
�>���G �A�/�, �?���H�@�y�R�8�k�e�k�y�y

�?�i�i�T�b�,�f�f�H�����b�X�?���H�X�b�+�B�2�M�+�2�f�?���H�@�y�R�8�k�e�k�y�y�p�R

�a�m�#�K�B�i�i�2�/ �Q�M �k�k �J���v �k�y�R�d

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�.�B�b�i�`�B�#�m�i�2�/ �m�M�/�2�` �� �*�`�2���i�B�p�2 �*�Q�K�K�Q�M�b ���i�i�`�B�#�m�i�B�Q�M �@ �a�?���`�2���H�B�F�2 �9�X�y �A�M�i�2�`�M���i�B�Q�M���H �G�B�+�2�M�b�2

�G�2���`�M�B�M�; �6�2���b�B�#�B�H�B�i�v �*�Q�M�b�i�`���B�M�i�b �7�Q�` �J�m�H�i�B�@�+�Q�M�i���+�i
�G�Q�+�Q�K�Q�i�B�Q�M �Q�7 �G�2�;�;�2�/ �_�Q�#�Q�i�b

�C�m�b�i�B�M �*���`�T�2�M�i�B�2�`�- �_�Q�?���M �"�m�/�?�B�`���D���- �L�B�+�Q�H���b �J���M�b���`�/

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�C�m�b�i�B�M �*���`�T�2�M�i�B�2�`�- �_�Q�?���M �"�m�/�?�B�`���D���- �L�B�+�Q�H���b �J���M�b���`�/�X �G�2���`�M�B�M�; �6�2���b�B�#�B�H�B�i�v �*�Q�M�b�i�`���B�M�i�b �7�Q�` �J�m�H�i�B�@
�+�Q�M�i���+�i �G�Q�+�Q�K�Q�i�B�Q�M �Q�7 �G�2�;�;�2�/ �_�Q�#�Q�i�b�X �_�Q�#�Q�i�B�+�b�, �a�+�B�2�M�+�2 ���M�/ �a�v�b�i�2�K�b�- �C�m�H �k�y�R�d�- �*���K�#�`�B�/�;�2�- �J���-
�l�M�B�i�2�/ �a�i���i�2�b�X �N�T�X ���?���H�@�y�R�8�k�e�k�y�y��

https://laas.hal.science/hal-01526200v1
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr


Learning Feasibility Constraints
for Multi-contact Locomotion of Legged Robots

Justin Carpentier, Rohan Budhiraja and Nicolas Mansard
Laboratoire d'Analyse et d'Architecture des Syst�emes

Universit́e de Toulouse
7 avenue du Colonel Roche

Toulouse, FRANCE
Email: justin.carpentier@laas.fr

Abstract—Relying on reduced models is nowadays a standard
cunning to tackle the computational complexity of multi-contact
locomotion. To be really effective, reduced models must respect
some feasibility constraints in regards to the full model. However,
such kind of constraints are either partially considered or just
neglected inside the existing reduced problem formulation. This
work presents a systematic approach to incorporate feasibility
constraints inside trajectory optimization problems. In particular,
we show how to learn the kinematic feasibility of the centre of
mass to be achievable by the whole-body model. We validate
the proposed method in the context of multi-contact locomotion:
we perform two stairs climbing experiments on two humanoid
robots, namely the HRP-2 robot and the new TALOS platform.

I. I NTRODUCTION

Multi-contact locomotion of legged robots inside
heterogeneous non-�at environments is a hard and challenging
problem. One major dif�culty of this problem lies in its
computational complexity: �nding the whole-body trajectory
solving a locomotion task corresponds to a high dimensional
mathematical problem with a complex structure, hardly
tractable by modern computers and particularly the ones
embedded in modern legged robots [27, 17].

1) Reduced models:To tackle those limitations, various
strategies have been proposed in the literature. Most of them
are based upon using reduced models: instead of working with
the full dynamics, only a subpart is considered, covering the
essential properties of the whole dynamics. In the context of
bipedal locomotion, the most famous reduced model is the
linear inverted pendulum model (LIPM) [15].

The locomotion is then reduced to the problem of �nding
a trajectory for the reduced model which will then drive
the whole-body system. Starting with [16], various optimal
control formulation have been proposed by the community,
to either tackle the robustness problem [30], include viability
conditions [25], allow altitude variations of the center of mass
(CoM) [2], or also include foot placements as parameters of
the problem [11].

