
HAL Id: hal-01499518
https://laas.hal.science/hal-01499518

Submitted on 31 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

A toolset for mobile systems testing
Pierre André, Nicolas Rivière, Hélène Waeselynck

To cite this version:
Pierre André, Nicolas Rivière, Hélène Waeselynck. A toolset for mobile systems testing. 11th Interna-
tional Conference on Verification and Evaluation of Computer and Communication Systems (VEcOS
2017), Aug 2017, Montréal, Canada. pp.124-138. �hal-01499518�

https://laas.hal.science/hal-01499518
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Practical experience: tool description

A toolset for mobile systems testing
Pierre ANDRÉ∗, Nicolas RIVIÈRE∗ and Hélène WAESELYNCK∗
∗LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France;

E-mail: {pierre.andre, nicolas.riviere, helene.waeselynck}@laas.fr

Abstract—Validation of mobile applications needs taking ac-
count of context (such network topology) and interactions be-
tween mobile nodes. Scenario-based approaches are well-suited
to describe the behavior and interactions to observe in distributed
systems. The difficulty to control accurately the execution context
of such applications has led us to use passive testing. This paper
presents a toolset which supports specification and verification of
scenarios. A UML-based formal language, called TERMOS, has
been implemented for specifying scenarios in mobile computing
systems. These scenarios capture the key properties which are
automatically checked on the traces, considering both the spatial
configuration of nodes and their communication. We give an
overview of the language design choices, its semantics and the
implementation of the tool chain. The approach is demonstrated
on a case study.

Index Terms—Mobile computing systems, Scenario-based test-
ing, UML sequence diagrams, UML profile, Trace analysis

I. INTRODUCTION

Mobile computing systems involve devices (smartphone,
laptop, intelligent car) that move within some physical areas,
while being connected to networks by means of wireless links
(Bluetooth, IEEE 802.11, LTE). Compared to ”traditional”
distributed systems, such systems run in an extremely dynamic
context. The movement of devices yields an evolving topology
of connection. Links with other mobile devices or with infras-
tructure nodes may be established or destroyed depending on
the location. Moreover, mobile nodes may dynamically appear
and disappear as devices are switched on and off, run out of
power or go to standby mode.

Our work is aimed at developping a framework and a toolset
to support the validation of such systems based on a passive
testing approach. Passive testing (see e.g., [1]) is the process
of detecting errors by passively observing the execution trace
of a running system. In our case, the properties to be checked
are specified using graphical interaction scenarios. A scenario
captures a key property of a mobile application, depicting
mandatory or forbidden behavior, to be checked on the traces.
For mobile computing systems, a property has to be checked
according to the topology of the mobile nodes involved in
the scenario. A scenario should have both (i) a spatial view,
depicting the dynamically changing topology of nodes as a
sequence of graphs, and (ii) an event view representing the
communications between nodes.

Graphical scenario languages (e.g., Message Sequence
Charts [2], UML Sequence Diagrams [3]) allow the visual
representation of interactions in distributed systems. Typical
use cases, forbidden behaviors, test cases and many more

aspects can be depicted. The need to automate analysis of
test traces led us to design a scenario language with a formal
semantics. This graphical language is a formal UML-based
language called TERMOS (Test Requirement Language for
Mobile Settings) [4]. It allows to depict scenarios including
the node context.

The global concept followed for testing mobile computing
applications needs two main elements: an execution platform
and software tools to process the recorded data. The execution
platform is composed of three elements: a context controller
(to manage mobility of nodes), a network controller (to man-
age communication) and an execution environment support to
run the system under test (SUT). The SUT is run in a simulated
environment, using a synthetic workload. The platform allows
to control the context, to observe and to record execution traces
data during the testing campaigns.

Nevertheless, software tools are needed for checking a large
amount of traces against scenarios. In order to support the
verification, we designed a test framework. There are three
main activities: the specification of scenarios, the capture of
traces via the execution platform, and the analysis of traces.

