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Abstract—Relying on reduced models is nowadays a standard
cunning to tackle the computational complexity of multi-contact
locomotion. To be really effective, reduced models must respect
some feasibility constraints in regards to the full model. However,
such kind of constraints are either partially considered or just
neglected inside the existing reduced problem formulation. This
work presents a systematic approach to incorporate feasibility
constraints inside trajectory optimization problems. In particular,
we show how to learn the kinematic feasibility of the centre of
mass to be achievable by the whole-body model. We validate
the proposed method in the context of multi-contact locomotion:
we perform two stairs climbing experiments on two humanoid
robots, namely the HRP-2 robot and the new TALOS platform.

I. INTRODUCTION . . .
obucTIo Fig. 1.  lllustration of HRP-2 robot and TALOS robot making contacts

Multi-contact locomotion of legged robots insidewith their environment. The green “ice-cream” cones are dispatched on the 4
heterogeneous non- at environments is a hard and challengmg%_s;f the feet, symbolizing the friction cones with friction coef cient of
problem. One major dif culty of this problem lies in its
computational complexity: nding the whole-body trajectory
solving a locomotion task corresponds to a high dimensionghs proposed in[[14], however requiring technical and
mathematical problem with a complex structure, hardijedicated developments based on limiting assumption (e.g.
tractable by modern computers and particularly the onpsior knowledge of force distribution). In quite another vein,
embedded in modern legged robats|[27), 17]. it has been proposed to simplify the whole-body optimization

1) Reduced modelsTo tackle those limitations, variousproblem by e.g. assuming unconstrained torque capabilities
strategies have been proposed in the literature. Most of th§h Both approaches indeed boil down to optimizing the
are based upon using reduced models: instead of working wsitrcalled centroidal dynamics [20] as reduced model. Direct
the full dynamics, only a subpart is considered, covering thesolution of the underlying optimal control problem based on
essential properties of the whole dynamics. In the context wiultiple-shooting approach has been recently proposed [4],
bipedal locomotion, the most famous reduced model is theading to real-time performances. Other contributions have
linear inverted pendulum model (LIPM)_[15]. also been suggested that exhibit approximate dynamics

The locomotion is then reduced to the problem of ndindwith possibly bounded approximations) leading to convex
a trajectory for the reduced model which will then driveptimization problems, thus ensuring global optimality![13,
the whole-body system. Starting with [16], various optimd, [2]. In most cases, the footstep sequence is assumed given,
control formulation have been proposed by the communitglithough some solvers are also able to discover it while
to either tackle the robustness problem|[30], include viabilityptimizing the centroidal dynamicé [18] 7], to the price of
conditions [25], allow altitude variations of the center of madseavier computational costs.

(CoM) [2], or also include foot placements as parameters of2) Feasibility constraints:The reduced model (either LIPM
the problem|[[11]. or centroidal) is subject to feasibility constraints implied by the

However, LIPM-based methods are restricted to basithole body (e.g. kinematic or torque limits, footstep length).
environments (at ground, no obstacles) and cannot de@lch constraints are dif cult to express as solely function of
with more complex scenarios as non-coplanar contact casbg reduced model. For instance, the CoM trajectory must be
climbing stairs using handrail, etc. Considering non-coplanachievable by the whole-body kinematics. These constraints
contacts breaks the nice linearization leading to the LIPWan be tackled explicitly, by adding the corresponding
model. A rst approach to handle the non-linear dynamicahole-body variables in the optimization schenie|[L9, 6].