However, LIPM-based methods are restricted to basic
environments (�at ground, no obstacles) and cannot deal
with more complex scenarios as non-coplanar contact cases,
climbing stairs using handrail, etc. Considering non-coplanar
contacts breaks the nice linearization leading to the LIPM
model. A �rst approach to handle the non-linear dynamics

Fig. 1. Illustration of HRP-2 robot and TALOS robot making contacts
with their environment. The green “ice-cream” cones are dispatched on the 4
vertices of the feet, symbolizing the friction cones with friction coef�cient of
value0:3.

was proposed in [14], however requiring technical and
dedicated developments based on limiting assumption (e.g.
prior knowledge of force distribution). In quite another vein,
it has been proposed to simplify the whole-body optimization
problem by e.g. assuming unconstrained torque capabilities
[6]. Both approaches indeed boil down to optimizing the
so-called centroidal dynamics [20] as reduced model. Direct
resolution of the underlying optimal control problem based on
multiple-shooting approach has been recently proposed [4],
leading to real-time performances. Other contributions have
also been suggested that exhibit approximate dynamics
(with possibly bounded approximations) leading to convex
optimization problems, thus ensuring global optimality [13,
5, 2]. In most cases, the footstep sequence is assumed given,
although some solvers are also able to discover it while
optimizing the centroidal dynamics [19, 7], to the price of
heavier computational costs.

2) Feasibility constraints:The reduced model (either LIPM
or centroidal) is subject to feasibility constraints implied by the
whole body (e.g. kinematic or torque limits, footstep length).
Such constraints are dif�cult to express as solely function of
the reduced model. For instance, the CoM trajectory must be
achievable by the whole-body kinematics. These constraints
can be tackled explicitly, by adding the corresponding
whole-body variables in the optimization scheme [19, 6].



However, this direct representation is also the most expensive
in terms of computation.

Such constraints can also be represented at the level of the
reduced model by using so-called proxy constraints [32]. In
most of previous works, proxy constraints are de�ned by some
rough approximations (box constraints, elliptic bounds, etc)
leading to a certain conservatism; or it is simply ignored inside
the reduced problem formulation. Footstep limits have been
encoded by hyper-plane based on a dataset of robot success
and failure inside a dynamic simulator [23]. Similar constraints
can be obtained by training a training a neural network [21].
In [32], similar bounds are obtained by trial and errors based
on stability analysis of the whole-body system.

Constraining only the CoM position is not suf�cient. It is
also necessary to consider the constraints related to the contact
forces [29] which must lie inside so-called friction cones, the
capacity of robot to generate such value of angular momentum,
etc. The main problem lies in the fact that it is hard to �nd
analytic formulas to represent and express those constraints.

3) Contribution: In this paper, we propose a systematic
approach to handle feasibility constraints in the context
of trajectory optimization for reduced models, leading to
ef�cient resolution on the real robot. The resulting constraint
formulation could be employed in most of the optimal control
solver based on centroidal dynamics [19, 7, 13], although we
implemented it inside a multiple-shooting solver [4].

We �rst recall the equations of motion for both the
whole-body and the centroidal models and de�ne the resulting
optimal control problem (OCP) for multi-contact locomotion
in Section II. These de�nitions logically introduce the need
of proxy constraint. Our main contribution, described in
Section III, is to represent proxy constraints by occupancy
measures, whose corresponding cost of transport is optimized
in the OCP. In Section IV, we propose a complete solution
to learn the CoM feasibility constraint by off-line sampling
the robot motion capabilities. Finally, the effectiveness of the
approach is highlighted with two real experiments on the
HRP-2 robot climbing stairs with or without using handrail
and one in simulation with the TALOS humanoid robot [26]
climbing stairs using handrail, reported in Section V.

II. M ULTI -CONTACT LOCOMOTION

This section reviews the centroidal dynamics and its links
with the whole-body model. We then describe the generic
optimal control problem used to compute the centroidal
trajectories, based on [4]. Although this section contains
mostly known materials, we believe that the clean formulation
of the dynamics decoupling is a contribution per se. It is indeed
a prerequisite to the introduction of proxy constraints in the
next section.

