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A nonsmooth hybrid invariance principle applied to
robust event-triggered design

A. Seuret, C. Prieur, S. Tarbouriech, A.R. Teel, L. Zaccarian

Abstract—We first propose a nonsmooth hybrid invariance
principle with relaxed conditions stemming from the fact that
flowing solutions evolve only in the tangent cone, and complete
jumping solutions cannot jump ouside the jump and flow sets.
We then show an application consisting in the design of event-
triggered rules to stabilize a class of uncertain linear control
systems. The event-triggering rule depends only on local infor-
mation, that is it uses only the output signals available to the
controller. The approach proposed combines a hybrid framework
to describe the closed-loop system with looped functionals based
techniques. The proposed design conditions are formulated in
terms of linear matrix inequalities (LMIs) ensuring global ro-
bust asymptotic stability of the closed-loop system. A tunable
parameter is also available to guarantee an adjustable dwell-
time property of the solutions. The effectiveness of the approach
is evaluated through an example borrowed from the literature.

Index Terms—Event-triggered control, hybrid dynamical sys-
tems, non-smooth Lyapunov function, LaSalle invariance princi-
ple, uncertain systems

I. INTRODUCTION

Due to its useful ability to control systems by using only sel-
dom control updates, the literature on event-triggered designs
is increasing very fast, giving more and more flexibility, see
for example, [4], [10], [2], [22], [27], [16]. In the context of
event-triggered control, two objectives can be pursued: 1) the
controller is a priori predesigned and only the event-triggered
rules have to be designed, or 2) the joint design of the control
law and the event-triggering conditions has to be performed.
The first case refers to the emulation approach, whereas the
second one corresponds to the co-design problem. A large part
of the existing works is dedicated to the design of efficient
event-triggering rules, that is the design is done by emulation:
see, for example, [16], [23], and references therein. Moreover,
most of the results on event-triggered control consider that
the full state is available, which can be unrealistic from an
applicative point of view. Hence, it is interesting to address the
design of event-triggered controllers by using only measured
signals. Some works have addressed this challenge as, for
example, [24] in which the dynamic controller is an observer-
based one, [1] in which the co-design of the output feedback
law and the event-triggering conditions is addressed by using
the hybrid framework.
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The paper focuses on the emulation problem, when the
predesigned controller is issued from a hybrid dynamic output
feedback controller, with the aim of using only the available
signals. Furthermore the plant data is affected by polytopic
uncertainty. Hence the problem is to ensure the robustness
of the event-triggered strategy. The proof technique that we
adopt for our event-triggered design combines a hybrid rep-
resentation of the closed-loop system with the introduction
of a non-strict and non-smooth Lyapunov function. Due to
this fact, we propose an extension of La Salle’s invariance
principle that has independent interest and can be useful in
other applications involving hybrid dynamics. The extension
is based on the invariance principle in [19] and [8, Ch. 8] and
some observations (already made in [7]) that there is no need
to check the flow and jump condition in the attractor, that the
flow condition only needs to be checked in the directions of
the tangent cone to the flow set (as already established in [19,
Thm. 4.7]), and that possible jumps mapping outside the jump
and flow sets lead to a dead end, so that one can disregard them
in the Lyapunov conditions (this fact was already exploited in
[8, Thm. 3.37]). A final useful feature that we inherit from [19]
is that we allow for nonsmooth Lyapunov functions V that only
need to be locally Lipschitz in the flow set and continuous in
the jump set, and then rely on Clarke’s generalized gradient
[5] for dealing with flowing solutions.

The proposed event-triggered construction is obtained by
adapting the recent developments arising from the stability
analysis of persistent sampled-data systems (see the recent
survey paper [11]), and using the new non-smooth LaSalle
result discussed above. Constructive conditions are presented,
in the sense that linear matrix inequality (LMI) conditions
associated to a convex optimization scheme, are proposed
to design the event-triggered rule ensuring robust asymptotic
stability of the closed-loop system. Furthermore, differently
from [1], our conditions provide a guaranteed dwell time
T which can be optimized, similarly to [12]. This paper
is a revised and improved version of [21] where no plant
uncertainty was addressed and the proofs were not reported,
nor the nonsmooth hybrid invariance principle commented
above.