In a previous work [5], we demonstrated our approach with
a first prototype which integrated the TERMOS language and
algorithms in an open-source UML environment. Since then,
significant improvements and extensions have been achieved:

1) the different pieces of our toolset are fully integrated,
2) the specification of the language has been extended to

take account of predicates,
3) severel checks have been implemented during specifica-

tion and analysis,
4) a man-machine interface has been created for an accurate

analysis of test verdicts.

This paper aims at giving an overview of a full demonstrator
for the approach, from the graphical editing of requirement
scenarios to their automated use for checking test traces.

The structure of the paper is the following:

• section II gives an overview of the test framework.
• section III presents the choices and development done

for the specification of graphical scenarios for mobile
settings.

• section IV explains the principle of the trace analysis.
• section V concludes with results provided by the appli-

cation of the test method to a case study.

1



II. TOOLSET OVERVIEW

The goal of our work is the validation of mobile computing
systems. Our work focuses on the use of scenarios to analyze
execution traces of mobile computing systems. It is essential
to take account the network topology and the interactions
between mobile nodes. To achieve this analysis, we need to
run the application within an execution platform. It can be
either a platform producing real traces from real physical
devices or a simulation platform. For a better reproducibility
of the test campaigns, the system under test (SUT) is run
in a simulated environment, using a synthetic workload. The
SUT may involve both fixed nodes and mobile devices. The
movement of the latter ones is managed according to some
mobility model, a context manager being in charge of produc-
ing location-based data. The network simulator can simulate
delays or communication errors on wireless or wired links.
Execution traces are collected, including both communication
messages and location-based data from which the system
spatial configurations can be retrieved.

We want to check whether the test trace exhibits some
behavior patterns described by scenarios. The properties are
specified using graphical interaction scenarios which represent
test requirements or test purposes. The TERMOS language
has been developed to capture the three classes of scenarios
exemplified by Figure 1. Positive requirements capture key
invariant properties of the following form: whenever a given
interaction happens in the trace, then a specific interaction
always follows. Negative requirements describe forbidden be-
haviors that should never occur in the trace. Any observed
violation of a requirement must be reported. Test purposes
describe behaviors to be covered by testing, that is, we would
like these behaviors to occur at least once in the trace. If the
interaction appears in the trace, the test purpose is reported as
covered.

Initial Configuration n1

A B
m1()

Assertion
m2()

(a) Positive req.

Initial Configuration n1

A B
m1()

FALSE
Assertion

(b) Negative req.

Initial Configuration n1

A B
m1()

Config. n1 → Config. n2

TRUE
Assertion

(c) Test purpose

Fig. 1. Requirement and test purpose scenarios (event views)

We interpret TERMOS scenarios as generic behavior pat-
terns that may be matched by various subsets of the system
during the test run. In Figure 1, the node ids A and B are
symbolic node ids. For example, the positive requirement
(Figure 1a) is interpreted as:

Whenever two nodes exhibit spatial configura-
tion n1, and the node matching A sends message
m1() to the node matching B, then the node matching
B must answer with message m2().

At some point of a test run, we may have two simultaneous
instances of n1, one with system nodes x and y matching A

and B, and one with x and z. At some later point, system node
x may play the role of B in yet another instance of n1.

Given a scenario, the analysis of a test trace thus involves
two steps:

1) Determine which physical nodes of the trace exhibit the
(sequence of) configuration(s) of the scenario, and when
they do so.

2) Analyze the order of events in the identified configura-
tions using an automaton.

Assuming that system configuration graphs can be built
from the contextual test data, step 1 can be formulated as
a graph matching problem. We explained in [6] [7] how
subgraph isomorphism can be used to search for all instances
of the scenario configurations in a trace. Then, in step 2, the
order of communication and configuration change events are
analyzed using an automaton for all found spatial matches.