A. Contact model

The interaction between a robot and the environment is
de�ned through a set of contact pointsf pk 2 R3; k = 1 :::K g.
For instance, for a humanoid robot equipped with rectangular
feet, the contact points correspond to the four vertices of the

rectangular shape. At each contact pointpk is de�ned a contact
force f k . In the case of unilateral contacts,f k must lie inside
a 3-dimensional quadratic friction coneK3

k , characterized by a
positive friction coef�cient� k . Fig. 1 depicts humanoid robots
making contact with the environment.

We only consider here rigid contact interaction (contacting
bodies are �xed) which is a reasonable assumption for modern
legged robots which are mostly equipped with rigid soles.

A contact phaseis de�ned by a constant set of contact
points. In the context of bipedal walking, two examples of
contact phases are the single and double support phases. As
soon as a creation or a rupture of contact point occurs, the
contact set is modi�ed, de�ning a new contact phase. The
concatenation of contact phases describes what we name a
contact sequence, inside which all the contact phases have
their own duration.

Computing automatically the contact sequence is a dif�cult
problem [3], but ef�cient contact planners now exist to
compute it in a short amount of time [10, 28].

B. Whole-body dynamics and centroidal dynamics

A legged robot is by nature a free-�oating base system
composed of6 + n degrees of freedom (DoF). Its dynamics
is governed by the Lagrange equation of motion, which links
the joint con�gurationq and its time derivatives_q; •q to the
torque actuation� a and the contact forcesf k :
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where subscriptsu and a stands for the under-actuated and
actuated parts respectively,H is the generalized mass matrix,b
covers centrifugal and Coriolis effects,g is generalized gravity
vector andJk is the Jacobian of the contactk.

The 6 �rst rows of (1) represent the under-actuated
dynamics of the robot, also called the centroidal
dynamics [20]. It coincides with the Newton-Euler equations
of motion which links the variation of the whole-system
linear and angular momentum to the contact forces. Denoting
by L c the angular momentum, the centroidal dynamics is:

m•c =
P

k f k + mg

_L c =
P

k (pk � c) � f k

where g def= (0 ; 0; � 9:81) is the gravity vector and the
operator� denotes the cross product.

The n last rows of (1) are the classic Lagrange dynamics
of a �xed robot manipulator making contacts, which is both
linear in the torque and force inputs.

C. Partial decoupling of centroidal and manipulator dynamics

Under the assumption of suf�cient torque, it is possible
to split up the problem of whole-body locomotion into two
successive (hierarchical) stages: a) �nd the contact force
trajectories driving the the centroidal dynamics; b) recover the
required joint torque trajectory from the centroidal trajectory
and the end-effector trajectories using for instance a second



order inverse kinematics/dynamics solver. This assumption is
reasonable given motorization of current legged robots, that
are suf�cient to generate high torques. We discuss the resulting
limits in the conclusion.

To ensure the feasibility of the �rst stage with respect to the
second stage, some conditions must be met by the �rst stage:

i) the forces must remain inside the friction cones in case
of unilateral contacts;

ii) the centroidal dynamics must be kinematically and
dynamically feasible by the system;

The �rst constraint stems directly from the contact model
introduced in Sec. II-A. The second constraint comes from
the fact that the centroidal dynamics is linked to the
joint con�guration and its derivatives through the centroidal
mapping: �

h
L c

�
= Ag (q) _q; (2)

with Ag the so-called centroidal momentum matrix [20].

D. Centroidal optimal control formulation

From the previous assumptions, the problem of
multi-contact locomotion can be reduced to the following
formulation:

From a given contact sequence and an initial centroidal
state, �nd a feasible centroidal trajectory, satisfying
the Newton-Euler dynamics, respecting the contact
constraints and leading to a viable state.