The paper is organized as follows. Section II provides our
first contribution regarding the nonsmooth invariance principle
for hybrid dynamical systems, which will be illustrated in
the sequel on an output feedback event-triggered control
design. Section III first formulates the problem of output
feedback event-triggered control of uncertain linear systems
and then develops a dedicated stability analysis employing the
previous invariance principle for the nominal and uncertain
cases. Section V illustrates the results on numerical examples
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and compares them with some existing approach. Finally,
Section VI draws some concluding remarks and perspectives.

Notation. The sets N, R+, Rn, Rn×n and Sn denote re-
spectively the sets of positive integers, positive scalars, n-
dimensional vectors, n×n matrices and symmetric matrices in
Rn×n. If a matrix P in Sn

+, it means that P is symmetric positive
definite. The superscript “>” stands for matrix transposition,
and the notation He(P) stands for P + P>. The Euclidean
norm is denoted | · |. Given a compact set A , the notation
|x|A := min{|x− y|, y ∈ A ]} indicates the distance of the
vector x from the set A .The symbols I and 0 represent the
identity and the zero matrices of appropriate dimensions.

II. A NONSMOOTH LA SALLE RESULT

Consider the hybrid dynamics:

H

{
ξ̇ ∈ F(ξ ), ξ ∈ C

ξ+ ∈ G(ξ ), ξ ∈D .
(1)

We propose here an invariance principle with nonsmooth
functions stemming from the results in [7, Thm 23], [19],
which rely on the nonsmooth tools of [5] (see also their use
in [13]). To this end, denote nonsmooth Lyapunov function
candidate any function V : domV → R such that

1) (C ∪D) ⊂ domV and V is continuous in C ∪D and
locally Lipschitz 1 near each point in C \A .

2) V is positive definite with respect to A in C ∪D
(namely, V (ξ ) = 0, ∀ξ ∈ A and V (ξ ) > 0, ∀ξ ∈
(C ∪D) \A ) and radially unbounded (namely for any
infinite sequence of points ξi ∈ C ∪D , lim

i→∞
|ξi| = ∞

implies lim
i→∞

V (ξi) = ∞).

In addition to using nonsmooth weak Lyapunov functions, a
few desirable features of the result also come from the fact that
1) following the results in [19, Thm. 4.7 and eqn. (11)], we
restrict the directions where the flow condition must be verified
to those belonging to the tangent cone to the flow set C (see
also similar observations in [16]); 2) we restrict the points
where the jump condition must be verified by relying on the
fact that solutions jumping outside C ∪D reach a dead end and
are not complete (see also the ideas in [8, Thm 3.37]). This fact
also allows us to only require that C ∪D ⊂ domV , rather than
the typical (stronger) requirement C ∪D ∪G(D)⊂ domV .

Theorem 1: Consider a compact set A and the hybrid
system (1) satisfying the hybrid basic assumptions in [7, page
43], and satisfying G(A ∩D)⊂A .

Assume that there exists a non-smooth Lyapunov function
candidate V , such that

V̇ (ξ ) := max
v∈∂V (ξ ), f∈F(ξ )∩TC (ξ )

〈v, f 〉 ≤ 0, ∀ξ ∈ C \A , (2)

∆V (ξ ) := max
g∈G(ξ )∩(C∪D)

V (g)−V (ξ )≤ 0, ∀ξ ∈D \A , (3)

where ∂V (ξ ) is the Clarke generalized gradient of V at ξ (see
[5] for its definition) and TC (ξ ) denotes the tangent cone to
set C at point ξ (see, e.g., [8, Def 5.12]).

1According to [5] we say that a function is locally Lipschitz near a point
if there exists a neighborhood of that point where the function is Lipschitz.