To automate the execution of the test and the processing
of the traces, a test framework has been implemented. We
made the choice to distribute the different steps in three main
activities, as shown in Figure 2, each performing a specific
task in the testing of mobile applications: the specification of
scenarios, the capture of traces via the execution platform, and
the analysis of traces.

The overall principles of the toolset are the following.
The trace capture provides execution traces where location-
based data and communication messages are time stamped.
Requirement scenarios are specified manually within a UML-
workshop. A scenario is transformed, after checks, into an
automaton and a pattern containing a sequence of topologies.
Finally, trace analysis is processed in fours steps with specific
tools we have developed, and is concluded with a verdict(pass,
fail, inconclusive).

III. SCENARIO SPECIFICATION

The scenario specification, the right green block in Figure 2,
consists of three steps: scenario modeling, scenario fomat
checks and scenario transformation.

In the first step, requirements are captured using our sce-
nario based language, which includes the mobility related
extensions. Our language TERMOS is a specialization of UML
Sequence Diagrams [3]. Its genesis can be found in our work
[8] [4]. Like in usual sequence diagrams, lifelines are drawn
for the nodes and the partial orders of their communications
are shown. We first noticed that the spatial configurations of
nodes should be a first class concept. As a result, a scenario
should have both (i) a spatial view, depicting the dynamically
changing topology of nodes as a sequence of graphs, and
(ii) an event view representing the communications between
nodes. The syntax of the language includes elements for repre-
senting spatial configurations, changes in the communication
structure, broadcast messages and predicates. These are called
non standard elemetns in the following.

Next, the scenario to be verified automatically must meet
a number of constraints. In this way, a verification stage for
the well-formedness of the scenario has been set up. It aims
at ensuring the correct syntactic form of the scenario, and

2



Trace analysisTrace capture Scenario specification

Context
manager

Network
simulator

Execution
environment

Execution
environment

Execution
environment

Trace merging
Matching of

Graph Sequences

Application
to test

specifications

Application
to test

Scenario
modeling

x
Scenario format

checks

Scenario
transformation

Filtering

Automaton
processing

Pass Fail Inconclusive

Verdict analysisx

Trace

Trace

Pattern

Automaton

Matches

Subtraces

Fig. 2. Test framework architecture

the determinism of verdicts with the use of an unambiguous
semantics. There are three categories of specific constraints for
the language: UML syntactic restrictions, consistency between
event views and spatial views, and specific elements of the
language.

After all format checks passed successfully, it is possible
to process the transformation of the graphical scenario in a
suitable format for the trace analysis. The scenario is then
decomposed in two files: a graph sequence representing the
sequence of spatial configurations, and an automaton repre-
senting all event order paths available for this scenario.

Our language has been implemented within a UML work-
shop. For this implementation, we have chosen Eclipse Pa-
pyrus workshop through its extension possibilities through the
use of UML profiles and the development of Eclipse plugins.

A. Scenario modeling

1) UML profile for non-standard elements: A scenario in
a mobile setting contains two connected views. These views
were integrated into Papyrus with the use of a UML profile
in order to allow the representation of non-standard UML
elements and some syntactic restrictions to sequence diagrams.
The first two views are relevant to the mobile setting, while
the syntactic restrictions are relevant to the use of TERMOS
for checking execution traces. With this profile, we proposed

three extensions: representation of a spatial view, consideration
for spatial configuration change events in sequence diagrams,
representation of broadcast communication events.

The sequence diagram illustrated Figure 3 depicts a piece
of TERMOS scenario. The upper note ”Initial Configuration:
C1” reports that our scenario starts with a topology called
C1. There is a life line in the diagram for each node of
the spatial configuration. The spatial configuration change
”CHANGE(C2)” impacts all the nodes, this is why this event
is common to each life line. The ”hello” broadcast message is
sent by node n2 and received by every node at communication
range. This sequence diagram implies that nodes n1, n3 and
n4 are connected with n2.