This formulation can be directly transcribed as an optimal
control problem of the form:

min
x ;u

SX

s=1

Z t s +� t s

t s

`s(x ; u ) dt (3a)

s.t. 8t _x = f (x ; u ) (3b)

8t u 2 K (3c)

8t 9 (q; _q; •q) s.t. x ; _x is feasible (3d)

x (0) = ( c0; 0; 0) (3e)

x (T) is viable (3f)

where s is the index of the contact phase,x and u are the
state and control trajectories,ts is the start time of the contact
phases with t1 = 0 andts+1 = ts +� ts. Constraints (3b) and
(3c) enforce consistent dynamics with respect to the contact
model. Eq. (3d) is the constraint enforcing the feasibility
of the centroidal dynamics with respect to the whole-body
problem: it handles kinematics limits, bounds on the angular
momentum quantity, etc. We will show how it can be replaced
by an automatic proxy constraint. Constraint (3e) constrains
the trajectory to start with a given state (typically estimated
by the sensor of the real robot). Terminal constraint (3f) is
dif�cult to exactly represent [31] and is replaced in practice
by zero terminal movement•c(T) = _L c (T) = 0 and x(T) =
(c� ; 0; 0). Finally, `s is the cost function which enforces the
smoothness of both the state and control trajectories. Various

`s can be discussed and implemented. The one used in the
experiments requires some additional de�nitions and is given
in Section IV.

III. F EASIBILITY OF THE CENTROIDAL PROBLEM

This section reports the main contribution of the paper. We
present a mathematical coding of the feasibility constraints
as probability measures. We then discuss the interest of this
representation with respect to more-classical set-membership
and show how it can be used to ef�ciently implement (3d) in
the OCP. This section introduces the abstract de�nitions, that
next section section uses to build the complete implementation.

A. Mathematical representation of feasibility constraints

Our objective is to ef�ciently implement the feasibility
constraint (3d) in our OCP. This constraint explicitly depends
on the robot con�guration, which is not a variable of the
centroidal OCP. A straight-forward implementation is to add
the robot con�guration in the variables of the OCP [6].
However, this would surely lead the OCP to optimize
the whole-body trajectory in order to handle all the robot
constraints, which is yet not tractable especially if targeting
real-time performances. We rather believe that it is possible to
represent this constraint by an equivalent “proxy” constraint
not dependent on the robot con�guration.

Various ways to encode proxy constraints have
been proposed in the literature. Most of them rely on
set-membership. Denoting by the centroidal projection
function:

 : (q; _q; •q) ! (x ; _x ) =  (q; _q; •q)

the proxy can be written as the constraint to have the
state variables in the range space of . Set-membership
proxies are used for instance in [11, 7] to encode maximal
step size in biped walking, or in [5] to bound the CoM
position by simple geometric shape. In all these cases, the
set boundaries are represented by very simple mathematical
structures (typically linear inequalities) in order not to burden
the OCP solver. Remarkably, there are few papers about the
automatic synthesis of the set boundaries [23, 21, 32].

Despite its popularity, the set-membership representation
has important drawbacks. First, it is often dif�cult to
handle by the OCP solver, in particular when the feasible
set is not convex. The boundary, which is a singular
mathematical object, is also complex to describe or
numerically approximate. Finally, the OCP solver often tends
to saturate the set boundary, where the inverse kinematics
 � 1 is likely to fail. Consequently, the set is often arbitrarily
reduced to improve the robustness of the whole-body solution.

B. Proxy as occupation measure

In this paper, we rather state that the proxy is best
implemented by the occupation measure overx ; _x .

Consider a state trajectoryx . With (3d), we want to
maximize the likelihood that the inverse-kinematics solver
converges on a trajectoryq such thatx is the image of



q by  . For that purpose, it is desirable that any statex
corresponds to as many robot con�gurations as possible, so
that the inverse kinematics is likely to converge to a solution
q meeting continuity constraints.

We de�ne the occupation measure as the image of
the uniform distribution in con�guration space through the
centroidal projection :

� o(~x ) def=
Z

~q s.t. ( ~q)= ~x
d~q =

Z

Q
1 ( ~q)= ~x d� Q

where~x def= ( x ; _x ), ~q def= ( q; _q; •q), Q is the whole-body motion
range,1a is the indicator function (i.e. 1 when the assertion
a is true, 0 otherwise) and� Q is the uniform distribution on
Q.

Measure� o has several properties of the set-membership
representation. First, its support is the feasibility set, which
means that� o contains at least as much information as the
set boundaries. It indeed contains more information, as for
example the level sets of� o can be used as boundaries of the
inner of the feasibility set, used to improve the robustness.

In practice, it is desirable that OCP (3) promotes centroidal
states ~x where � o is the highest. First, it makes it easier
to then compute a corresponding con�guration~q. Second,
the con�guration is well inside the kinematic feasibility set,
where redundancy will help the robot to handle disturbances.
We will see in the experimental results that the resulting
whole-body trajectory corresponds to con�gurations with large
manipulability.

