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Abstract—Relying on reduced models is nowadays a standard
cunning to tackle the computational complexity of multi-contact
locomotion. To be really effective, reduced models must respect
some feasibility constraints in regards to the full model. However,
such kind of constraints are either partially considered or just
neglected inside the existing reduced problem formulation. This
work presents a systematic approach to incorporate feasibility
constraints inside trajectory optimization problems. In particular,
we show how to learn the kinematic feasibility of the centre of
mass to be achievable by the whole-body model. We validate
the proposed method in the context of multi-contact locomotion:
we perform two stairs climbing experiments on two humanoid
robots, namely the HRP-2 robot and the new TALOS platform.

I. INTRODUCTION

Multi-contact locomotion of legged robots inside

heterogeneous non-flat environments is a hard and challenging

problem. One major difficulty of this problem lies in its

computational complexity: finding the whole-body trajectory

solving a locomotion task corresponds to a high dimensional

mathematical problem with a complex structure, hardly

tractable by modern computers and particularly the ones

embedded in modern legged robots [27, 17].

1) Reduced models: To tackle those limitations, various

strategies have been proposed in the literature. Most of them

are based upon using reduced models: instead of working with

the full dynamics, only a subpart is considered, covering the

essential properties of the whole dynamics. In the context of

bipedal locomotion, the most famous reduced model is the

linear inverted pendulum model (LIPM) [15].

The locomotion is then reduced to the problem of finding

a trajectory for the reduced model which will then drive

the whole-body system. Starting with [16], various optimal

control formulation have been proposed by the community,

to either tackle the robustness problem [30], include viability

conditions [25], allow altitude variations of the center of mass

(CoM) [2], or also include foot placements as parameters of

the problem [11].

However, LIPM-based methods are restricted to basic

environments (flat ground, no obstacles) and cannot deal

with more complex scenarios as non-coplanar contact cases,

climbing stairs using handrail, etc. Considering non-coplanar

contacts breaks the nice linearization leading to the LIPM

model. A first approach to handle the non-linear dynamics

Fig. 1. Illustration of HRP-2 robot and TALOS robot making contacts
with their environment. The green “ice-cream” cones are dispatched on the 4
vertices of the feet, symbolizing the friction cones with friction coefficient of
value 0.3.

was proposed in [14], however requiring technical and

dedicated developments based on limiting assumption (e.g.

prior knowledge of force distribution). In quite another vein,

it has been proposed to simplify the whole-body optimization

problem by e.g. assuming unconstrained torque capabilities

[6]. Both approaches indeed boil down to optimizing the

so-called centroidal dynamics [20] as reduced model. Direct

resolution of the underlying optimal control problem based on

multiple-shooting approach has been recently proposed [4],

leading to real-time performances. Other contributions have

also been suggested that exhibit approximate dynamics

(with possibly bounded approximations) leading to convex

optimization problems, thus ensuring global optimality [13,

5, 2]. In most cases, the footstep sequence is assumed given,

although some solvers are also able to discover it while

optimizing the centroidal dynamics [19, 7], to the price of

heavier computational costs.

2) Feasibility constraints: The reduced model (either LIPM

or centroidal) is subject to feasibility constraints implied by the

whole body (e.g. kinematic or torque limits, footstep length).

Such constraints are difficult to express as solely function of

the reduced model. For instance, the CoM trajectory must be

achievable by the whole-body kinematics. These constraints

can be tackled explicitly, by adding the corresponding

whole-body variables in the optimization scheme [19, 6].



However, this direct representation is also the most expensive

in terms of computation.

Such constraints can also be represented at the level of the

reduced model by using so-called proxy constraints [32]. In

most of previous works, proxy constraints are defined by some

rough approximations (box constraints, elliptic bounds, etc)

leading to a certain conservatism; or it is simply ignored inside

the reduced problem formulation. Footstep limits have been

encoded by hyper-plane based on a dataset of robot success

and failure inside a dynamic simulator [23]. Similar constraints

can be obtained by training a training a neural network [21].

In [32], similar bounds are obtained by trial and errors based

on stability analysis of the whole-body system.

Constraining only the CoM position is not sufficient. It is

also necessary to consider the constraints related to the contact

forces [29] which must lie inside so-called friction cones, the

capacity of robot to generate such value of angular momentum,

etc. The main problem lies in the fact that it is hard to find

analytic formulas to represent and express those constraints.