However, this direct representation is also the most expensieetangular shape. At each contact pgiptis de ned a contact
in terms of computation. forcef k. In the case of unilateral contacts, must lie inside

Such constraints can also be represented at the level of &h@-dimensional quadratic friction coke, characterized by a
reduced model by using so-called proxy constraints [32]. positive friction coef cient . Fig.[] depicts humanoid robots
most of previous works, proxy constraints are de ned by sommaking contact with the environment.
rough approximations (box constraints, elliptic bounds, etc) We only consider here rigid contact interaction (contacting
leading to a certain conservatism; or it is simply ignored insidedies are xed) which is a reasonable assumption for modern
the reduced problem formulation. Footstep limits have be&gged robots which are mostly equipped with rigid soles.
encoded by hyper-plane based on a dataset of robot succe#s contact phasds de ned by a constant set of contact
and failure inside a dynamic simulator [23]. Similar constrain{soints. In the context of bipedal walking, two examples of
can be obtained by training a training a neural network [21dontact phases are the single and double support phases. As
In [32], similar bounds are obtained by trial and errors basedon as a creation or a rupture of contact point occurs, the
on stability analysis of the whole-body system. contact set is modi ed, de ning a new contact phase. The

Constraining only the CoM position is not suf cient. It isconcatenation of contact phases describes what we name a
also necessary to consider the constraints related to the contacttact sequencgenside which all the contact phases have
forces [29] which must lie inside so-called friction cones, thieir own duration.
capacity of robot to generate such value of angular momentumComputing automatically the contact sequence is a dif cult
etc. The main problem lies in the fact that it is hard to ndroblem [3], but efcient contact planners now exist to
analytic formulas to represent and express those constraintompute it in a short amount of time_[10,128].

3) Contribution: In this paper, we propose a systemati
approach to handle feasibility constraints in the conte
of trajectory optimization for reduced models, leading to A legged robot is by nature a free- oating base system
ef cient resolution on the real robot. The resulting constraiftomposed of6 + n degrees of freedom (DoF). Its dynamics
formulation could be employed in most of the optimal contrdp governed by the Lagrange equation of motion, which links
solver based on centroidal dynamiEs][I9} 7, 13], although W@e joint con gurationq and its time derivatives]; ¢ to the
implemented it inside a multiple-shooting solver [4]. torque actuation , and the contact forcefs,:

We rst recall the equations of motion for both the H b 0 3>
whole-body and the centroidal models and de ne the resulting H“ g+ b” = 9 4 Uy JEU fk Q)
optimal control problem (OCP) for multi-contact locomotion a a Ga & k=1 Tka

in Section[1). These de nitions logically introduce the neeqyhere subscriptsi and a stands for the under-actuated and
of proxy constraint. Our main contribution, described iRctuated parts respectively, is the generalized mass matrix,
Section[T], is to represent proxy constraints by occupan@gvers centrifugal and Coriolis effectsis generalized gravity
measures, whose corresponding cost of transport is optimizggtor andJ, is the Jacobian of the contakt

to learn the CoM feasibility constraint by off-line samplinggynamics of the robot, also called the centroidal
the robot motion capabilities. Finally, the effectiveness of thgnamics [[20]. It coincides with the Newton-Euler equations
approach is highlighted with two real experiments on thef motion which links the variation of the whole-system

HRP-2 robot climbing stairs with or without using handrailinear and angular momentum to the contact forces. Denoting

climbing stairs using handrail, reported in Sectjion V.

% Whole-body dynamics and centroidal dynamics

P
me= | fx+mg

P
This section reviews the centroidal dynamics and its links Le= P 0 T
with the whole-body model. We then describe the genefighere g def (0;0; 9:81) is the gravity vector and the
optimal control problem used to compute the centroidaberator denotes the cross product.
trajectories, based oriI[4]. Although this section contains The n last rows of [1) are the classic Lagrange dynamics

mostly known materials, we believe that the clean formulatiasf a xed robot manipulator making contacts, which is both
of the dynamics decoupling is a contribution per se. Itis indegilear in the torque and force inputs.

a prerequisite to the introduction of proxy constraints in the

II. MULTI-CONTACT LOCOMOTION

next section. C. Partial decoupling of centroidal and manipulator dynamics
Under the assumption of sufcient torque, it is possible
A. Contact model to split up the problem of whole-body locomotion into two

The interaction between a robot and the environment ssiccessive (hierarchical) stages: a) nd the contact force
de ned through a set of contact poiritpx 2 R3;k = 1::K g. trajectories driving the the centroidal dynamics; b) recover the
For instance, for a humanoid robot equipped with rectangullaquired joint torque trajectory from the centroidal trajectory
feet, the contact points correspond to the four vertices of thad the end-effector trajectories using for instance a second



order inverse kinematics/dynamics solver. This assumption’is can be discussed and implemented. The one used in the
reasonable given motorization of current legged robots, the@tperiments requires some additional de nitions and is given
are suf cient to generate high torques. We discuss the resultimySection 1.
limits in the conclusion.