Finally, the measure also eases the life of the OCP solver,
compared to handling directly the feasibility set membership,
as explained next.

C. Maximizing the occupation measure

Before deriving an effective solution to represent� o for the
speci�c case of the kinematic feasibility, we quickly show how
� o can be integrated in the OCP (3).

In practice, the measure can be normalized and represented
by the corresponding probability density function (PDF),
denoted byp(x ; _x ). It is then possible to directly exploit
the measure to represent the set-membership constraint (by
imposing the integral of the measure to be positive on any
small neighborhood around the trajectory). In addition, we
could use the PDF to directly optimize the robustness, either
by optimizing over a level set of the PDF, or by maximizing
the neighborhood around the trajectory where the measure is
nonzero.

However, adding a PDF as a constraint of an OCP is not
straightforward. Therefore, we propose to remove the hard
constraint (3d) and penalize the OCP cost with the log PDF.

In practice, the logarithm prevents the solver from selecting
non-feasiblex states. Constraints (3d) is always satis�ed. It
also penalizes non-robust behavior where no redundancyq is
available, and avoides saturation of the hard constraint. Finally,
the OCP solver is gently pushed away from the constraint,
instead of searching for a solution living on the boundaries,
which greatly improves its ef�ciency. Futhermore, it is unlikely

that the OCP solver is trapped in local minima of� o, as
it manipulates a full trajectoryx and not a single statex .
Experimentally, we observed that our OCP solver robustly
computes a good local minimum when optimizing over a cost
penalizing the log-PDF, while it is unlikely to converge to a
solution when optimizing over set-membership.

IV. L EARNING THE COM REACHABILITY PROXY

We now present a complete solution to ef�ciently
approximate the CoM feasibility, i.e. for any timet,
there exists a joint con�gurationq(t) such that (i) the
contact placements are respected and (ii) the CoM of the
poly-articulated system matchesc(t). Handling this sole
constraint �rst is a proper way of validating our approach. It is
also interesting in practice, as the feasibility of the CoM is the
most limiting constraint for humanoid robots. Generalization
to velocity and acceleration of the CoM with respect to joint
velocity and acceleration limits would be straight-forward.
Extension to the construction of the proxy on the torque limits
is left as a perspective.

A. Probabilistic model

The geometric condition can be stated as theconditional
probability of the CoM to be at the positionc given the
current set ofK contact pointsf pk 2 R3; k = 1 :::K g. This
probability is denoted byp(cjpk ; k = 1 :::K ). It lives in the
high dimensionality domainR3(K +1) and it is hard to compute
in general.

The probability domain can be exactly reduced by
gathering together the contact points belonging to the
same rigid end-effector (e.g., the 4 vertices of the
humanoid foot belongs to the same end-effector). We denote
by M i = ( Ri ; pi ) 2 SE(3) the placement (position and
orientation) of the contact bodyi . The conditional probability
is then reduced top(cjM i ; i = 1 :::K c) whereK c is the number
of end-effectors in contact.

We now assume that variablesM i are all independent.
This assumption is clearly abusive, however is a reasonable
approximation under knowledge ofc. It is later discussed.
Under this assumption, the conditional probability reads:

p(cjM i ; i = 1 :::K c) /
K cY

i =1

pi (c) (4)

where pi (c) stands for p(cjM i ) and / stands for “is
proportional to”. pi (c) is nothing more than the probability
distribution of the CoM to be at positionc w.r.t the frame
de�ned by M i .

The assumption of independence of theM i is commonly
employed inside the machine-learning community as a trick to
make the problem numerically tractable. In this particular case,
it greatly simpli�es the learning process: instead of working
in a high dimensional space, the problem is restricted to a
subset ofR3. In addition, the independence of end-effector
placements plays the role of an upper-bound for the real
probability: if a CoM is not feasible for at least one of the



end-effectors (i.e. one of thepi (c) is equal to0), then the
joint probability is also zero. The converse is not true.

B. Kernel density estimation by CoM sampling

There is in general no closed form to encodepi (c)
for a particular legged robot. Nevertheless, this conditional
probability can be easily approximated by extensive sampling
of the CoM position expressed in the end-effector frames.