Fig. 3. TERMOS example

3



Local broadcast is used as a basic step for the discovery
layer in mobile-based applications (group discovery for group
membership services, route discovery in routing protocols,
etc.). In order to represent a broadcast message in the neigh-
borhood, we used a stereotype << broadcast >> associated
with an integer attribute to link several events together, as in
Figure 4. This stereotype can be applied to lost/found message
events as represented in Figure 3.

Stereotype
broadcast

MessagePrimitiveType
Integer

id

Fig. 4. UML profile for broadcast

2) A grammar for the predicates: In order to provide a
richer description of scenarios, we extended the specification
language to take account of predicates [9]. The scenario in
Figure 5 contains two expressions to evaluate in the Assert
block.

(m1.members includes n1) and (m1.members = m2.members)

Variables used in this expression may have various origins,
e.g. variables from nodes as node identifier or node attributes,
or message attributes from the event view. For example n1 is a
node identifier from the spatial view. Variable like m1.members
comes from the content of the first message. The ability to
use variables from either spatial and event view of a scenario
is very useful and allows to represent behavior of complex
systems in a scenario.

A dedicated grammar has been created to write predicates
[9]. It is based on a subset of the OCL language syntax and has
been implemented using the ANTLR language. The operations
feasible using our grammar can be classified into three groups:
numerical comparison, set comparison and logical operation.
In the example Figure 5, we want to know if n1 is a member
of the m1.members list, and if m1.members and m2.members
contain the same elements.

B. Scenario format checks

Before processing the verification steps of scenarios on an
execution trace, it is necessary to verify that the scenario
complies with the constraints of our language. The objectives
of this stage are: to ensure the correct syntactic form of
scenarios, and to ensure the determinism of verdicts using an
unambiguous semantics.

Some checks are run before the scenario is transformed into
an automaton. A feedback is provided to the user with all
possible details allowing him to modify the scenarios. The
goal is to have an error free scenario for the next steps. The
constraints introduced by our language may be classified into
three categories.

1) UML syntax restrictions: To adapt the sequence dia-
grams representation of interactions within mobile systems,
some UML elements have been deleted and some constraints

have been introduced [10]. For example, the following op-
erators where deleted : Strict, Loop, Ignore, Neg, Break and
Critical. In terms of constraints, some operators are considered
as global events. The Assert operator in Figure 5 must cover
all the lifelines of the scenario and be the last element of the
sequence diagram.

2) Consistency constraints between event view and spatial
view: As our scenarios are composed of two views, we must
ensure consistency between them. For example, the nodes
present in an event view must be present in the spatial view.

3) Specific elements of the language: The link between the
spatial view and the event view of the scenario is managed by
a global event called Configuration Change. An example of
this specific element of the language is represented in Figure 3
by the event CHANGE(C2). Another specific element is the
broadcast communication event. Here we need to link several
receive message events with one unique send event.

C. Scenarios processing

Before running trace analysis, a scenario transformation
is mandatory to generate input patterns for trace analysis.
This step occurs after all format checks have been passed
successfully. As mentioned in the Figure 2, the scenario
transformation process produces two behavior patterns. An
event order analysis of the scenario is run to produce them.
The configuration changes in the scenario are analyzed to
build a sequence of graphs that depicts the needed sequence of
network topology. An automaton is also built with all possible
event sequences that may represent the scenario [4] [9].

Some checks have to be executed once the complete au-
tomaton is produced. This is the case when a scenario includes
some predicates. For each predicate, it is necessary to check
that all the variables required for its assessment are available.
Considering the example in Figure 5, the predicate in the
Assert block uses variables m1.members and m2.members
from the two preceding messages. All the branches that led to
a state where a predicate is assessed must contain a valuation
of the variables.