3) Contribution: In this paper, we propose a systematic

approach to handle feasibility constraints in the context

of trajectory optimization for reduced models, leading to

efficient resolution on the real robot. The resulting constraint

formulation could be employed in most of the optimal control

solver based on centroidal dynamics [19, 7, 13], although we

implemented it inside a multiple-shooting solver [4].

We first recall the equations of motion for both the

whole-body and the centroidal models and define the resulting

optimal control problem (OCP) for multi-contact locomotion

in Section II. These definitions logically introduce the need

of proxy constraint. Our main contribution, described in

Section III, is to represent proxy constraints by occupancy

measures, whose corresponding cost of transport is optimized

in the OCP. In Section IV, we propose a complete solution

to learn the CoM feasibility constraint by off-line sampling

the robot motion capabilities. Finally, the effectiveness of the

approach is highlighted with two real experiments on the

HRP-2 robot climbing stairs with or without using handrail

and one in simulation with the TALOS humanoid robot [26]

climbing stairs using handrail, reported in Section V.

II. MULTI-CONTACT LOCOMOTION

This section reviews the centroidal dynamics and its links

with the whole-body model. We then describe the generic

optimal control problem used to compute the centroidal

trajectories, based on [4]. Although this section contains

mostly known materials, we believe that the clean formulation

of the dynamics decoupling is a contribution per se. It is indeed

a prerequisite to the introduction of proxy constraints in the

next section.

A. Contact model

The interaction between a robot and the environment is

defined through a set of contact points {pk ∈ R
3, k = 1...K}.

For instance, for a humanoid robot equipped with rectangular

feet, the contact points correspond to the four vertices of the

rectangular shape. At each contact point pk is defined a contact

force fk. In the case of unilateral contacts, fk must lie inside

a 3-dimensional quadratic friction cone K3
k, characterized by a

positive friction coefficient µk. Fig. 1 depicts humanoid robots

making contact with the environment.

We only consider here rigid contact interaction (contacting

bodies are fixed) which is a reasonable assumption for modern

legged robots which are mostly equipped with rigid soles.

A contact phase is defined by a constant set of contact

points. In the context of bipedal walking, two examples of

contact phases are the single and double support phases. As

soon as a creation or a rupture of contact point occurs, the

contact set is modified, defining a new contact phase. The

concatenation of contact phases describes what we name a

contact sequence, inside which all the contact phases have

their own duration.

Computing automatically the contact sequence is a difficult

problem [3], but efficient contact planners now exist to

compute it in a short amount of time [10, 28].

B. Whole-body dynamics and centroidal dynamics

A legged robot is by nature a free-floating base system

composed of 6 + n degrees of freedom (DoF). Its dynamics

is governed by the Lagrange equation of motion, which links

the joint configuration q and its time derivatives q̇, q̈ to the

torque actuation τa and the contact forces fk:
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where subscripts u and a stands for the under-actuated and

actuated parts respectively, H is the generalized mass matrix, b

covers centrifugal and Coriolis effects, g is generalized gravity

vector and Jk is the Jacobian of the contact k.

The 6 first rows of (1) represent the under-actuated

dynamics of the robot, also called the centroidal

dynamics [20]. It coincides with the Newton-Euler equations

of motion which links the variation of the whole-system

linear and angular momentum to the contact forces. Denoting

by Lc the angular momentum, the centroidal dynamics is:

mc̈ =
∑

k fk +mg

L̇c =
∑

k(pk − c)× fk

where g
def
= (0, 0,−9.81) is the gravity vector and the

operator × denotes the cross product.

The n last rows of (1) are the classic Lagrange dynamics

of a fixed robot manipulator making contacts, which is both

linear in the torque and force inputs.

C. Partial decoupling of centroidal and manipulator dynamics

Under the assumption of sufficient torque, it is possible

to split up the problem of whole-body locomotion into two

successive (hierarchical) stages: a) find the contact force

trajectories driving the the centroidal dynamics; b) recover the

required joint torque trajectory from the centroidal trajectory

and the end-effector trajectories using for instance a second



order inverse kinematics/dynamics solver. This assumption is

reasonable given motorization of current legged robots, that

are sufficient to generate high torques. We discuss the resulting

limits in the conclusion.

