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Abstract: We study the control problem of an aerial vehicle moving in the 3D space and
connected to an independently moving platform through a physical link (e.g., a cable, a chain
or a rope). The link is attached to the moving platform by means of a passive winch. The
latter differs from an active winch by producing only a constant uncontrollable torque. We
solve the problem of exact tracking of the 3D position of the aerial vehicle, either absolute or
with respect to the moving platform, while the platform is independently moving. We prove
two intrinsic properties of the system, namely, the dynamic feedback linearizability and the
differential flatness with respect to the output of interest. Exploiting this properties we design
a nonlinear controller able to exponentially steer the position of the aerial robot along any
sufficiently smooth time-varying trajectory. The proposed method is tested through numerical
simulations in several non-ideal cases.

Keywords: Aerial robot control, tethered aerial vehicles, nonlinear control

1. INTRODUCTION

The interest for aerial robots, sometimes called UAVs,
UASs, or MAVs, saw a fast improving in the last few
years. Indeed, thanks to light-weight and low-cost on-
board sensors and computation units, these aerial vehi-
cles became accessible for many companies and robotic
labs. A new emerging trend is aerial manipulation in
which aerial robots have to physically interact with the
environment (Gioioso et al., 2014b; Yüksel et al., 2014;
Gioioso et al., 2014a). Nevertheless, some of their typical
limitations, such as limited flight time and maximum pay-
load, seriously affect their performances. In particular they
could be inapplicable for tasks requiring long time data
acquisition or for inspection in the presence of external
disturbances like strong wind.

In order to overcome these limitations the tethered so-
lution has been already proposed by several works. In
fact the physical link connecting the robot to the ground
can be used to provide a constant power supply and a
high-bandwidth communication channel, thus improving
the flight time and the data transmission. For this sys-
tem, controllers for the tracking/stabilization of the 2D
vertical position of the vehicle while keeping the tether
taut have been already presented (Tognon and Franchi,
2017; Lupashin and D’Andrea, 2013; Nicotra et al., 2014).
Furthermore, in some of them (Tognon and Franchi, 2017;
Lupashin and D’Andrea, 2013) it has been shown that,
thanks to the link, an onboard inertial sensor is enough to
retrieve the full state of the system wherewith to close the
control loop, avoiding the use of GPS or onboard vision.

? This work has been partially funded by the European Union’s
Horizon 2020 research and innovation programme under grant agree-
ment No 644271 AEROARMS.

It has been also proved that the use of the link can improve
the flight stability during risky maneuvers as take-off and
landing from a moving platform (Sandino et al., 2014) and
a strongly sloped surface (Tognon et al., 2016b), or flight
in the presence of strong wind. The use of an actuated
winch in order to control the length of the cable was
exploited also in (Tognon et al., 2016a) where the problem
of controlling the 3D position of an aerial vehicle tethered
to a moving platform was addressed. However the use of
an actuated winch could be not always the best solution
or not even feasible. Indeed it requires a torque controlled
motor that increases the mechanics and the electronics of
the system, as well as its cost and weight. Moreover, the
additional actuation corresponds to an increased controller
complexity and of the needed set of sensors.

On the other hand, in this work we analyze a simpler
mechatronic system by considering a passive winch apply-
ing only a non-controllable (constant) torque, e.g., gener-
ated by a spring-based mechanism. This in turn lets reduce
the load of the winch itself that could in principle be easily
handled by a human being, e.g., in a leash-like configura-
tion. The only controllable actuation is then given by the
orientable thrust generated by the underactuated aerial
vehicle. In previous works like (Oh et al., 2006; Sandino
et al., 2014), where they consider a stabilization problem
only for the landing task. Differently in this manuscript
we solve the more general exact tracking problem of a
desired trajectory for the relative aerial robot position
with respect to the platform. To achieve the control ob-
jective we prove some intrinsic properties of the system
such as exact linearizability through dynamic feedback
and differential flatness. Exploiting the first property, we
design a nonlinear controller able to exponentially steer the
output along the desired trajectory. The second property
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Fig. 1. Left: representation of the system and its main variables.
The proposed method works for any VTOL and any inde-
pendent platform moving generically in 3D. Top right corner:
representation of the parametrization of the unit vector dC .
The red line represents the singularities of the link orientation
parametrization, which can be avoided in the planning phase.

is instead useful to pre-plan the robot trajectory before
tracking it.