Assume also that no complete solution keeps V constant
and nonzero, namely no complete solution ξ exists satisfying
V (ξ (t, j)) =V (ξ (0,0)) 6= 0, for all (t, j) ∈ domξ .

Then set A is uniformly globally asymptotically stable
(UGAS) for H .

Remark 1: (Connection with existing results) We empha-
size that most of the intuitions behind Theorem 1 are already
present in the literature, but they have not been previously
stated in such a compact form, which turns out to be a useful
tool for stability analysis of hybrid systems. Restricting the
attention to the tangent cone was already done in [19, Thm
4.7 and eqn. (11)], even though the proof provided here is
somewhat more explicit. Ignoring bad jumps was done in [8,
Thm 3.37], even though that theorem addressed a more general
situation with unbounded attractors. Imposing the Lyapunov
conditions outside the attractor A has also been done in [7,
Thm 23], even though that result did not contain a proof. The
desirable feature of our Theorem 1 is that all these relaxations
are compactly and rigorously stated and proven now in a
combined way. ◦

Proof. We first prove the result for the reduced dynamics
H̃ := (C ,F,D̃ , G̃), where G̃ := G∩ (C ∪D) and D̃ is the set
of points in ξ ∈D such that G̃(ξ ) is nonempty. It is immediate
to see that closedness of C and D , together with outer semi-
continuity of G implies that D̃ is closed and G̃ is outer
semicontinuous too. Therefore H̃ satisfies the hybrid basic
assumptions in [7, page 43] in addition to G̃(D̃)⊂ (C ∪D).

The reduced system H̃ is constructed following similar
steps to [8, Thm 3.37] to remove “bad jumps” mapping the
state outside C ∪D from the analysis. After proving UGAS of
A for H̃ , we will extend the result to the original dynamics
H , which includes the bad jumps.

Proof of UGAS of A for H̃ . The proof follows four steps.
Step 1. Auxiliary hybrid system HT . Consider any solution
x of H̃ with domx =

⋃J
j=0 I j ×{ j}, where possibly J = ∞.

By definition of solution, given any (t, j) ∈ domx, function
x(·, j) : I j → Rn is absolutely continuous, therefore differen-
tiable almost everywhere in I j. As a consequence, for almost
all τ ∈ I j, we have that ẋ(τ, j) is well defined and belongs
to F(x(τ, j)). If I j has nonempty interior, then for almost all
τ ∈ I j, we may select a sequence hi, i ∈N converging to zero
and such that τ +hi ∈ I j, so that x(τ +hi, j)∈C (by definition
of solution). As a consequence we have

ẋ(τ, j) = lim
h→0+

x(τ+h, j)−x(τ)
h = lim

i→∞

x(τ+hi, j)−x(τ)
hi

∈ TC (x(τ, j)),

where the last equality follows from the definition of tangent
cone. The above derivations show that ẋ(τ, j) ∈ F(x(τ, j))∩
TC (x(τ, j) for almost all τ ∈ I j. 2 Therefore all solutions to
H̃ are also solutions to the following restricted dynamics:

HT

{
ξ̇ ∈ F(ξ )∩TC (ξ ), ξ ∈ C

ξ+ ∈ G̃(ξ ), ξ ∈ D̃ .
(4)

2Note that this observation about flowing solutions only selecting directions
in the tangent cone was already made in [19, p. 2289, left column].
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The converse also holds trivially because the data of HT is
a subset of the data of H̃ . Then solutions to HT and H̃
coincide.