To ensure the feasibility of the first stage with respect to the

second stage, some conditions must be met by the first stage:

i) the forces must remain inside the friction cones in case

of unilateral contacts;

ii) the centroidal dynamics must be kinematically and

dynamically feasible by the system;

The first constraint stems directly from the contact model

introduced in Sec. II-A. The second constraint comes from

the fact that the centroidal dynamics is linked to the

joint configuration and its derivatives through the centroidal

mapping:
[

h

Lc

]

= Ag (q) q̇, (2)

with Ag the so-called centroidal momentum matrix [20].

D. Centroidal optimal control formulation

From the previous assumptions, the problem of

multi-contact locomotion can be reduced to the following

formulation:

From a given contact sequence and an initial centroidal

state, find a feasible centroidal trajectory, satisfying

the Newton-Euler dynamics, respecting the contact

constraints and leading to a viable state.

This formulation can be directly transcribed as an optimal

control problem of the form:

min
x,u

S
∑

s=1

∫ ts+∆ts

ts

ℓs(x,u) dt (3a)

s.t. ∀t ẋ = f(x,u) (3b)

∀t u ∈ K (3c)

∀t ∃ (q, q̇, q̈) s.t. x, ẋ is feasible (3d)

x(0) = (c0,0,0) (3e)

x(T ) is viable (3f)

where s is the index of the contact phase, x and u are the

state and control trajectories, ts is the start time of the contact

phase s with t1 = 0 and ts+1 = ts+∆ts. Constraints (3b) and

(3c) enforce consistent dynamics with respect to the contact

model. Eq. (3d) is the constraint enforcing the feasibility

of the centroidal dynamics with respect to the whole-body

problem: it handles kinematics limits, bounds on the angular

momentum quantity, etc. We will show how it can be replaced

by an automatic proxy constraint. Constraint (3e) constrains

the trajectory to start with a given state (typically estimated

by the sensor of the real robot). Terminal constraint (3f) is

difficult to exactly represent [31] and is replaced in practice

by zero terminal movement c̈(T ) = L̇c(T ) = 0 and x(T ) =
(c∗,0,0). Finally, ℓs is the cost function which enforces the

smoothness of both the state and control trajectories. Various

ℓs can be discussed and implemented. The one used in the

experiments requires some additional definitions and is given

in Section IV.

III. FEASIBILITY OF THE CENTROIDAL PROBLEM

This section reports the main contribution of the paper. We

present a mathematical coding of the feasibility constraints

as probability measures. We then discuss the interest of this

representation with respect to more-classical set-membership

and show how it can be used to efficiently implement (3d) in

the OCP. This section introduces the abstract definitions, that

next section section uses to build the complete implementation.

A. Mathematical representation of feasibility constraints

Our objective is to efficiently implement the feasibility

constraint (3d) in our OCP. This constraint explicitly depends

on the robot configuration, which is not a variable of the

centroidal OCP. A straight-forward implementation is to add

the robot configuration in the variables of the OCP [6].

However, this would surely lead the OCP to optimize

the whole-body trajectory in order to handle all the robot

constraints, which is yet not tractable especially if targeting

real-time performances. We rather believe that it is possible to

represent this constraint by an equivalent “proxy” constraint

not dependent on the robot configuration.

Various ways to encode proxy constraints have

been proposed in the literature. Most of them rely on

set-membership. Denoting by γ the centroidal projection

function:

γ : (q, q̇, q̈) → (x, ẋ) = γ(q, q̇, q̈)

the proxy can be written as the constraint to have the

state variables in the range space of γ. Set-membership

proxies are used for instance in [11, 7] to encode maximal

step size in biped walking, or in [5] to bound the CoM

position by simple geometric shape. In all these cases, the

set boundaries are represented by very simple mathematical

structures (typically linear inequalities) in order not to burden

the OCP solver. Remarkably, there are few papers about the

automatic synthesis of the set boundaries [23, 21, 32].

Despite its popularity, the set-membership representation

has important drawbacks. First, it is often difficult to

handle by the OCP solver, in particular when the feasible

set is not convex. The boundary, which is a singular

mathematical object, is also complex to describe or

numerically approximate. Finally, the OCP solver often tends

to saturate the set boundary, where the inverse kinematics

γ−1 is likely to fail. Consequently, the set is often arbitrarily

reduced to improve the robustness of the whole-body solution.