The paper is organized as follows. In Sec. 2 the description
of the system and its dynamic model are presented. Then
in Sec. 3 we prove the exact linearizability of the systems
and we design a nonlinear controller for the tracking goal.
Sec. 4 presents the proof of the flatness property w.r.t.
the output of interest. The designed controller is validated
through numerical simulations in Sec. 5. Conclusions and
future developments are discussed in Sec. 6.

2. MODELING

In this work we consider a system composed by a moving
platform that generically moves in the 3D space (e.g., a
ground vehicle, a marine vessel or a human operator) and
an aerial vehicle that is tethered to the moving platform
by means of a link (e.g., a cable, a rope or a chain). In
particular, the link connects the aerial robot to a passive
winch fixed to the platform. Fig. 1 schematically shows
the system and its main variables.

To describe the system we start defining a world frame,
FW = {OW ,xW ,yW , zW }. Then let FC = {OC ,xC ,yC , zC}
the platform frame rigidly attached to the moving plat-
form with origin OC expressed by the vector 1 pWC =
[xC yC zC ]T ∈ R3. Similarly, we define FR =
{OR,xR,yR, zR} as the aerial vehicle frame, which is
rigidly attached to the aerial vehicle and centered on the
center of mass (CoM) of the aerial vehicle. Its position in
FW is described by the vector pWR = [xR yR zR]T ∈ R3.

The configuration of the moving platform is fully given by
pWC and RC ∈ SO(3) (where SO(3) = {A ∈ R3×3|AAT =
I}) describing the orientation of FC with respect to FW .
Finally we define ωC ∈ R3 the angular velocity of FC w.r.t.
FW expressed in FC . The motion of the moving platform is
considered independent from the rest of the system. Indeed
in the large majority of the real application scenarios, the
aerial system does not influence the platform. In fact the
latter has a much larger inertia than the former. On the

1 In this work, the superscript indicates the frame of references.

other hand the aerial vehicle is modeled as a rigid body
with mass mR ∈ R>0 and positive definite diagonal inertia
matrix JR ∈ R3×3. Its configuration is fully described by
pWR and RR ∈ SO(3). We define ωR ∈ R3 the angular
velocity of FR w.r.t. FW expressed in FR. The motion
of the vehicle is controlled by fR ∈ R, the intensity of
the thrust force fR = −fRzR applied at OR, and by
τR = [τRx τRy τRz]

T ∈ R3, the input torque vector
expressed in FR.

The link is connected to one side to the aerial vehicle at
OR by a passive 3D rotational joint, and to the other side
to the platform at OC , by means of the passive winch. As
done in related previous works (Oh et al., 2006) we assume
the mass and the inertia of the link negligible with respect
to the one of the aerial vehicle, and deformation and
elasticity effects negligible as well. These assumptions have
been strongly validated in practice (Tognon et al., 2016b).
The orientation of the link is given by the unit vector
dC ∈ S2 expressed in FC (where S2 = {v ∈ R3| ‖v‖ = 1}).
Finally we define its length l ∈ R>0 and the internal force
fL ∈ R along it. To keep the link taut the internal force
has to be always positive (in this case it is called tension).
We choose to parametrize dC by the angles elevation,
ϕ ∈ [0, 2π], and azimuth, δ ∈ [−π/2, π/2], as

dC = [cos δ cosϕ − sin δ cos δ sinϕ]
T
.

This is not the usual spherical parametrization (see Fig. 1).
In this way we move the singularity from the axis zC for
the standard spherical parametrization, that is a frequent
condition during operations, to the axis yC .

The passive winch is modeled as a cylinder where the link
is winded up or out, with inertia JW ∈ R>0 and radius
rW ∈ R>0

2 , fixed to the platform in the proximity of OC .
Its rotation angle is described by the variable ϑW ∈ R.
The winch is passive because a non-controllable constant
torque τW ∈ R is applied along the longitudinal axis of
the cylinder, e.g., generated by a simple constant torque
spring. The length l can be then controlled only by the
action of the thrust provided by the aerial vehicle.

The choice of a passive winch instead of a controllable
winch makes the system and easily portable by an human
operator. On the other hand, as it will be clear in Sec. 3,
the price to pay will be a reduced control authority on
the variables of the system with respect to the case with
a controllable winch. In particular, the tension of the link
cannot be regulated to an arbitrary value while following
a position trajectory. However it can be maintained within
a desired bound, if the desired trajectory is well planned.