IV. TRACE ANALYSIS

The trace analysis part (the central yellow block in Figure 2)
consists of severals steps: matching of graph sequences,
trace filtering, automaton processing and verdict analysis.

A. Principles

There is a gap between the abstract spatial configurations
defined in the requirement scenarios and the concrete ones
observed in the trace. It is necessary to decide which node
from the execution environment can play the roles depicted
in the scenarios. Based on their types and connections, the
abstract nodes have to be mapped to the concrete ones found
in the trace. However, usually there are several possible
matchings. Moreover, the matching should take into account
not only one configuration, but also the changes in a sequence
of configurations like C1 followed by C2 in Figure 3. To
address this issue, we developed a method and a tool, called

4



(a) Event view (b) Spatial view

Fig. 5. Scenario example using predicates

GraphSeq [4] [7], which reason on a series of abstract and
concrete configuration graphs, and return the set of possible
matches and valuations.

For each occurrence of the pattern identified by GraphSeq,
a match is returned. A match identifies a subset of concrete
nodes that exhibits the searched sequence of patterns and its
duration. It contains the valuation of each variable presents
in the pattern. For each match, a sub-trace is generated. A
sub-trace contains only configuration changes identified by
GraphSeq, and communication messages sent or received by
the identified nodes during the time window.

All sub-traces are evaluated with respect to the requirements
using the automaton. Each event in the sub-trace triggers a
transition in the automaton until the check reaches a final state
or the end of the sub-trace. Each state of the automaton is
linked to a verdict. Finally, a pass, fail or inconclusive verdict
is assigned to a (trace, requirement, matching) combination
according to the reached state.

During the analysis of the execution trace, a new check
has to be performed. Indeed, the use of predicates may lead
to some cases of non-determinism. To detect them, from the
current state, we are seeking if more than one transition can
be fired.

Each sub-trace can lead to several verdicts. Indeed, in the
automaton some transitions are labelled as initial ones. That
means they can trigger a new validation of the automaton from
the fired event. The example in Figure 6 is a trace we want
to check against the scenario of 0Figure 5. Each message
(from ¶ to º) leads to a verdict. On the other hand the
occurence of » does not lead to a verdict because it occurs
after a configuration change. » is represented here in order
to explain how our tool works. However it cannot occur in a
sub-trace because it will be filtered by the time window founds
by GraphSeq in the previous steps of analysis.

B. Verdict analysis

The automaton execution stage leads mostly to a set of
verdicts that it is difficult to analyze manually. We have
implemented a verdict analysis tool based on a man-machine

n1 n2

Configuration : C2

New Configuration

GroupChange()
2

GroupChange()
1

GroupChange()
3

GroupChange()
4

GroupChange()
5

GroupChange()
6

Fig. 6. Multiple verdicts from one trace

interface allowing an accurate analysis of test verdicts. The
interface of this tool shown Figure 7 is composed of three
areas. The first one contains all verdicts of the current exe-
cution. It may contain a large number of verdicts because an
automaton check can be run on all the sub-traces identified in
the first step of the trace analysis. In this part of the interface,
the user is able to select and analyze in details a verdict
through the analysis of the automaton transition triggered to
reach the verdict. The trigerred transitions are displayed in the
automaton area. For each transition, the event that triggered it
is highlighted in the trace area. It is also possible to display
the content of the message for manual analysis.

With this analysis interface, the user has a better feedback
to understand more easily the behavior of the system and take
the necessary actions to correct it. Actions can be changed in
the source code of the application under test or the scenario
may be rewrited in the right way. These actions are repre-
sented in Figure 2 by the feedback from Verdict analysis to

5



Trace Automaton

Verdicts

Fig. 7. Verdict analysis interface

Application to test and Scenario modeling.

V. RESULTS

Our test framework was validated with a case study. To be
used, our method requires two elements: detailed specifications
in order to design test cases and functional implementation for
the collection of execution traces. The application we have
verified is a group membership protocol called GMP whose
specifications are detailed in [11].