B. Proxy as occupation measure

In this paper, we rather state that the proxy is best

implemented by the occupation measure over x, ẋ.

Consider a state trajectory x. With (3d), we want to

maximize the likelihood that the inverse-kinematics solver

converges on a trajectory q such that x is the image of



q by γ. For that purpose, it is desirable that any state x

corresponds to as many robot configurations as possible, so

that the inverse kinematics is likely to converge to a solution

q meeting continuity constraints.

We define the occupation measure as the image of

the uniform distribution in configuration space through the

centroidal projection γ:

µo(x̃)
def
=

∫

q̃ s.t. γ(q̃)=x̃

dq̃ =

∫

Q

✶γ(q̃)=x̃dµQ

where x̃
def
= (x, ẋ), q̃

def
= (q, q̇, q̈), Q is the whole-body motion

range, ✶a is the indicator function (i.e. 1 when the assertion

a is true, 0 otherwise) and µQ is the uniform distribution on

Q.

Measure µo has several properties of the set-membership

representation. First, its support is the feasibility set, which

means that µo contains at least as much information as the

set boundaries. It indeed contains more information, as for

example the level sets of µo can be used as boundaries of the

inner of the feasibility set, used to improve the robustness.

In practice, it is desirable that OCP (3) promotes centroidal

states x̃ where µo is the highest. First, it makes it easier

to then compute a corresponding configuration q̃. Second,

the configuration is well inside the kinematic feasibility set,

where redundancy will help the robot to handle disturbances.

We will see in the experimental results that the resulting

whole-body trajectory corresponds to configurations with large

manipulability.

Finally, the measure also eases the life of the OCP solver,

compared to handling directly the feasibility set membership,

as explained next.

C. Maximizing the occupation measure

Before deriving an effective solution to represent µo for the

specific case of the kinematic feasibility, we quickly show how

µo can be integrated in the OCP (3).

In practice, the measure can be normalized and represented

by the corresponding probability density function (PDF),

denoted by p(x, ẋ). It is then possible to directly exploit

the measure to represent the set-membership constraint (by

imposing the integral of the measure to be positive on any

small neighborhood around the trajectory). In addition, we

could use the PDF to directly optimize the robustness, either

by optimizing over a level set of the PDF, or by maximizing

the neighborhood around the trajectory where the measure is

nonzero.

However, adding a PDF as a constraint of an OCP is not

straightforward. Therefore, we propose to remove the hard

constraint (3d) and penalize the OCP cost with the log PDF.

In practice, the logarithm prevents the solver from selecting

non-feasible x states. Constraints (3d) is always satisfied. It

also penalizes non-robust behavior where no redundancy q is

available, and avoides saturation of the hard constraint. Finally,

the OCP solver is gently pushed away from the constraint,

instead of searching for a solution living on the boundaries,

which greatly improves its efficiency. Futhermore, it is unlikely

that the OCP solver is trapped in local minima of µo, as

it manipulates a full trajectory x and not a single state x.

Experimentally, we observed that our OCP solver robustly

computes a good local minimum when optimizing over a cost

penalizing the log-PDF, while it is unlikely to converge to a

solution when optimizing over set-membership.

IV. LEARNING THE COM REACHABILITY PROXY

We now present a complete solution to efficiently

approximate the CoM feasibility, i.e. for any time t,

there exists a joint configuration q(t) such that (i) the

contact placements are respected and (ii) the CoM of the

poly-articulated system matches c(t). Handling this sole

constraint first is a proper way of validating our approach. It is

also interesting in practice, as the feasibility of the CoM is the

most limiting constraint for humanoid robots. Generalization

to velocity and acceleration of the CoM with respect to joint

velocity and acceleration limits would be straight-forward.

Extension to the construction of the proxy on the torque limits

is left as a perspective.

A. Probabilistic model

The geometric condition can be stated as the conditional

probability of the CoM to be at the position c given the

current set of K contact points {pk ∈ R
3, k = 1...K}. This

probability is denoted by p(c|pk, k = 1...K). It lives in the

high dimensionality domain R
3(K+1) and it is hard to compute

in general.