Step 2. Proof of [19, eqn (2)]. Consider now any solution x
to HT never reaching A and notice that due to the stated
Lipschitz assumption, the generalized gradient ∂V (x) is well
defined for all x ∈ C \A . Then following similar reasonings
to those in [25, page 99], given any (t, j) ∈ domx, we obtain
that (2) implies d

dt V (x(t, j)) ≤ V̇ (x(t, j)) ≤ 0 for almost all
t ∈ I j, as long as I j has nonempty interior. Moreover, for any
(t, j)∈ domx such that (t, j+1)∈ domx, we have from (3) that
V (x(t, j + 1)) ≤ V (x(t, j)). Integrating over all I j and taking
sums, we obtain that

V (x(t ′, j′))≤V (x(t, j)),∀(t ′, j′)� (t, j), (5)

where (t ′, j′) ∈ domx and (t, j) ∈ domx.
Let us now extend the proof of (5) also for solutions

reaching A . To this end, we first prove (strong) forward
invariance of A . In particular, since G(A ∩D) ⊂ A , then
G̃(A ∩ D̃) ⊂ G(A ∩D) ⊂ A and no solution can leave
A across a jump. Thus any solution ξbad possibly leaving
A , must do this while flowing. Let us show that this is
impossible, by contradiction. From continuity of flowing so-
lutions and closedness of A , if ξbad leaves A during flow,
then there exist (t1, j) ∈ dom ξbad and (t2, j) ∈ dom ξbad
with t2 > t1, such that ξ (t1, j) ∈ A and ξ (t2, j) 6∈ A , for
all t ∈ (t1, t2], implying 0 = V (ξ (t1, j)) < V (ξ (t2, j)), due
to positive definiteness of V . Since the solution is flowing,
ξ (t, j) ∈ C \A , for all t ∈ (t1, t2], and thus integrating (2)
as done before (5), exploiting d

dt V (x(t, j)) ≤ V̇ (x(t, j)) ≤ 0,
we obtain V (ξ (t2, j)) ≤ V (ξ (t1, j)), thereby establishing a
contradiction. As a consequence, A is (strongly) forward
invariant.

Let us now use forward invariance of A to prove (5) also for
solutions passing through A . Consider any solution x reaching
A for some (t∗, j∗) ∈ domx. Then the reasoning before (5)
proves (5) for any (t ′, j′)< (t∗, j∗). Since the solution remains
in A for all times larger than (t∗, j∗), then (5) is trivially
satisfied for all (t ′, j′) ≥ (t∗, j∗) from positive definiteness of
V . We conclude this step by emphasizing that (5) holds for
all solutions to HT and that this property coincides with [19,
eqn (2)] with selection uc ≡ 0 and ud ≡ 0.

Step 3. Proof of global convergence to A . To prove con-
vergence we use [19, Thm 4.3] as detailed below. Consider
the abstract hybrid system defined in [19, Def. 2.3] and
notice that by [19, Thm. 2.6], solutions to H̃ satisfy that
definition. Since we proved in Step 1 that solutions to H̃
and HT coincide, then also solutions to HT form an abstract
hybrid system as in [19, Def. 2.3] and join the desirable
properties established in [19, Thm 4.3]. In particular, since
[19, eqn (2)] holds for all solutions with function V (this has
been proven in Step 2 above), then each complete solution
approaches the largest weakly invariant subset of some level
set of V (nothing needs to be checked about convergence
of compact solutions, therefore we only focus on complete
solutions). Since by assumption no complete solution keeps
V constant and nonzero, then all complete solutions approach

the zero level set of V , thereby completing the proof of global
convergence.

Step 4. Proof of UGAS of A . Stability of A follows from
equation (5), continuity, positive definiteness and radial un-
boundedness of V , implying the existence of class K∞ upper
and lower bounds for V , depending on the distance to A . Then
stability plus global convergence imply UGAS from [8, Thm
7.12].

Proof of UGAS of A for H . Extending the UGAS prop-
erty of A from H̃ to H amounts to accounting for the
solutions of H that are not solutions of H̃ . Such solutions
correspond to the non-complete solutions jumping from D to
G(D) \ (C ∪D) and are not complete by definition because
the corresponding final jump is a dead end. As a consequence,
global convergence to A for H̃ (which is a property of
complete solutions) implies global convergence to A for H .
To prove stability of A for H , we may follow similar steps to
those in [8, Thm 3.37], which rely on the property that there
exists γ ∈K∞ such that

|g|A ≤ γ(|ξ |A ), ∀ξ ∈D ,∀g ∈ G(ξ ). (6)