The main functionality of the GMP is to maintain a consis-
tent view of who is in the group. The studied implementation
dynamically merges and splits groups of nodes according to a
notion of safe distance. The safe distance is determined to give
enough time for two nodes in the same group for: (i) moving
away from each other at their maximum speed, (ii) splitting up
the group before loosing network connection between them.
Using this notion, a link between two nodes can have three
labels: safe distance, communication range, disconnected and
any (wildcard for any of the three labels).

The GMP works with two main operations, GroupSplit and
GroupMerge. We used specifications of the protocol fully
described in [11] to write tests scenarios and check key
properties of this protocol.

One example of property was described using our language
in Figure 5. This scenario depicts a property called Member-
ship Agreement. It aims at ensuring that two nodes connected
together with a safe link have to be in the same group.

To collect traces of execution, we have instrumented the
application under test. This instrumentation consists, on each
mobile node, to simulate a location device acting as a GPS
and to record all communications events with the outside
world. To observe how the protocol works, several nodes
must be running at the same time. To manage the simulation
and coordinate nodes movements between them, a mobility
simulator was used.

We tested our scenarios considering the traces collected
during the execution of the GMP using 16 nodes during 15

minutes. This execution produced a global trace containing
900 configuration graphs and more than 500,000 sent or
received message events. Firstly, as shown in Figure 2, for
each scenario, we searched for spatial patterns and generated
subtraces. This step found 3,116 spatial matches and generated
one subtrace for each of them. Next, we check the automaton
on each subtrace. The automaton may be checked more than
once per subtrace because we look for initial events in the
subtrace, and run the automaton starting at each initial event
detected. This step led to 36,460 executions of the automaton,
distributed as follows:

• 16 186 executions reached the final state of the automa-
ton. In other words, the verdict of the execution is accept.

• 20 240 executions have not reached the assert block of
the scenario. In this scenario, this is due to the lack of
one of the two GroupChange messages.

• 34 executions stopped inside the assert block. These cases
revealed violation of the property.

Complete results about tested scenarios are presented Table I.
With these results displayed in the verdict analysis interface
presented in the previous section, the user is able to analyse
each verdict and detect which events caused it.

All the GMP properties were described using TERMOS
languages, and verified on traces from the SUT presented
above. Each property was violated at least once. The results
show the usefulness of our tool which can detect properties
violation easily on execution traces. The user only needs to
describe properties using our UML editor, run analysis on
execution traces and analyse the results given by our tool.

VI. RELATED WORKS

We did not find any testing framework or tools like our
toolset. The closest work we can find is a methodology for
testing autonomous systems based on graphical scenarios [12].

Other works have investigated how to incorporate mobility
into UML scenarios [13] [14] [15]. However, the focus was
more on logical mobility (mobile computation) than on physi-
cal one (mobile computing). It induces a view of mobility that
consists of entering and exiting administrative domains, the
domains being hierarchically organized. This view is adequate
to express the migration of agents, but physical mobility
requires further investigation, e.g., to account for dynamic ad-
hoc networking. Also, there is not always a formal semantics
attached to the notations.

Having a formal semantics is crucial for our objective of
automated analysis of traces. We had a thorough look at
existing semantics for UML Sequence Diagrams [10]. We also
looked at other scenario languages distinguishing potential
and mandatory behavior. The most influential work for the
TERMOS semantics was work on Live Sequence Charts (LSC)
[16] [17], as well as work adapting LSC concepts into UML
Sequence Diagrams [18] [19].

GraphSeq implements an algorithm to match sequences of
configurations: the sequence of symbolic configurations of the
scenario, and the sequence of concrete configurations traversed
during SUT execution. To the best of our knowledge, this is an

6



TABLE I
SUMMARY OF SCENARIOS VALIDATION FOR A TRACE OF MORE THAN 500,000 EVENTS.