Considering the constraints of the system, the rotational
dynamics of the aerial vehicle appears to be independent
to the translational one. Hence it is given by:

ṘR = RRΩR (1)

JRω̇R = JRωR × ωR + τR, (2)

where 3 ΩR = [ωR]×. On the other hand, considering the
motion of the moving platform as a measured exogenous
input, the translation dynamics of the aerial vehicles is
described by the generalized coordinates q = [l ϕ δ]T . The
dynamics is derived applying the Lagrangian approach as
2 For simplicity, JW and rW are assumed constant independently
from the amount of link that is winded-up. However the model is
easily extendable if needed.
3 The operator [v]× for any vector v ∈ R3, returns the skew

symmetric matrix such that [v]× w = v ×w for any w ∈ R3.
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Mq̈ + c + g + n + w = Qu (3)

where M(q) ∈ R3×3 is the positive definite inertia matrix,
c(q, q̇, ṗCC ,ωC) ∈ R3 contains all the centrifugal/Coriolis
terms, g(q,RC) ∈ R3 contains all the gravity terms,
n(q, p̈CC , ω̇C) ∈ R3 contains the terms depending on the
acceleration of the moving platform, w(τW ) ∈ R3 contains
the terms depending on the constant torque winch, and
Q(q,RR,RC) ∈ R3×4 is related to the generalized forces,
referred as au, performing work on q, such that

au = Q(q,RR,RC)u = [−JTqRT
CRRe3 03×3]u,

where Jq =
∂pC

R

∂q ∈ R3×3 is the Jacobian matrix of pCR,

and u = [u1 uT2 ]T = [fR τTR ]T ∈ R4 is the input
vector. For space limitation we do not report here the full
expression of each term. The state of the system is then
expressed by x = (q, q̇,RR,ωR). Finally, to complete the
characterization of the system, we derive the link internal
force from the balance of momenta on the winch along its
longitudinal axis:

fL = J̄W l̈ − τ̄W , (4)

where J̄W = JW /r
2
W and τ̄W = τW /rW .

The problems addressed in this work are the following.

Problem 1. Design a control law for the inputs fR and τR
to let q (or equivalently pCR thanks to inverse kinematics)
exactly track any sufficiently smooth desired trajectory.

Problem 2. Given the desired trajectory of q, define a
method to compute the nominal state and input in order
to obtain the tracking of the desired trajectory.

The first objective allows to control the relative position
of the aerial vehicle with respect to the moving platform,
while the second can be exploited in a planning phase to
design a desired trajectory that fulfills input limitations or
that keeps the internal force bounded (see Sec. 4.1).

3. DYNAMIC DECOUPLING CONTROL

Define as output of interest the quantity yq = [y1 y2 y3]T

= q ∈ R3. Although the dimension of u is greater than the
the dimension of yq, the control problem is not redundant
because τRz neither affects yq nor its derivatives. Indeed
τRz does not change the thrust vector direction, fR,
that is the only quantity that, together with τW , plays
a role in the dynamics of yq. To obtain a well posed
tracking problem we have to complete the set of outputs
with a quantity dynamically dependent on τRz. For this
purpose we can consider any generic parametrization η =
[η1 η3 η3]T ∈ R3 of RR, such that RR = RR(η) and
η̇ = TηωR, where Tη(η) ∈ R3×3 is given by the particular
parametrization. From (2) the dynamics of η is

η̈ = ṪηωR + TηJ−1
R (JRωR × ωR) + [03×1 TηJ−1

R ]u

= bη(η, η̇) + Eη(η)u.
(5)

Then we consider y4 = ηi, where ηi is any entry of η, as
additional angle that is dynamically dependent from τRz,
i.e., such that

∂η̈i/∂τRz = eTi TηJ−1
R e3 6= 0. (6)

Considering y = [yTq y4]T as output of interest and
applying the feedback linearization technique, we need to
differentiate each entry of y until the input appears. From

equations (3) and (5), y has to be differentiated twice to
see the input appear:[

ÿq

ÿ4

]
=

[
M̄a
bηi

]
+

[
M̄Q
eηi

]
u

=

[
M̄a
bηi

]
+

[
−JTqRT

CRRe3 03×3

0 eTi TηJ−1
R

]
u

=b(x,X2
C) + E(x,X0

C)u,

(7)

where M̄ = M−1, bηi = eTi bη, eηi = eTi Eη, a = −c −
g − n − w, and Xj

C = (x0
C ,x

1
C , . . . ,x

j
C) for j ∈ N+,

xiC = (p
C(i)
C ,ω

(i−1)
C ) for i = 1, 2, . . . . The decoupling

matrix E is singular for every condition because τR does
not appear on yq. This means that the system is not
statically feedback linearizable.