Sampling Nsamples of the CoM position expressed in the
frame M i does not raise particular dif�culties. For each
sample, a con�gurationqa of the actuated joints is randomly
sampled and the CoM position is computed (expressed in
placement frame) by forward kinematics. The sample is
rejected if joint limits or self collision are violated.

The probability distribution can be approximation from
the cloud of CoM points by the kernel density estimators
(KDE) [22]. KDE are in some sense the analogues of
histograms but for continuous domains: for each point of the
data set, it associates one kernel centered on the point and all
kernels share the same parameters. In the present work, we
use isotropic Gaussian kernel.

C. Reduction of dimension

One drawback of the KDE representation is its
computational complexity: evaluating the exponential
function contained in the Gaussian kernel takes around10ns
on modern CPU. So, roughly speaking, evaluating the PDF of
the KDE takes approximately10� Nsamplesns which becomes
rapidly a bottleneck when the number of points is huge
(Nsamplesgreater than100 points).

We propose to then approximate the KDE by a Gaussian
mixture model (GMM) [1]. GMMs are particularly suited
to approximate a PDF with only few Gaussians in the
mixture. The GMMs are learned for each end-effector
from the corresponding cloud of samples by means of the
expectation-maximization (EM) algorithm [8].

The quality of the GMM approximation can be estimated
using the Kullback-Leibler (KL) divergence between the KDE
(ground-truth) and the learned GMM (approximation) using
the Monte Carlo estimator proposed in [12]. Depending on the
number of Gaussians in the mixture, the divergence can reveal
under or over �tting effects. The optimal number of Gaussians
is easily selected for each end effector by dichotomy, as
exempli�ed in next section.

D. Summary of the learning procedure

In summary, for each end effector,Nsamplescon�gurations
are sampled and the corresponding CoM is computed in the
end-effector frame. The resulting KDE is approximated by
�tting a GMM using EM. Finally, the probability of CoM
occupancy is approximated as the product ofpi (c), for i the
end effectors in contact with the environment.

E. Proposed optimal control formulation

We can now express the complete formulation of the cost
function `s.

`s(x ; u ) = wx k _x k2 �
P K c

i =1 log(pi (c)) (5)

Y-Z projection X-Z projection X-Y projection

Fig. 2. Illustration of the probability density distribution of the CoM w.r.t.
the right foot frame of HRP-2. The PDF are projected along the three axis
X,Y,Z and represented by the means of colormap: the low values are closed
to the blue colour while the high values tend to be more red. The �rst row
corresponds to the ground truth distribution estimated through KDE. The KDE
is composed of20000 points. The second row is the colour map of the GMM
used in the OCP and composed of7 Gaussian kernels.

where the �rst term1 enforces a smooth trajectory, the
second term is the cost of transport for the approximate
CoM occupancy measure, andwx weights their relative
importance. The �rst term can similarly be interpreted as a
weak formulation of the occupancy measures for the second
order terms (_c andL c ) and their derivatives, through centred
Gaussian measures (i.e. no prior on occupancy distribution).
If the complete occupancy measure� o is available, the �rst
term would become useless.

V. RESULTS

We �rst illustrate the learning procedure exposed in Sec. IV
on the HRP-2 robot. We then present the complete pipeline
we used to achieve both real and simulated motions on the
two different robots. After that, we show two real experiments
of multi-contact locomotion with the HRP-2 robot inside an
environment similar to what can be found in the industry.
Finally, we end this section by showing the versatility of
the approach with the simulation of a multi-contact motion
on another humanoid robot. We refer the reader to the
accompanying video for a better viewing of the multi-contact
experiments2.

A. Illustration of the learning procedure

We validate the proposed learning approach on the HRP-2
robot. For that purpose, we only expose for space reasons the
learning of the accessibility space of the CoM w.r.t. the right
foot (RF). A similar study can be conducted on the three other
end-effectors.

The learning process is made from a set of20000 points
sampled uniformly in the con�guration space. The KDE of
this set is represented on the �rst row of Fig. 2. The �rst
observation is that the PDF of the RF is not convex and follows
a kind of banana distribution on the X-Z plane. In other words,
this means that the distribution cannot be approximated by a

1k _x k is a function ofx andu through _x = f (x ; u )
2available at https://youtu.be/7hiLf6DpMAA



Fig. 3. Evolution of the KL divergence between the KDE distribution and
GMMs of different sizes for the four end-effectors of the HRP-2 robot.