Tested scenario Matchs Accept Reject

Spatial Event Stringent Trivial Reject

Local monotonicity 16 3,608 3,478 16 114

Self inclusion 16 3,608 3,606 0 2

Membership change justification 16 3,608 3,495 16 97

Membership agreement 3,116 36,460 16,186 20,240 34

Wrong split* 8768 53702 0 53098 604

Concurrent merge* 2450 2487 0 2336 151

Concurrent split 162 569 52 387 130

original contribution. The comparison of sequences of graphs
has been much less studied than the comparison of two graphs.
The closest work we found is for the analysis of video images.
In [20], the authors search for sequences of patterns (called
pictorial queries) into a sequence of concrete graphs extracted
from video images. Some differences with us are that their
patterns do not involve label variables, and that there is at
most one possibility for matching a pattern node with an image
object.

VII. CONCLUSION

This paper presented a tooling support for TERMOS, a
UML-based scenario language for the testing of mobile com-
puting systems. Its formal scemantics allows an automated
analysis of test traces. A grammar for predicates has been
created to accommodate richer descriptions of scenarios. Sev-
eral checks during the verification process from the depic-
tion of requirements scenarios to trace analysis have been
implemented to ensure the correctness of our method. A man-
machine interface was integrated to help the user to analyze the
test verdict. The full integration of our main tools, GraphSeq
and TERMOS, led us to develop a complete tool chain for the
automated checking of test traces. The integration has been
done in UML workshop called Papyrus.

In order to validate our test framework, we led experiments
on a group membership protocol. During this experimentation,
we have proven the efficiency of our tools using them on traces
of several hundred of thousands events. Detailed information
on the testing tools and the tested scenarios of the GMP case
study are available at https://www.laas.fr/projects/TERMOS.
The tool will be made available online for the scientific
community

REFERENCES

[1] A. Cavalli, S. Maag, and E. M. de Oca, “A passive conformance
testing approach for a MANET routing protocol,” in Proceedings
of the 2009 ACM symposium on Applied Computing, ser. SAC ’09.
New York, NY, USA: ACM, 2009, pp. 207–211. [Online]. Available:
http://doi.acm.org/10.1145/1529282.1529326

[2] International Telecommunication Union, Message Sequence Chart
(MSC), 2011, recommendation Z.120. [Online]. Available: http:
//www.itu.int/rec/T-REC-Z.120

[3] Object Management Group, Unified Modeling Language (UML) 2.4.1
Superstructure Specification, 2011, formal/2011-08-06.

[4] H. Waeselynck, Z. Micskei, N. Riviere, A. Hamvas, and I. Nitu, “TER-
MOS: a formal language for scenarios in mobile computing systems,” in
Mobile and Ubiquitous Systems: Computing, Networking, and Services
(MobiQuitous 2010), Sydney, Australia, 12 2010, pp. 285–296.

[5] P. Andre, H. Waeselynck, and N. Riviere, “A UML-based environment
for test scenarios in mobile settings,” in Int. Conf. on Computer,
Information, and Telecommunication Systems (CITS 2013). IEEE, 2013.

[6] M. D. Nguyen, H. Waeselynck, and N. Riviere, “GraphSeq: A graph
matching tool for the extraction of mobility patterns,” in Software
Testing, Verification and Validation (ICST), 3rd Int. Conf. on, april 2010,
pp. 195 –204.

[7] P. Andre, N. Riviere, and H. Waeselynck, “GraphSeq revisited: More
efficient search for patterns in mobility traces,” in European Workshop
on Dependable Computing, ser. LNCS. Springer, 2013, vol. 7869, pp.
88–95.

[8] M. D. Nguyen, H. Waeselynck, and N. Riviere, “Testing mobile com-
puting applications: toward a scenario language and tools,” in Proc. of
the 2008 int. workshop on dynamic analysis, ser. WODA ’08. ACM,
2008, pp. 29–35.