To ensure the feasibility of the rst stage with respect to the
second stage, some conditions must be met by the rst stageThis section reports the main contribution of the paper. We

) the forces must remain inside the friction cones in cad¥esent a mathematical coding of the feasibility constraints

IlIl. FEASIBILITY OF THE CENTROIDAL PROBLEM

of unilateral contacts: as probability measures. We then discuss the interest of this
ii) the centroidal dynamics must be kinematically anéepresentation with respect to more-classical set-membership
dynamically feasible by the system; and show how it can be used to ef ciently implement](3d) in

etpe OCP. This section introduces the abstract de nitions, that

The rst constraint stems directly from the contact mod : ) ; . .
H1ext section section uses to build the complete implementation.

introduced in Sed_II-A. The second constraint comes fro

the fact that the centroidal dynamics is linked to th@a Mathematical representation of feasibility constraints
joint con guration and its derivatives through the centroidal

S Our objective is to efciently implement the feasibility
mapping:

h constraint[(3H) in our OCP. This constraint explicitly depends
L= Ag(Q)q; (2) on the robot con guration, which is not a variable of the
¢ centroidal OCP. A straight-forward implementation is to add
with Ag the so-called centroidal momentum matiix|[20].  the robot con guration in the variables of the OCPI [6].
However, this would surely lead the OCP to optimize
the whole-body trajectory in order to handle all the robot

From the previous assumptions, the problem @onstraints, which is yet not tractable especially if targeting
multi-contact locomotion can be reduced to the followingeal-time performances. We rather believe that it is possible to
formulation: represent this constraint by an equivalent “proxy” constraint
| hot dependent on the robot con guration.

Various ways to encode proxy constraints have
been proposed in the literature. Most of them rely on
set-membership. Denoting by the centroidal projection

D. Centroidal optimal control formulation

From a given contact sequence and an initial centroida
state, nd a feasible centroidal trajectory, satisfying
the Newton-Euler dynamics, respecting the contact
constraints and leading to a viable state.

function:
This formulation can be directly transcribed as an optimal
control problem of the form: (gae)! xx)= (g9;9;4)

X Zi o, the proxy can be written as the constraint to have the
min “s(x;u) dt (3a) State variables in the range space of Set-membership
xy o1 s proxies are used for instance in_[11, 7] to encode maximal

st. 8t x=f(x;u) (3b) step_size in _biped walking., or in|5] to bound the CoM
8t u_2 K (30) position by simple geometric shape. In all these cases, the
set boundaries are represented by very simple mathematical
8t 9(g;9;8) s.t.x;x is feasible (3d) structures (typically linear inequalities) in order not to burden
x(0) = (¢cp;0;0) (3e) the OCP solver. Remarkably, there are few papers about the
x(T) is viable (3) automatic synthesis of the set boundaries [23,21, 32].

Despite its popularity, the set-membership representation
wheres is the index of the contact phase,andu are the has important drawbacks. First, it is often difcult to
state and control trajectoriess, is the start time of the contacthandle by the OCP solver, in particular when the feasible
phases with t; =0 andts:; = ts+ ts. Constraints[(3b) and set is not convex. The boundary, which is a singular
(3d) enforce consistent dynamics with respect to the contaghthematical object, is also complex to describe or
model. Eq. [(3H) is the constraint enforcing the feasibilitjumerically approximate. Finally, the OCP solver often tends
of the centroidal dynamics with respect to the whole-body saturate the set boundary, where the inverse kinematics
problem: it handles kinematics limits, bounds on the angular ! s likely to fail. Consequently, the set is often arbitrarily
momentum guantity, etc. We will show how it can be replace@duced to improve the robustness of the whole-body solution.
by an automatic proxy constraint. Constraint](3e) constrains ]
the trajectory to start with a given state (typically estimated: ProXy as occupation measure
by the sensor of the real robot). Terminal constraint (3f) is In this paper, we rather state that the proxy is best
dif cult to exactly represent[[31] and is replaced in practicémplemented by the occupation measure avex.
by zero terminal movemert(T) = L(T) =0 andx(T) = Consider a state trajectory. With (3d), we want to
(c ;0;0). Finally, g is the cost function which enforces themaximize the likelihood that the inverse-kinematics solver
smoothness of both the state and control trajectories. Variaxmverges on a trajectory such thatx is the image of