The probability domain can be exactly reduced by

gathering together the contact points belonging to the

same rigid end-effector (e.g., the 4 vertices of the

humanoid foot belongs to the same end-effector). We denote

by Mi = (Ri,pi) ∈ SE(3) the placement (position and

orientation) of the contact body i. The conditional probability

is then reduced to p(c|Mi, i = 1...Kc) where Kc is the number

of end-effectors in contact.

We now assume that variables Mi are all independent.

This assumption is clearly abusive, however is a reasonable

approximation under knowledge of c. It is later discussed.

Under this assumption, the conditional probability reads:

p(c|Mi, i = 1...Kc) ∝

Kc
∏

i=1

pi(c) (4)

where pi(c) stands for p(c|Mi) and ∝ stands for “is

proportional to”. pi(c) is nothing more than the probability

distribution of the CoM to be at position c w.r.t the frame

defined by Mi.

The assumption of independence of the Mi is commonly

employed inside the machine-learning community as a trick to

make the problem numerically tractable. In this particular case,

it greatly simplifies the learning process: instead of working

in a high dimensional space, the problem is restricted to a

subset of R
3. In addition, the independence of end-effector

placements plays the role of an upper-bound for the real

probability: if a CoM is not feasible for at least one of the



end-effectors (i.e. one of the pi(c) is equal to 0), then the

joint probability is also zero. The converse is not true.

B. Kernel density estimation by CoM sampling

There is in general no closed form to encode pi(c)
for a particular legged robot. Nevertheless, this conditional

probability can be easily approximated by extensive sampling

of the CoM position expressed in the end-effector frames.

Sampling Nsamples of the CoM position expressed in the

frame Mi does not raise particular difficulties. For each

sample, a configuration qa of the actuated joints is randomly

sampled and the CoM position is computed (expressed in

placement frame) by forward kinematics. The sample is

rejected if joint limits or self collision are violated.

The probability distribution can be approximation from

the cloud of CoM points by the kernel density estimators

(KDE) [22]. KDE are in some sense the analogues of

histograms but for continuous domains: for each point of the

data set, it associates one kernel centered on the point and all

kernels share the same parameters. In the present work, we

use isotropic Gaussian kernel.

C. Reduction of dimension

One drawback of the KDE representation is its

computational complexity: evaluating the exponential

function contained in the Gaussian kernel takes around 10 ns

on modern CPU. So, roughly speaking, evaluating the PDF of

the KDE takes approximately 10×Nsamples ns which becomes

rapidly a bottleneck when the number of points is huge

(Nsamples greater than 100 points).

We propose to then approximate the KDE by a Gaussian

mixture model (GMM) [1]. GMMs are particularly suited

to approximate a PDF with only few Gaussians in the

mixture. The GMMs are learned for each end-effector

from the corresponding cloud of samples by means of the

expectation-maximization (EM) algorithm [8].

The quality of the GMM approximation can be estimated

using the Kullback-Leibler (KL) divergence between the KDE

(ground-truth) and the learned GMM (approximation) using

the Monte Carlo estimator proposed in [12]. Depending on the

number of Gaussians in the mixture, the divergence can reveal

under or over fitting effects. The optimal number of Gaussians

is easily selected for each end effector by dichotomy, as

exemplified in next section.

D. Summary of the learning procedure

In summary, for each end effector, Nsamples configurations

are sampled and the corresponding CoM is computed in the

end-effector frame. The resulting KDE is approximated by

fitting a GMM using EM. Finally, the probability of CoM

occupancy is approximated as the product of pi(c), for i the

end effectors in contact with the environment.

E. Proposed optimal control formulation

We can now express the complete formulation of the cost

function ℓs.

ℓs(x,u) = wx‖ẋ‖
2 −

∑Kc

i=1 log(pi(c)) (5)

Y-Z projection X-Z projection X-Y projection

Fig. 2. Illustration of the probability density distribution of the CoM w.r.t.
the right foot frame of HRP-2. The PDF are projected along the three axis
X,Y,Z and represented by the means of colormap: the low values are closed
to the blue colour while the high values tend to be more red. The first row
corresponds to the ground truth distribution estimated through KDE. The KDE
is composed of 20000 points. The second row is the colour map of the GMM
used in the OCP and composed of 7 Gaussian kernels.

where the first term1 enforces a smooth trajectory, the

second term is the cost of transport for the approximate

CoM occupancy measure, and wx weights their relative

importance. The first term can similarly be interpreted as a

weak formulation of the occupancy measures for the second

order terms (ċ and Lc) and their derivatives, through centred

Gaussian measures (i.e. no prior on occupancy distribution).

