_REF]. With this aim, consider the augmented state x = x e ∈ R 2n . Theorem 1. Consider a positive scalar T , a function g : R m × R n+p → R and the triggering rule

t k+1 = min{t ≥ t k + T, s.t. g(δ(t), y a (t)) ≥ 0} (11) with y a (t) = x(t) e y (t) = I 0 0 C p x(t).
Consider a positive definite function V , for which there exist two positive scalars ε 1 and ε 2 such that, for any x ∈ R 2n , we have

ε 1 x 2 ≤ V (x) ≤ ε 2 x 2 , ( 12 
) and assume, in addition, that the function V (x) satisfies, for all t ∈ [t k + T , t k+1 ) and for all k

∈ N V (x(t)) -g(δ(t), y a (t)) -2 f (u(t k )) S( f (u(t k )) + Ru(t k )) < 0, (13) 
and, for all k ∈ N

∆V T (x) -2 f (u(t k )) S( f (u(t k )) + Ru(t k )) < 0, (14) with ∆V T (x) = V (x(t k + T )) -V (x(t k )).
Then, the origin of system (7) with the triggering rule ( 11) is globally asymptotically stable and the inter-sampling intervals are lower bounded by T .

Proof. The proof is omitted due to space limitations but can be obtained from the authors.
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From Theorem 1, a way to design the event-triggered rule using only the available signals is stated below. Theorem 2. Given controller and observer gains K and L and a positive scalar T > 0, suppose that there exist symmetric positive definite matrices P 1 , P 3 , Q ε , Q δ and a matrix P 2 of appropriate dimensions such that the matrix inequalities

Φ 1 =      M    I 0 0 C p 0 0 0 0    * -Q ε      < 0, ( 15 
)
Φ 2 =      - P 1 P 2 P 2 P 3 -K R S 0
Λ 1 (T )

P 1 P 2 P 2 P 3 * -2S Λ 2 (T ) P 1 P 2 P 2 P 3 * * - P 1 P 2 P 2 P 3      < 0, ( 16 
)
are verified with matrix M is given in ( 8) and

Λ 1 (T ) = e A p -LC p 0 A p +LC p T + T 0 e A p -LC p 0 A p +LC p s ds B p K 0 0 0 Λ 2 (T ) = T 0 e A p -LC p 0 A p +LC p s ds B p f 0 .
(17) Then, the event-triggered sampling rule defined by (11) with

g δ(t), x(t) e y (t) = δ(t) Q δ δ(t) - x(t) e y (t) Q -1 ε x(t) e y (t) (18 
) is such that the origin of system ( 7) is globally asymptotically stable. Furthermore, the inter-sampling times are lower bounded by T .

Proof. As for Theorem 1, the proof was removed from reason of place but can be obtained from the authors.

2 Remark 3. Note that Zeno behaviors are avoided from the definition of the event-triggered rule (11) because the intersampling times are lower bounded by the positive scalar T . Actually, T represents a dwell-time implying that there is a minimum time T between two updates.

OPTIMIZATION ISSUES

Let us point out that, differently from [START_REF] Tallapragada | Event-triggered dynamic output feedback control of LTI systems[END_REF], in Theorem 2 the inter-sampling times are directly obtained via the satisfaction of ( 16) without the need of additional a posteriori calculations. Furthermore, if the condition (15) holds then it is always possible to find a small enough T such that conditions ( 16) is verified. The parameter T appears then as a tuning parameter of the event-trigger problem. If T is too large, the conditions may be not feasible. Since a large T can lead to a performance degradation with respect to the

M =    He{P 1 (A p + B p K)} (A p + B p K) P 2 -P 1 LC p + P 2 (A p + LC p ) P 1 B p P 1 B p f -K R S * He{P 3 (A p + LC p ) -P 2 LC p } P 2 B p P 2 B p f * * -Q δ -R S * * * -2S    . (8) 
continuous-time implementation, a classical trade-off has to be considered when choosing T . Actually, it is important to note that provided that matrices A p +B p K and A p +LC p are Hurwitz, the existence of a small enough positive scalar T such that the conditions of Theorem 2 are feasible is ensured.

Conditions in Theorem 2 are LMIs provided that K, L and T are fixed, as typically considered in an emulation context. In order to select gains K and L, classical design techniques may be used, possibly considering some performance criteria.

In particular, the observer gain L is chosen to get A p + LC p Hurwitz with fast enough eigenvalues.

Hence, the selection of the parameters Q ε and Q δ can be systematically performed through the following convex optimization problem (given K, L and T > 0): min

P 1 ,P 2 ,P 3 ,Q ε ,Q δ ,S trace(Q δ ) + trace(Q ε ).
s.t. (15), ( 16).

(

) 19 
The idea behind the optimization criterion in ( 19) is to get Q δ and Q ε as "small" as possible. With the view of the event triggering rule (18), and condition (15), this also means that the matrix Q δ > 0 is minimized as well as the matrix Q -1 ε > 0 is maximized. Since the control input is updated whenever the function g in ( 18) is positive, this optimization procedure aims at reducing the impact of the first positive contribution in g (Q δ > 0) over the second negative contribution (-Q ε < 0).