g by . For that purpose, it is desirable that any state that the OCP solver is trapped in local minima of, as
corresponds to as many robot con gurations as possible, isananipulates a full trajectorx and not a single statz.
that the inverse kinematics is likely to converge to a solutidaxperimentally, we observed that our OCP solver robustly
g meeting continuity constraints. computes a good local minimum when optimizing over a cost

We dene the occupation measure as the image pEnalizing the log-PDF, while it is unlikely to converge to a
the uniform distribution in con guration space through thesolution when optimizing over set-membership.

centroidal projection :
4 Z IV. LEARNING THE COM REACHABILITY PROXY
def —
o(x) = der = 1 (@=xd q We now present a complete solution to efciently

st (@)= x approximate the CoM feasibility, i.e. for any time,
wherex £'(x:x), & £'(q:q; &), Q is the whole-body motion there exists a joint con gurationg(t) such that (i) the
range,1, is the indicator function (i.e. 1 when the assertiogontact placements are respected and (ii) the CoM of the
a is true, 0 otherwise) andq is the uniform distribution on poly-articulated system matches(t). Handling this sole
Q. constraint rstis a proper way of validating our approach. It is

Measure , has several properties of the set-membershso interesting in practice, as the feasibility of the CoM is the
representation. First, its support is the feasibility set, whighost limiting constraint for humanoid robots. Generalization
means that , contains at least as much information as th® velocity and acceleration of the CoM with respect to joint
set boundaries. It indeed contains more information, as feglocity and acceleration limits would be straight-forward.
example the level sets of, can be used as boundaries of th&xtension to the construction of the proxy on the torque limits
inner of the feasibility set, used to improve the robustness.is left as a perspective.

In practice, it is desirable that OCP (3) promotes centroidal .
statesx where , is the highest. First, it makes it easief™ Probabilistic model
to then compute a corresponding con guratiep Second,  The geometric condition can be stated as toaditional
the con guration is well inside the kinematic feasibility setprobability of the CoM to be at the positio given the
where redundancy will help the robot to handle disturbancegirrent set ofK contact pointsf px 2 R3;k = 1::K g. This
We will see in the experimental results that the resultingrobability is denoted by(cjpk;k = 1::K). It lives in the
whole-body trajectory corresponds to con gurations with largeigh dimensionality domaiR3(K *1) and it is hard to compute
manipulability. in general.

Finally, the measure also eases the life of the OCP solver,The probability domain can be exactly reduced by
compared to handling directly the feasibility set membershigathering together the contact points belonging to the
as explained next. same rigid end-effector (e.g., the 4 vertices of the
C. Maximizing the occupation measure humanoid foot belongs to the same end-effector). We denote

' by Mi =(Rj;pi) 2 SE(3) the placement (position and

Before deriving an effective solution to represestfor the  grientation) of the contact body The conditional probability
speci ¢ case of the kinematic feasibility, we quickly show hows then reduced tp(cjM;:i = 1:::K ¢) whereK ¢ is the number

o can be integrated in the OCP (3). of end-effectors in contact.