Y-Z projection X-Z projection X-Y projection

Fig. 4. Illustration of the probability density distribution of the CoM w.r.t.
the right foot frame of TALOS robot. The PDF are projected along the three
axis X,Y,Z and represented by the means of colormap: the low values are
closed to the blue colour while the high values tend to be more red. The �rst
row corresponds to the ground truth distribution estimated through KDE. The
KDE is composed of20000 points. The second row is the colour map of the
GMM used in the OCP and composed of4 Gaussian kernels. The axes have
the same scale than in Fig 2.

single normal distribution but must be composed of several
distributions. The second row of Fig. 2 represents the colour
map of the GMM used inside the OCP. At this stage, it is
important to notice that the approximation with GMMs does
not �t perfectly the maximal values of the real distribution.
However, this approximation is conservative with respect to
the support and the level sets of the original distribution.

Fig. 3 highlights the experimental procedure suggested in
Sec. IV-C and shows the evolution of the KL-divergence with
respect to the size of the GMMs. For the right and left feet,
the KL-divergence stagnates from7 kernels in the mixture.
In other words, it is suf�cient to takes a GMM of size7
to represent the CoM distribution in the foot frames. For
the right and left grippers, it is a little bit different. The
KL-divergence �rst decreases and then increases from14
kernels. This behaviour can be explained by the fact that the
EM algorithm does not optimize the KL divergence but the
likelihood of observation (expectation). We chose to represent
the CoM distribution w.r.t. the grippers with a GMM of size
14.

A similar study has been done on the TALOS humanoid
robot, which is larger than HRP-2 and as different leg and
arm kinematics. The distributions for the right foot of TALOS
is depicted in Fig. 4.

B. Complete pipeline

Our locomotion framework is composed of three stages:

a) Contact sequence planning:For all the experiments,
the contact sequences are manually designed with �xed
durations for each contact phase depending on the scenario.
We also manually design the end-effector trajectories by
using splines with zero acceleration and velocity at take
off and landing instants. This information could have been
automatically generated using a contact planner [28].

b) Centroidal resolution:From the contact sequence and
the learned CoM feasibility constraints, we solve the optimal
control formulation (3) with the tailored cost function (5). For
all the experiments and robots, we use the same weighting in
the cost function:wx = 10. This weight is a trade-off between
the smoothness of the dynamics trajectory and the enforcement
of the feasibility constraint. We instantiate the OCP (3)
inside the MUSCOD-II framework [18] which implements an
ef�cient multiple-shooting algorithm [9] particularly suited for
multi-staged problems as the one we propose.

c) Whole-body resolution:From the OCP, we obtain
a reference trajectory for the centroidal dynamics that we
follow using a second-order inverse kinematics (IK) solver
similar to [24]. In addition, the IK must track the end-effector
trajectories. Optimal forces are also extracted from the OCP
and can be used as references to control the robot.

C. Experimental results

This part reports the experiments achieved on the HRP-2
robot in real conditions and on TALOS in simulation.

1) Experiment 1 - climbing up 10-cm high steps:The
experimental setup is an industrial stairs made of six 10-cm
high steps. The steps have a length of30 cm. The durations
of the single and double support phases are1:4 s and 0:2
s respectively. The resulting motion is depicted in Fig. 6.
During execution, the reference posture is tracked as well
as the reference foot forces using the robot low-level control
system (named HRP “stabilizer”).

Computing the25s of motion takes42 iterations of the
multiple-shooting algorithm, costing about8s in total. In
average, each iteration takes approximatively0:2s for 25s of
motion. About70% of the computation time is spent solving
the underlying quadratic program of the multiple-shooting
algorithm and other20% are dedicated to the numerical
integration of the dynamics together with the computations
of sensitivities (derivatives).

Fig. 5 shows two trajectories of the CoM projected in the
right foot frame: the black curve takes into account the log-pdf
term in the cost function, while the green one does not. The
�gure also includes the level sets of the GMM of right foot
(depicted in Fig. 2). It appears that the OCP tends to maximize
the inclination of the CoM to stay in the most feasible region,
i.e. closed to the maxima of the PDF. On the contrary, if we
do not add the log-pdf term, the CoM tends to be infeasible.