In this case one can apply a dynamic feedback inserting a
dynamic compensator in the control u1. Consider as new
input the second derivative of the thrust and the torque,
i.e., ū = [ü1 uT2 ]T . Now yq has to be differentiated four
times to see ū appear, while for y4 everything remains the
same, indeed:[

y(4)
q
ÿ4

]
=

[
¨̄M(a + au) + 2 ˙̄M(ȧ + ȧu) + M̄(ä + äu)

bi + eηi ū

]
, (8)

where äu, after replacing the system dynamics, results:

äu = ¯̈au + JTqRT
CRR(−ü1e3 − u1

[
J−1
R τR

]
× e3), (9)

where ¯̈au gathers all the terms that do not depend on ū.
Since JR is diagonal, writing the skew symmetric matrix
relative to J−1

R τR and doing some algebra we obtain[
J−1
R τR

]
× e3 =

[
− e2

JR11

e1

JR22
03×1

]
τR, (10)

where JRkm corresponds to the element of the matrix JR in
the position k,m. Replacing equations (10) and (9) into (8)
we obtain[

y(4)
q
ÿ4

]
= b̄(x̄,X4

C) +

[
M̄JTqRT

CRRT 03×1

ẽ3 ẽ2

]
︸ ︷︷ ︸

Ē(x̄,X0
C)

ū,

where, x̄ = (q, q̇,RR,ωR, fR, ˙fR) is the extended state,
b̄(x̄,X4

C) collects all the terms that do not depend on

ū, T = [e3 − u1

JR11
e2

u1

JR22
e1], ẽ2 = eTi TηJ−1

R e3, and

ẽ3 = eTi TηJ−1
R [03×1 e1 e2]. The decoupling matrix Ē

results to be invertible if ẽ2 6= 0 and if T is invertible,
since RR, RC , Jq and M̄ are always full rank (except
where the model is singular, i.e., for l = 0 or δ = ±π/2).
Thus it is easy to verify that Ē is invertible if u1 6= 0 and
if the parametrization η of RR and one of its elements ηi
are chosen such that ẽ2 6= 0, i.e., if (6) is verified in the
domain of interest.

Then, in the case in which Ē is invertible, defining v =
[v1 v2 v3 v4]T ∈ R4 as virtual inputs, the control law

ū = Ē(x̄,X0
C)−1

[
−b̄(x̄,X4

C) + v
]
, (11)

brings the original system in the equivalent linear system:

y
(4)
1 = v1, y

(4)
2 = v2, y

(4)
3 = v3, y

(2)
4 = v4. (12)

This means that the system results to be exactly lin-
earizable through dynamic feedback and the linearized
system (12) does not have an internal dynamics. Indeed,
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and the state of the controller itself, fR and ḟR.

the total relative degree 4 with respect to y is r = 4 +
4 + 4 + 2 = 14 = n̄, where n̄ is dimension of the extended
state x̄. Considering (12), one can apply any linear control
technique to achieve the tracking of the desired trajectories
ydi (t) ∈ C3 for i = 1, 2, 3 and yd4(t) ∈ C1, e.g., a pole
placing based controller:

vi = y
d(4)
i + kTi ξi, v4 = y

d(2)
4 + kT4 ξ4 (13)

where ξi = [ξ
(3)
i ξ̈i ξ̇i ξi]

T ∈ R4, ξ4 = [ξ̇4 ξ4]T ∈ R2,
ξi = ydi − yi and ξ4 = yd4 − y4 are the tracking errors. The
gains ki ∈ R4

>0 for i = 1, 2, 3, and k4 ∈ R2
>0, set the poles

of the closed loop system. A block diagram of the proposed
control method is showed in Fig. 2.

Proposition 1. Consider the system composed by an un-
deractuated aerial vehicle tethered by a link to a passive
winch (i.e., pulling the link with a constant, uncontrollable,
torque) fixed on a moving platform. Then, it exists at least
one parametrization η of RR and one of its elements ηi,
such that y = [l ϕ δ ηi]

T is an exact feedback linearizing
output for each state, except when the total thrust is
zero. In fact, if fR 6= 0, the dynamic feedback trans-
formation (11) brings the original nonlinear system (1),
(2) and (3), into a fully-equivalent linear and decoupled
dynamical system for every state configuration. Further-
more, considering as input ū, the control laws (11) and
(13) exponentially steer y along the desired trajectories
ydi (t) ∈ C3 for i = 1, 2, 3, and yd4(t) ∈ C1.