In practice, the measure can be normalized and representeflie now assume that variabléd; are all independent.
by the corresponding probability density function (PDF)rhis assumption is clearly abusive, however is a reasonable
denoted byp(x;x). It is then possible to directly exploit approximation under knowledge af. It is later discussed.

imposing the integral of the measure to be positive on any

small neighborhood around the trajectory). In addition, we i i ¥
could use the PDF to directly optimize the robustness, either peiMizi =1:Ke) [ pi(c) )
by optimizing over a level set of the PDF, or by maximizing =1
the neighborhood around the trajectory where the measuravisere p;(c) stands for p(cjM;) and / stands for “is
nonzero. proportional to”. p;(c) is nothing more than the probability
However, adding a PDF as a constraint of an OCP is ndistribution of the CoM to be at position w.r.t the frame
straightforward. Therefore, we propose to remove the hadé ned by M;.
constraint[(3H) and penalize the OCP cost with the log PDF. The assumption of independence of tkle is commonly
In practice, the logarithm prevents the solver from selectirmployed inside the machine-learning community as a trick to
non-feasiblex states. Constraint§ (Bd) is always satis ed. Imake the problem numerically tractable. In this particular case,
also penalizes non-robust behavior where no redundagrisy it greatly simpli es the learning process: instead of working
available, and avoides saturation of the hard constraint. Finally,a high dimensional space, the problem is restricted to a
the OCP solver is gently pushed away from the constraistibset ofR3. In addition, the independence of end-effector
instead of searching for a solution living on the boundarieplacements plays the role of an upper-bound for the real
which greatly improves its ef ciency. Futhermore, it is unlikelyprobability: if a CoM is not feasible for at least one of the



end-effectors (i.e. one of thp (c) is equal to0), then the Y-Z projection X2 projection o XY projection
joint probability is also zero. The converse is not true.
B. Kernel density estimation by CoM sampling '

for a particular legged robot. Nevertheless, this condltonado- %Dos- % - ‘ %

There is in general no closed form to encoggc)
probability can be easily approximated by extensive sampling L :

of the CoM position expressed in the end-effector frames. .
Sampling Namples Of the CoM position expressed in the
frame M; does not raise particular dif culties. For each
sample, a con guratior, of the actuated joints is randomly -®

sampled and the CoM position is computed (expressed i
P P P ( P F% 2. lllustration of the probability density distribution of the CoM w.r.t.

. . 19.

placement frame) by forward kinematics. The sample {ge rignt foot frame of HRP-2. The PDF are projected along the three axis
rejected if joint limits or self collision are violated. X,Y,Z and represented by the means of colormap: the low values are closed

The probability distribution can be approximation fromio the blue colour while the high values tend to be more red. The rst row
h loud of CoM . by the k | d - - corresponds to the ground truth distribution estimated through KDE. The KDE
the cloud o 0 p0|nt§ y the kernel density estimatorg composed 020000 points. The second row is the colour map of the GMM
(KDE) [22]. KDE are in some sense the analogues aed in the OCP and composeddfaussian kernels.
histograms but for continuous domains: for each point of the
data set, it associates one kernel centered on the point and all
kernels share the same parameters. In the present work,where the rst terf] enforces a smooth trajectory, the
use isotropic Gaussian kernel. second term is the cost of transport for the approximate
CoM occupancy measure, and, weights their relative
) ~_importance. The rst term can similarly be interpreted as a

One drawback of the KDE representation is it§eak formulation of the occupancy measures for the second
computational  complexity:  evaluating the exponentigyrder terms ¢ andL ) and their derivatives, through centred
function contained in the Gaussian kernel takes ardliws ~ Gayssian measures (i.e. no prior on occupancy distribution).
on modern CPU. So, roughly speaking, evaluating the PDF gfthe complete occupancy measurg is available, the rst
the KDE takes approximately0 Nsampied?s Which becomes term would become useless.
rapidly a bottleneck when the number of points is huge
(Nsamplesgreater thar.00 points). V. RESULTS

We propose to then approximate the KDE by a Gaussianwe rst illustrate the learning procedure exposed in $e¢. IV
mixture model (GMM) [1]. GMMs are particularly suitedon the HRP-2 robot. We then present the complete pipeline
to approximate a PDF with only few Gaussians in the ysed to achieve both real and simulated motions on the
mixture. The GMMs are learned for each end-effectqqyg different robots. After that, we show two real experiments
from the corresponding cloud of samples by means of thg muylti-contact locomotion with the HRP-2 robot inside an
expectation-maximization (EM) algorithrn![8]. ~environment similar to what can be found in the industry.