If the complete occupancy measure µo is available, the first

term would become useless.

V. RESULTS

We first illustrate the learning procedure exposed in Sec. IV

on the HRP-2 robot. We then present the complete pipeline

we used to achieve both real and simulated motions on the

two different robots. After that, we show two real experiments

of multi-contact locomotion with the HRP-2 robot inside an

environment similar to what can be found in the industry.

Finally, we end this section by showing the versatility of

the approach with the simulation of a multi-contact motion

on another humanoid robot. We refer the reader to the

accompanying video for a better viewing of the multi-contact

experiments2.

A. Illustration of the learning procedure

We validate the proposed learning approach on the HRP-2

robot. For that purpose, we only expose for space reasons the

learning of the accessibility space of the CoM w.r.t. the right

foot (RF). A similar study can be conducted on the three other

end-effectors.

The learning process is made from a set of 20000 points

sampled uniformly in the configuration space. The KDE of

this set is represented on the first row of Fig. 2. The first

observation is that the PDF of the RF is not convex and follows

a kind of banana distribution on the X-Z plane. In other words,

this means that the distribution cannot be approximated by a

1‖ẋ‖ is a function of x and u through ẋ = f(x,u)
2available at https://youtu.be/7hiLf6DpMAA



Fig. 3. Evolution of the KL divergence between the KDE distribution and
GMMs of different sizes for the four end-effectors of the HRP-2 robot.

Y-Z projection X-Z projection X-Y projection

Fig. 4. Illustration of the probability density distribution of the CoM w.r.t.
the right foot frame of TALOS robot. The PDF are projected along the three
axis X,Y,Z and represented by the means of colormap: the low values are
closed to the blue colour while the high values tend to be more red. The first
row corresponds to the ground truth distribution estimated through KDE. The
KDE is composed of 20000 points. The second row is the colour map of the
GMM used in the OCP and composed of 4 Gaussian kernels. The axes have
the same scale than in Fig 2.

single normal distribution but must be composed of several

distributions. The second row of Fig. 2 represents the colour

map of the GMM used inside the OCP. At this stage, it is

important to notice that the approximation with GMMs does

not fit perfectly the maximal values of the real distribution.

However, this approximation is conservative with respect to

the support and the level sets of the original distribution.

Fig. 3 highlights the experimental procedure suggested in

Sec. IV-C and shows the evolution of the KL-divergence with

respect to the size of the GMMs. For the right and left feet,

the KL-divergence stagnates from 7 kernels in the mixture.

In other words, it is sufficient to takes a GMM of size 7
to represent the CoM distribution in the foot frames. For

the right and left grippers, it is a little bit different. The

KL-divergence first decreases and then increases from 14
kernels. This behaviour can be explained by the fact that the

EM algorithm does not optimize the KL divergence but the

likelihood of observation (expectation). We chose to represent

the CoM distribution w.r.t. the grippers with a GMM of size

14.

A similar study has been done on the TALOS humanoid

robot, which is larger than HRP-2 and as different leg and

arm kinematics. The distributions for the right foot of TALOS

is depicted in Fig. 4.

B. Complete pipeline

Our locomotion framework is composed of three stages:

a) Contact sequence planning: For all the experiments,

the contact sequences are manually designed with fixed

durations for each contact phase depending on the scenario.

We also manually design the end-effector trajectories by

using splines with zero acceleration and velocity at take

off and landing instants. This information could have been

automatically generated using a contact planner [28].

b) Centroidal resolution: From the contact sequence and

the learned CoM feasibility constraints, we solve the optimal

control formulation (3) with the tailored cost function (5). For

all the experiments and robots, we use the same weighting in

the cost function: wx = 10. This weight is a trade-off between

the smoothness of the dynamics trajectory and the enforcement

of the feasibility constraint. We instantiate the OCP (3)

inside the MUSCOD-II framework [18] which implements an

efficient multiple-shooting algorithm [9] particularly suited for

multi-staged problems as the one we propose.

c) Whole-body resolution: From the OCP, we obtain

a reference trajectory for the centroidal dynamics that we

follow using a second-order inverse kinematics (IK) solver

similar to [24]. In addition, the IK must track the end-effector

trajectories. Optimal forces are also extracted from the OCP

and can be used as references to control the robot.