4. DIFFERENTIAL FLATNESS

To achieve the second objective we shall prove the differ-
ential flatness of the system with respect to the output y.
In other words we show that the state and the input of the
system can be written as algebraic function of the output
and a finite number of its derivatives (Fliess et al., 1995).
Thus, given the desired trajectory of the output one can
compute the nominal state and inputs needed to follow
the desired trajectory. This property is useful for planning
and optimization in order to generate feasible trajectories
under input limitations or other constraints on the state.

It has been proved that an exactly dynamical feedback
linearizing output is also a flat output on an open and
dense set of the state space (De Luca and Oriolo, 2002).
This means that since the system is dynamic feedback
linearizable, it is also differential flat. Nevertheless, it is
useful to provide the explicit expression of x and u as
function of y and its derivatives when ηi is the yaw angle.

Part of the state is directly given by yq, i.e., q = yq,
q̇ = ẏq. Only the part of the state related to the rotational

4 i.e., the sum, for each element of the output, of the number of
times that each output entry has to be differentiated in order to see
the input appear.

dynamics and the inputs have still to be derived. From (4)
we can write the internal force as function of ÿq:

fL = J̄W l̈ − τ̄W = fL(ÿq). (14)

We can also write dC and Jq as function of the output,
i.e., dC = dC(yq) and Jq = Jq(yq). Then, if the
linear velocity, the attitude of the platform and their time
derivatives are known, we can write p̈WR as function of yq,
ẏq and ÿq, as

p̈WR = RC [ΩC(ṗCC + lΩCdC(yq) + 2Jq(yq)ẏq) + p̈CC+

+ lΩ̇CdC(yq) + J̇q(yq, ẏq)ẏq + Jq(yq)ÿq]

= p̈WR (yq, ẏq, ÿq,X
2
C).

Writing the force balance equation at OR we can retrieve
the thrust vector as function of yq and its derivatives, as

fR = −mRp̈WR (yq, ẏq, ÿq,X
2
C)− fL(ÿq)RCdC(yq)

−mRge3 = fR(yq, ẏq, ÿq,X
2
C).

From the previous equation, in order to find the missing
states, RR and ωR, and the inputs, fR and τR, in function
of y and its derivatives, one can use the same method
in (Mellinger and Kumar, 2011). We do not report here
the explicit derivation for space limitation.

Proposition 2. The model (1), (2) and (3), is differentially
flat with respect to the flat outputs y = [l ϕ δ ηi]

T where
ηi is the yaw angle of RR. In other words the state and
the inputs can be written as algebraic function of y and a
finite number of its derivatives.

4.1 Discussion on Link Internal Force Regulation

Notice that, differently from previous related works such
as (Tognon and Franchi, 2017; Tognon et al., 2016a), the
internal force along the link is not part of the flat output
for this system. This means that its value can not be
directly controlled. On the contrary, from (14), it is a
byproduct of the desired output trajectory, and in particu-
lar of the desired link length acceleration. Nevertheless, in
order to keep the internal force always positive and within
a desired bound BfL = [fL, fL] where fL, fL ∈ R≥0, we
can exploit the flatness of the system to design suitable
desired trajectories of y. In particular, from equation (14)

we have that fL ∈ BfL if and only if l̈ ∈ Bl̈ = [l̈, l̈] where

l̈ = (τ̄W + fL)/J̄W and l̈ = (τ̄W + fL)/J̄W . In other words
the constraint on the internal force can be translates by
the flatness to a constraint on the desired trajectory of l.

Notice that the steady configuration, l̈ = 0, belongs to Bl̈ if

and only if l̈ ≤ 0 ≤ l̈ that in turn means −fL ≤ τ̄W ≤ −fL.

In particular, if for l̈ = 0 we wants a particular internal
force value fL

? ∈ BfL , we have to design the passive winch
such that τ̄W = τW /rW = −fL?. Another parameter of
the winch that can be optimized is it inertia J̄W . Indeed
it affects how BfL is mapped on Bl̈, e.g., if we make J̄W
small enough, big variations of l̈ imply small variations
of the internal force and thus an almost constant internal
force, fL ≈ fL?.

5. NUMERICAL VALIDATION

Through numerical simulation we shall validate our control
method showing that the output of interest exponentially
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Fig. 3. Simulation results with an initial tracking error (case a).

converges to the desired trajectory in case of initial error,
as well as it shows good tracking performances in several
non-ideal conditions.