The quality of the GMM approximation can be estimategting|ly, we end this section by showing the versatility of
using the Kullback-Leibler (KL) divergence between the KDfe approach with the simulation of a multi-contact motion
(ground-truth) and the learned GMM (approximation) usingp another humanoid robot. We refer the reader to the

the Monte Carlo estimator proposed in [12]. Depending on thgcompanying video for a better viewing of the multi-contact
number of Gaussians in the mixture, the divergence can reVSﬁberimen@

under or over tting effects. The optimal number of Gaussians
is easily selected for each end effector by dichotomy, #&s lllustration of the learning procedure

exempli ed in next section. We validate the proposed learning approach on the HRP-2
D. Summary of the learning procedure robot. For that purpose, we only expose for space reasons the
learning of the accessibility space of the CoM w.r.t. the right

In summary, for each end effectddsamplesCON gurations o
are sampled and the corresponding CoM is computed in tﬁ)é)t (RF). A similar study can be conducted on the three other

. : . nd-effectors.
end-effector frame. The resulting KDE is approximated b?/ ) . .
tting a GMM using EM. Finally, the probability of CoM The learning process is made from a set26000 points

occupancy is approximated as the producpdt), for i the tsr?mpletd.unlformly '? (tjhe C?r? gura;tlon sp?c;. Tge Tli]DE OI
end effectors in contact with the environment. is set is represented on the rst row of Fg. 2. The rs

. . observation is that the PDF of the RF is not convex and follows
E. Proposed optimal control formulation a kind of banana distribution on the X-Z plane. In other words,

We can now express the complete formulation of the coéis means that the distribution cannot be approximated by a
function “s.

0 05 1

C. Reduction of dimension

P K Ikx k is a function ofx andu throughx = f (x;u)
“s(x;u) = wykxk? i1 log(pi(c)) (5) 2available at https:/lyoutu.be/7hiLf6DpMAA



KL divergence evolution according to GMM size

a) Contact sequence planningdzor all the experiments,

e ‘\ the contact sequences are manually designed with xed
2 \ [ Rghtront v LotFoot  — RightGripper - Lef Grpper durations for each contact phase depending on the scenario.
214 We also manually design the end-effector trajectories by
E \%\ using splines with zero acceleration and velocity at take
e 2;““‘“”3 O”"""’m ] off and landing instants. This information could have been

Size of the mixture automatically generated using a contact planher [28].

. . . o b) Centroidal resolution:From the contact sequence and
Fig. 3. Evolution of the KL divergence between the KDE distribution angEh | d CoM f ibili . | h . |
GMNMs of different sizes for the four end-effectors of the HRP-2 robot. € learne 0 ) easl '_'ty const_ralnts, we So Ve_ the optima

control formulation [(B) with the tailored cost functidr (5). For
Y-Z projection X-Z projection X-Y projection all the experiments and robots, we use the same weighting in

© the cost functionw, = 10. This weight is a trade-off between
o > . the smoothness of the dynamics trajectory and the enforcement
o . of the feasibility constraint. We instantiate the OCRH (3)

inside the MUSCOD-II framework [18] which implements an
ef cient multiple-shooting algorithm [9] particularly suited for
- multi-staged problems as the one we propose.
o N ¢) Whole-body resolution:From the OCP, we obtain
| (== * a reference trajectory for the centroidal dynamics that we
follow using a second-order inverse kinematics (IK) solver
s s N similar to [24]. In addition, the IK must track the end-effector
Fig. 4. lllustration of the probability density distribution of the CoM w.r.t.trajeCtories' Optimal forces are also extracted from the OCP

the right foot frame of TALOS robot. The PDF are projected along the thré@&nd can be used as references to control the robot.
axis X,Y,Z and represented by the means of colormap: the low values are
closed to the blue colour while the high values tend to be more red. The €. Experimental results

row corresponds to the ground truth distribution estimated through KDE. The __ | . .
KDE is composed 020000 points. The second row is the colour map of the ThiS part reports the experiments achieved on the HRP-2