C. Experimental results

This part reports the experiments achieved on the HRP-2

robot in real conditions and on TALOS in simulation.

1) Experiment 1 - climbing up 10-cm high steps: The

experimental setup is an industrial stairs made of six 10-cm

high steps. The steps have a length of 30 cm. The durations

of the single and double support phases are 1.4 s and 0.2
s respectively. The resulting motion is depicted in Fig. 6.

During execution, the reference posture is tracked as well

as the reference foot forces using the robot low-level control

system (named HRP “stabilizer”).

Computing the 25s of motion takes 42 iterations of the

multiple-shooting algorithm, costing about 8s in total. In

average, each iteration takes approximatively 0.2s for 25s of

motion. About 70% of the computation time is spent solving

the underlying quadratic program of the multiple-shooting

algorithm and other 20% are dedicated to the numerical

integration of the dynamics together with the computations

of sensitivities (derivatives).

Fig. 5 shows two trajectories of the CoM projected in the

right foot frame: the black curve takes into account the log-pdf

term in the cost function, while the green one does not. The

figure also includes the level sets of the GMM of right foot

(depicted in Fig. 2). It appears that the OCP tends to maximize

the inclination of the CoM to stay in the most feasible region,

i.e. closed to the maxima of the PDF. On the contrary, if we

do not add the log-pdf term, the CoM tends to be infeasible.

It is worth to mention that maximizing the stay of the CoM

in the most feasible region leads to a crouching walk. This

may be not desirable for aesthetics. However, in the case of

HRP-2, this crouch of the legs must exist to avoid singularities

which are not tolerated by the low-level controller.
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Fig. 5. Projection of the CoM trajectory inside the right foot frame with and
without taking into account the log-pdf term in the cost function. The level
set corresponds to the GMM distribution used in our OCP.

2) Experiment 2 - climbing up 15-cm high steps with

guardrail support: The experimental setup is another

industrial stairs made of four 15-cm high steps and equipped

with a guardrail. The steps have a length of 30 cm too. The

durations of the double and triple support phases are 1.8 s and

0.4 s respectively. Here, the double support phases correspond

either to the case of two feet on the steps or one feet plus the

right gripper on the handrail. Snapshots of the entire motion

are shown in Fig. 7.

We reproduce the climbing stairs with guardrail scenario,

but this time with the TALOS robot in simulation. Compared

to HRP-2, TALOS is a 1.78m high humanoid robot weighting

around 100kg. For this experiment, only the end-effector

trajectories and the GMMs are different: the cost function

remains the same. The complete motion is depicted in Fig. 8.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we introduce a systematic approach to include

feasibility constraints inside the optimal control formulation

as occupancy measure. In particular, we propose an effective

way to learn the CoM feasibility constraint by learning the

probability density of the CoM positions with respect to the

end-effector locations. We demonstrate the validity of the

methods with two real experiments on the HRP-2 which was

asked to climb industrial stairs with or without handrails and

one experiment in simulation with the TALOS platform which

was asked to achieve multi-contact stairs climbing.

The methodology requires a systematic learning procedure

to be executed off-line in simulation. On-line, the resulting

optimal control is solved in a very efficient way (about

100 times faster than execution time) and leads to smooth

centroidal trajectory easily tracked by the robot whole body.

We have defined our proxy to be an occupancy measure over

the whole centroidal state and contact forces, although only the

measure over the CoM was approximated. Learning the CoM

kinematic feasibility is only a first stage. We plan to extend

the approach by learning the constraints related to the other

centroidal variables. This may severely improve the quality of

the whole-body behavior. The methodology would also nicely

apply to learning the terminal viability constraint (3f). As

discussed at the end of Section IV, we believe that introducing

the occupancy measure over all centroidal variables would

reduce the locomotion problem to a simple optimal control

problem composed of a single cost function, with only initial

constraints.

Finally, our methodology goes beyond trajectory

optimization. We have introduced proxies as a way to ensure

consistency between two sets of motion models (centroidal

model and whole-body model). The same consistency is

desirable between the centroidal pattern generator and the

upstream contact planner, whose motion models could be

similarly learned by statistical sampling.
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