We consider an aerial vehicle of mass mR = 1 [kg] and
inertia JR = 0.25I3 [kg · m2], where I3 ∈ R3×3 is the
identity matrix. The winch has a constant radius rW =
0.2 [m] and a constant inertia JW = 0.15 [kg ·m2]. In order
to obtain a steady state internal force fL

? = 5 [N], we set
the torque winch τW = −1 [N ] (see Sec. 4.1). Finally, to
obtain a sufficiently fast exponentially tracking, we set the
controller gains ki and k4 such that the error dynamics ξi
and ξ4 have poles in (−0.5,−1,−1.5,−2) and (−0.5,−1),
respectively, for i = 1, 2, 3.

We design the platform motion and the aerial vehicle
desired trajectory in order to simulate a patrol-like task of
a delimited area. The platform simply travel the perimeter
of the area of interest while the aerial vehicle, after the
take-off maneuver, at time tcirc has to loiter above the
platform. Then, starting from time tland the aerial vehicle
has to land on the platform. The trajectories of the systems
are plotted in Fig. 5b. Notice that take-off and landing
are performed while the platform is moving, making these
standard maneuvers non trivial.

To validate the control method and to test its robustness
we performed several simulations in different non ideal
conditions: a) initial tracking error, b) variation of the
model parameters, c) noise on the measured state used for
the feedback. d) non ideal motor modeled as a first order
system characterized by a certain time constant.

Case a): we initialized the system with an initial tracking
error of 10 [◦] for the elevation, of 5 [◦] for the azimuth
and of 0.5 [m] for the link length. Looking at Fig. 3 we
can notice that after a transient, the controller steers
the output of interest along the desired trajectory. Notice
that the internal force along the link remains always
positive and close to the desired steady state value fL

?.
Furthermore it is exactly equal to fL

? whenever l̈ is zero.

Case b): in a real implementation it is very unluckily to
have a perfect knowledge of the model and its parameters.
For this reason we tested the robustness of the control

0

1

2

3

[m
]

ld l

100

150

200

[d
eg

]

'd '

-20

0

20

40

[d
eg

]

/d /

0

2

4

6

[N
]

fL f ?
L

-200

-100

0

100

[d
eg

]

? # A Ad

12

13

14

15

[N
]

fR

0 10 20 30 40 50
[s]

-0.4
-0.2

0
0.2
0.4
0.6
0.8

[N
m

]

tcirc tland

=x =y =z

0 10 20 30 40 50
[s]

0

0.2

0.4

0.6

0.8

tcirc tland

9track

Fig. 4. Simulation results with parameters uncertainties (case b).
The steady state error can be removed with any robustifying
action such as an integral term in the outer loop.

method with a variation of the 5% on all the model’s
parameters (see Fig. 4). Due to the mismatch between
real and nominal model, the feedback linearization is not
exact and the error does not go to zero. However it remains
always bounded showing nicely degrading and sufficiently
good tracking performances. With further simulations we
noticed that the system remains stable showing acceptable
tracking errors up to a parametric variation of 50%,
proving the robustness of the proposed method. Above
the system becomes unstable.

Case c): we tested the robustness of the proposed method
injecting Gaussian noise on the measured state used to
close the control loop. The power of the noise has the
same value of the one noticed in (Tognon et al., 2016a)
out of an observer based on noisy sensors. From Fig. 5
one can see that the error does not converge to zero but
remains always bounded showing good and practically
viable tracking performances.

Case d): in this simulation we considered the thrust and
the toque of the aerial vehicle generated by non-ideal
motors modeled as a first order system characterized by
a time constant of 0.2 [s]. The results displayed in Fig. 6
show a very small tracking error, validating the robustness
of the control method to this additional non-ideality.

6. CONCLUSIONS

In this manuscript we faced the problem concerning an
aerial vehicle moving in the 3D space, tethered to a pas-
sive winch rigidly attached to an independently moving
platform. For this robotic system we went beyond the
simple regulation problem proposing a nonlinear tracking
controller able to let the aerial robot position follow any
sufficiently smooth time-varying trajectory, while the plat-
form is moving. The proposed method can then be applied
for application such as inspection or data acquisition, as
shown in simulation in different non-ideal conditions as
well. The validation of the method with real experiment
in a plausible scenario is left for future works, e.g., with
minimalistic and onboard sensor settings (Franchi et al.,
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(a) Controller performances: the tracking of the output of interest is
plotted.
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Fig. 5. Simulation results with additional noise on the state.

2013; Stegagno et al., 2014), as well as an improvement
and full development of a trajectory planning method.
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