Let us emphasize that the dwell-time T is also a design parameter and its role is connected to the expected average sampling rate of the event triggered implementation. It can then be interesting to seek for maximizing the value of T through problem (19) by iteratively increasing T and testing LMI conditions. The implicit goal of such a convex optimization problem proposed is to reduce as much as possible the occurrences of sampling. This aspect is illustrated in Section 5.

NUMERICAL EXAMPLE

System description

Let us consider the following plant:

   ẋp (t) = 0 1 4 0 x p (t) + 0 1 q(u(t)), y p (t) = [1 0] x p (t), (20) 
where q(u) is a logarithmic quantization function defined as follows [START_REF] Fu | The sector bound approach to quantized feedback control[END_REF]):

q(u) =        1 ρ j q if 1 ρ j q (1 + η q ) ≤ u < 1 ρ j q (1 -η q ) , j ∈ Z -q(-u) if u < 0 with η q = 1 -ρ q 1 + ρ q , 0 < ρ q < 1
It should be noticed that the quantization error q(u) = q(u)u is restricted to the cone defined by ±η q u (i.e., it satisfies the relation ( q(u) + η q u)( q(u)η q u) < 0) (de Souza et al. ( 2010)).

In order to cast the system in the form (1), with a function f (u) satisfying ( 2), it suffices to consider:

f (u) = q(u) -η q u; A p = 0 1 4 0 ; B p f = 0 1 ; B p = (1 + η q )B p f ; C p = [1 0] ; D p f = 0.
Note that in this case the relation ( q(u) + η q u)( q(u)η q u) < 0 becomes f (u)( f (u) + 2η q u) < 0, i.e., ( 2) is verified with R = 2η q .

Optimization results

We consider the quantization with ρ q = 0.9 (which leads to R = 2η q = 0.105263), the state feedback gain matrix K = [-6 -3], the observer gain matrix L = [-3.5 -7] and the dwell-time T = 0.2. Then, solving the optimization problem (19) with this data, we obtain:

Q ε =   0.452633 1.10763 • 10 -5 -2.19703 • 10 -9 1.10763 • 10 -5 0.275705 1.82799 • 10 -10 -2.19703 • 10 -9 1.82799 • 10 -10 1.51132 • 10 -5   , Q δ = 0.728379.

Influence of T

Now, to show the influence of the parameter T , we solve optimization problem (19) for some values of T in the interval [0.1, 0.7]. Table 1 shows the average number of updates of the control signal obtained for each T chosen, considering 100 different initial conditions and t ∈ [0, 10]. The variation on the number of updates is approximately 12%. A value of T ≥ 0.8 renders optimization problem (19) unfeasible.

Some simulations

We consider several values of T to depict the evolution of the plant and observer states, of the control input and of the sampling instants with the event-triggering rule (10) obtained by Theorem 2. To do this we consider the following initial conditions for the plant and the observer:

x p (0) = -5 0 ; x(0) = 0 0 (21) 
Fig. 1a) shows three simulations considering these values for the trigger function and initial conditions defined as in ( 21). The top plots depicts the plant and observer states. It can be noticed that the observer states quickly converge to the plant states, as expected. The control signal is shown in the middle plot. Note that the control signal is effectively held constant between two events. Moreover, the value of the control is subject to a logarithmic quantization. The bottom plot depicts the sampling instants, with the sizes of the bars representing the inter-event times, i.e. the difference between the time of that event and of the previous one. The dashed line marks the dwell-time.

One can see that the trigger strategy is effectively delaying the sampling events, yielding inter-sampling times larger than the dwell-time while ensuring the asymptotic stability of the closed-loop system.

Figs. 1b) and 1c) show simulations for T = 0.4 and T = 0.7, respectively, both considering initial conditions defined as in (21). One can notice that, as T increases, more the inter-sample times are equal to the value of T , i.e. the event-triggered strategy cannot delay the sampling events so effectively anymore.

For T = 0.7 and the initial condition considered, all the intersample times are equal to T . As mentioned before, this value of T is close to the limit of feasibility of optimization problem (19).

CONCLUSION

The paper handled an observer-based event-triggered control strategy for linear systems subject to cone-bounded nonlinearities affecting the input. The developed technique used only available variables. Sufficient conditions based on linear matrix inequalities (LMI) associated to convex optimization problem have been proposed to ensure the asymptotic stability of the closed loop in an emulation context. Moreover, the proposed approach allowed to design the event-triggering rule with a parameter T imposing the inter-sampling times.

These preliminary results let some open issues. In particular, it could be interesting to study the co-design problem, that is the simultaneous design of the control gains (K and L) and the triggering rule (i.e. matrices Q δ and Q ε ). Furthermore, it could be pertinent to study the presence of cone-bounded nonlinearities depending on the state, imposing to change the route used to derive the conditions.

  Fig. 1. Figure representing the state of the plant and the observer, the control input u, and the sampling instants issued from Theorem 2 with T = 0.2 (left), T = 0.4 (middle) and T = 0.7 (right).
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