Condition (6) is guaranteed under our assumptions that A is
compact, G(A ∩D)⊂A , and G is outer semi-continuous and
locally bounded (which is guaranteed from the hybrid basic
assumptions in [7, page 43]). Indeed, to establish (6), it is
enough to have that for each ε > 0 there exists δ > 0 such
that

G((A +δB)∩D)⊂A + εB, (7)

where B denotes the closed unit ball. Let us prove (7) by
contradiction. Namely suppose that there exists ε > 0 such
that, for each i ∈N there exists ξi ∈ (A + i−1B)∩D and gi ∈
G(ξi) such that |gi|A > ε . Without loss of generality (due to
local boundedness of G and compactness of A ), let (ξi,gi)i∈N
be a converging sequence converging to (ξ ,g). Since A and D
are closed, then ξ ∈A ∩D . Moreover |g|A ≥ ε and, by outer
semi-continuity, g ∈ G(ξ ). This is a contradiction to G(A ∩
D)⊂A .

III. APPLICATION TO EVENT-TRIGGERED CONTROL

A. Hybrid representation of sampled-data systems

Consider a linear system fed by an output feedback
sampled-data control given by the hybrid dynamical system ẋ = Ax+Bu,

u̇ = 0,
σ̇ ∈ gT (σ),

(x,u,σ) ∈ C ,

 x+ = x,
u+ = KCx,
σ+ = 0,

(x,u,σ) ∈D ,

(8)

where x ∈ Rn represents the state of the system and u ∈ Rm

represents the zero order holder of the system input since the
last sampling time. The output of the system y is given by

y =Cx ∈ Rp. (9)
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Such a system (8)-(9) can appear when connecting, for
instance, a linear continuous plant with a dynamic output
feedback controller (see the example Section V). Then, to
study this kind of systems, the hybrid formalism of [7], [17],
[18] can be used. Matrices A,B,C characterize the system
dynamics and matrix K corresponds to the controller gain.
While C is assumed to be constant and known, let us assume
that matrices A and B are constant but uncertain, such that

[A B] ∈ Co{ [Ai Bi] }i∈I , (10)

for some constant and known matrices Ai and Bi, for i ∈ I
where I is a bounded subspace of N. Timer σ ∈ [0,2T ] flows
by keeping track of the elapsed time since the last sample
(where it was reset to zero) according to the following set-
valued dynamics:

gT (σ) :=
{

1 σ ≤ 2T
[0,1] σ = 2T, (11)

whose rationale is that whenever σ < 2T , its value exactly
represents the elapsed time since the last sample, moreover
σ ∈ [T,2T ] implies that at least T seconds have elapsed since
the last sample.3 In (8), the so-called flow and jump sets C
and D must be suitably selected to induce a desirable behavior
on the sampled-data system and are the available degrees of
freedom in the design of the event-triggered algorithm.

The problem we intend to solve in this section is reported
below and corresponds to an emulation problem (see, for
example [9], [26], [15], [23] and the references therein) since
we assume that the controller is given.

Problem 1: Given an uncertain linear plant and a hybrid
controller defined by matrices Ai,Bi for i∈I and K,C, design
an event-triggering rule, with a prescribed dwell-time T that
makes the closed-loop system (8)-(11) globally asymptotically
stable to a compact set wherein x = 0 and u = 0.

B. Event-triggered design

In order to address Problem 1, we focus on hybrid dynamics
(8) for suitably selecting the flow and jump sets C and D
whose role is precisely to rule when a sampling should happen,
based on the available signals to the controller, namely output
y =Cx, the last sampled input u and timer σ . Then, we select
the following sets C and D :

C := F ∪{σ ∈ [0,T ]} (12a)
D := J ∩{σ ∈ [T,2T ]}, (12b)

where sets F and J are selected as

F :=

{
(x,u) :

[
y

s−Ky

]>
M
[

y
s−Ky

]
≤ 0

}
, (12c)

J :=

{
(x,u) :