[9] P. Andre, “Test of ubiquitous systems with explicit consideration
of mobility,” PhD [in french], UPS Toulouse, Nov. 2015. [Online].
Available: https://tel.archives-ouvertes.fr/tel-01261593

[10] Z. Micskei and H. Waeselynck, “The many meanings of UML 2
sequence diagrams: a survey,” Software and Systems Modeling, vol. 10,
no. 4, pp. 489–514, 2011.

[11] Q. Huang, C. Julien, and G. Roman, “Relying on safe distance to achieve
strong partitionable group membership in ad hoc networks,” IEEE Trans.
Mobile Comput., vol. 3, no. 2, pp. 192–205, Apr. 2004.

[12] Z. Micskei, Z. Szatmári, J. Oláh, and I. Majzik, “A concept for
testing robustness and safety of the context-aware behaviour of
autonomous systems,” in Agent and Multi-Agent Systems. Technologies
and Applications - 6th KES International Conference, KES-AMSTA
2012,Dubrovnik, Croatia, June 25-27, 2012. Proceedings, ser. Lecture
Notes in Computer Science, G. Jezic, M. Kusek, N. T. Nguyen, R. J.
Howlett, and L. C. Jain, Eds., vol. 7327. Springer, 2012, pp. 504–513.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-30947-2 55

[13] H. Baumeister, N. Koch, P. Kosiuczenko, P. Stevens, and M. Wirsing,
“UML for global computing,” in Global Computing. Programming
Environments, Languages, Security, and Analysis of Systems, ser. LNCS,
vol. 2874. Springer, 2003, pp. 1–24.

[14] V. Grassi, R. Mirandola, and A. Sabetta, “A UML profile to model
mobile systems,” in UML 2004 - The Unified Modeling Language.
Modelling Languages and Applications, ser. LNCS, vol. 3273. Springer
Berlin / Heidelberg, 2004, pp. 128–142.

[15] M. Kusek and G. Jezic, “Extending UML sequence diagrams to model
agent mobility,” in Agent-Oriented Software Engineering VII, ser. LNCS.
Springer, 2007, vol. 4405, pp. 51–63.

[16] W. Damm and D. Harel, “LSCs: Breathing life into message sequence
charts,” Formal Methods in System Design, vol. 19, no. 1, pp. 45–80,
Jul. 2001.

7

https://www.laas.fr/projects/TERMOS
http://doi.acm.org/10.1145/1529282.1529326
http://www.itu.int/rec/T-REC-Z.120
http://www.itu.int/rec/T-REC-Z.120
https://tel.archives-ouvertes.fr/tel-01261593
http://dx.doi.org/10.1007/978-3-642-30947-2_55


[17] J. Klose, “Live sequence charts: A graphical formalism for the specifica-
tion of communication behavior,” Ph.D. dissertation, Carl von Ossietzky
Universitat Oldenburg, 2003.

[18] D. Harel and S. Maoz, “Assert and negate revisited: Modal semantics
for UML sequence diagrams,” Software and Systems Modeling, vol. 7,
no. 2, pp. 237–252, 2008.

[19] J. Küster-Filipe, “Modelling concurrent interactions,” Theoretical Com-
puter Science, vol. 351, no. 2, pp. 203–220, Feb. 2006.

[20] K. Shearer, S. Venkatesh, and H. Bunke, “Video sequence matching via
decision tree path following,” Pattern Recognition Letters, vol. 22, no. 5,
pp. 479–492, 2001.

8


	Introduction
	Toolset overview
	Scenario specification
	Scenario modeling
	UML profile for non-standard elements
	A grammar for the predicates

	Scenario format checks
	UML syntax restrictions
	Consistency constraints between event view and spatial view
	Specific elements of the language

	Scenarios processing

	Trace analysis
	Principles
	Verdict analysis

	Results
	Related works
	Conclusion
	References