It is worth to mention that maximizing the stay of the CoM
in the most feasible region leads to a crouching walk. This
may be not desirable for aesthetics. However, in the case of
HRP-2, this crouch of the legs must exist to avoid singularities
which are not tolerated by the low-level controller.
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Fig. 5. Projection of the CoM trajectory inside the right foot frame with and
without taking into account the log-pdf term in the cost function. The level
set corresponds to the GMM distribution used in our OCP.

2) Experiment 2 - climbing up 15-cm high steps with
guardrail support: The experimental setup is another
industrial stairs made of four 15-cm high steps and equipped
with a guardrail. The steps have a length of30 cm too. The
durations of the double and triple support phases are1:8 s and
0:4 s respectively. Here, the double support phases correspond
either to the case of two feet on the steps or one feet plus the
right gripper on the handrail. Snapshots of the entire motion
are shown in Fig. 7.

We reproduce the climbing stairs with guardrail scenario,
but this time with the TALOS robot in simulation. Compared
to HRP-2, TALOS is a 1.78m high humanoid robot weighting
around 100kg. For this experiment, only the end-effector
trajectories and the GMMs are different: the cost function
remains the same. The complete motion is depicted in Fig. 8.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we introduce a systematic approach to include
feasibility constraints inside the optimal control formulation
as occupancy measure. In particular, we propose an effective
way to learn the CoM feasibility constraint by learning the
probability density of the CoM positions with respect to the
end-effector locations. We demonstrate the validity of the
methods with two real experiments on the HRP-2 which was
asked to climb industrial stairs with or without handrails and
one experiment in simulation with the TALOS platform which
was asked to achieve multi-contact stairs climbing.

The methodology requires a systematic learning procedure
to be executed off-line in simulation. On-line, the resulting
optimal control is solved in a very ef�cient way (about
100 times faster than execution time) and leads to smooth
centroidal trajectory easily tracked by the robot whole body.

We have de�ned our proxy to be an occupancy measure over
the whole centroidal state and contact forces, although only the

measure over the CoM was approximated. Learning the CoM
kinematic feasibility is only a �rst stage. We plan to extend
the approach by learning the constraints related to the other
centroidal variables. This may severely improve the quality of
the whole-body behavior. The methodology would also nicely
apply to learning the terminal viability constraint (3f). As
discussed at the end of Section IV, we believe that introducing
the occupancy measure over all centroidal variables would
reduce the locomotion problem to a simple optimal control
problem composed of a single cost function, with only initial
constraints.

Finally, our methodology goes beyond trajectory
optimization. We have introduced proxies as a way to ensure
consistency between two sets of motion models (centroidal
model and whole-body model). The same consistency is
desirable between the centroidal pattern generator and the
upstream contact planner, whose motion models could be
similarly learned by statistical sampling.
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Lamiraux, and Eiichi Yoshida. Fast humanoid robot
collision-free footstep planning using swept volume
approximations.IEEE Transactions on Robotics (T-RO),
28(2):427–439, 2012.

[24] Layale Saab, Oscar E. Ramos, François Keith, Nicolas
Mansard, Philippe Sou�eres, and Jean-Yves Fourquet.
Dynamic whole-body motion generation under rigid
contacts and other unilateral constraints.Transactions
on Robotics (TRO), 29(2):346–362, 2013.

[25] Alexander Sherikov, Dimitar Dimitrov, and Pierre-Brice
Wieber. Whole body motion controller with long-term
balance constraints. InIEEE-RAS Int. Conf. on
Humanoid Robotics (ICHR), 2014.

[26] Olivier Stasse, Thomas Flayols, Rohan Budhiraja, Kevin
Giraud-Esclasse, Justin Carpentier, Andrea Del Prete,
Philippe Sou�eres, Nicolas Mansard, Florent Lamiraux,
Jean-Paul Laumond, Luca Marchionni, Hilario Tome, and
Francesco Ferro. TALOS: A new humanoid research
platform targeted for industrial applications. Submitted
to IROS, March 2017.

[27] Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis
and stabilization of complex behaviors through online
trajectory optimization. InIEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2012.

[28] Steve Tonneau, Nicolas Mansard, Chonhyon Park,
Dinesh Manocha, Franck Multon, and Julien Pettré.
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