GMM used in the OCP and composed4fGaussian kernels. The axes haverobot in real conditions and on TALOS in simulation.
the same scale than in A 2. 1) Experiment 1 - climbing up 10-cm high step$he
experimental setup is an industrial stairs made of six 10-cm

single normal distribution but must be composed of sevefdgh steps. The steps have a length36fcm. The duratigns
distributions. The second row of Fig] 2 represents the cologf the single and double support phases & s and0:2
map of the GMM used inside the OCP. At this stage, it f§ feSPectively. The resulting motion is depicted in Hib. 6.
important to notice that the approximation with GMMs doeBUring execution, the reference posture is tracked as well
not t perfectly the maximal values of the real distributionS the reference foot forces using the robot low-level control

However, this approximation is conservative with respect f&YStem (named HRP “stabilizer”). o
the support and the level sets of the original distribution. ~ COmputing the25s of motion takes42 iterations of the
Fig. [ highlights the experimental procedure suggested fltiple-shooting algorithm, costing abods in total. In
Sec[TV=G and shows the evolution of the KL-divergence witRVerage, each iteration takes approximativés for 25s of
respect to the size of the GMMs. For the right and left feefyotion. About70% of the computation time is spent solving
the KL-divergence stagnates frokernels in the mixture. the underlying quadratic program of the multiple-shooting
In other words, it is sufcient to takes a GMM of size algorithm and other20% are dedicated to the numerical
to represent the CoM distribution in the foot frames. Fdptegration of the dynamics together with the computations
the right and left grippers, it is a little bit different. TheOf sensitivities (derivatives). . .
KL-divergence rst decreases and then increases friofn  Fig-[§ shows two trajectories of the CoM projected in the
kernels. This behaviour can be explained by the fact that tHght foot frame: the black curve takes into account the log-pdf
EM algorithm does not optimize the KL divergence but thierm in the_ cost function, while the green one doe_s not. The
likelihood of observation (expectation). We chose to represeft!® @lso includes the level sets of the GMM of right foot
the CoM distribution w.r.t. the grippers with a GMM of size(depicted in Fig P). It appears that the OCP tends to maximize
14. the inclination of the CoM to stay in the most feasible region,
A similar study has been done on the TALOS humanofcf- closed to the maxima of the PDF. On the contrary, if we
robot, which is larger than HRP-2 and as different leg arf#f not add the log-pdf term, the CoM tends to be infeasible.
arm kinematics. The distributions for the right foot of TALOS It is worth to mention that maximizing the stay of the CoM

is depicted in Fig[ 4. in the most feasible region leads to a crouching walk. This
o may be not desirable for aesthetics. However, in the case of
B. Complete pipeline HRP-2, this crouch of the legs must exist to avoid singularities

Our locomotion framework is composed of three stages: which are not tolerated by the low-level controller.
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measure over the CoM was approximated. Learning the CoM
kinematic feasibility is only a rst stage. We plan to extend
the approach by learning the constraints related to the other
centroidal variables. This may severely improve the quality of
the whole-body behavior. The methodology would also nicely
apply to learning the terminal viability constrairft |(3f). As
discussed at the end of Sectfor] IV, we believe that introducing
the occupancy measure over all centroidal variables would
reduce the locomotion problem to a simple optimal control
problem composed of a single cost function, with only initial
constraints.
AR RS AP Finally, our methodology goes beyond trajectory
L - optimization. We have introduced proxies as a way to ensure
consistency between two sets of motion models (centroidal
model and whole-body model). The same consistency is
desirable between the centroidal pattern generator and the
upstream contact planner, whose motion models could be

) o ) o ) ) similarly learned by statistical sampling.
Fig. 5. Projection of the CoM trajectory inside the right foot frame with and
without taking into account the log-pdf term in the cost function. The level
set corresponds to the GMM distribution used in our OCP.

’| — with PDF cost
—without PDF cost
|

0.5 0 0.5

X [m]
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