[
y

s−Ky

]>
M
[

y
s−Ky

]
≥ 0

}
, (12d)

3Note that the use of a set-valued map for the right hand side gT of the
flow equation for σ enables us to confine the timer σ to a compact set
[0,2T ], while at the same time using dynamics whose right hand sides are
outer semicountinuous set-valued mappings, thereby satisfying the regularity
conditions in [8, As. 6.5] and enjoying the desirable robustness properties of
stability of compact attractors established in [8, Ch. 7].

where matrix M =
[

M1 M2
M>2 M3

]
∈ R(p+m)×(p+m) has to be de-

signed, and y is defined in (9). Solution (12) to the considered
event-triggered problem is parametrized by M and T .

Note that the jump set selection in (12b) ensures that
all solutions satisfy a dwell-time constraint corresponding to
T . Indeed, jumps are inhibited unless timer σ ≥ T , which,
according to (11), implies that at least T ordinary time elapses
between each pair of consecutive sampling times. In the
following developments, the dwell-time T will be a parameter
for the design of the matrix M that defines the flow and jump
sets. The contribution of the next sections is to provide LMI-
based design rules for M in the nominal and uncertain cases.

Remark 2: The definition of the flow and jump sets
provided in (12) meets the one provided in the recent paper
[14]. The novelty of this definition relies on the consideration
of a general matrix M. For example, selecting M2 = 0 leads
to the definition of the flow and jump sets usually employed
in the literature, issued from an Input-to-State (or Input-to-
Output) analysis. See [14] for more details. ◦

C. LMI-based design of M: nominal case

In this section, we will assume that matrices A,B are
constant and known (e.g. I = {0}). The next theorem is the
corresponding design result.

Theorem 2: Assume that there exist matrices P ∈ Sn, M =[
M1 M2
M>2 M3

]
∈ Sp+m satisfying

ΨM(A,B) :=
[

He(PAcl)−C>M1C PB−C>M2
B>P−M>2 C −M3

]
< 0,

Φ(A,B,T ) :=(
Λ(A,B,T )

[
I

KC

])>
PΛ(A,B,T )

[
I

KC

]
−P < 0,

(13)

with Acl := A+BKC and

Λ(A,B,T ) :=
[
I 0

]
e
[

A B
0 0

]
T ∈ Rn×2n. (14)

Then the compact attractor

A := {(x,u,σ) : x = 0,u = 0,σ ∈ [0,2T ]}, (15)

is globally asymptotically stable for the nominal closed-loop
dynamics (8), (12).

The proof of our theorems is based on the use of a
non-smooth Lyapunov function and the La Salle result of
Section II. In particular, we use the following function:4

V (x,u,σ) :=e−ρ min{σ ,T}
∣∣∣∣Λ(T−min{σ ,T})

[
x
u

]∣∣∣∣2
P︸ ︷︷ ︸

=:V0(x,u,σ)

+ η |u|2︸ ︷︷ ︸
=:Vu(u)

,

(16)
with Λ given in (14), and where ρ and η are sufficiently small
positive scalars selected later.

Before exposing the proof of Theorem 2, which is reported
in Section IV, several remarks are stated.

Remark 3: The LMI conditions can be interpreted as
follows

4Here we use the standard notation |z|2P := z>Pz.
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• The condition ΨM(A,B) < 0 imposes that the Lyapunov
function V in (16) is decreasing while flowing with σ ≥ T
(which requires (x,u) ∈F ).

• The condition Φ(A,B,T ) < 0 can be interpreted as an
asymptotic stability criterion for system (8) when the
control updates are performed periodically with a period
T , which motivates the union and intersection in (12a) and
(12b). This condition also guarantees that the Lyapunov
function V in (16) is non-increasing while flowing and
when σ < T .

◦
Remark 4: The dwell-time T appears as a tuning parameter

of the event-triggered control system (8)-(12). The interest of
the proposed approach with respect to the literature, where the
dwell-time is computed a posteriori, resides in the fact that
Theorem 2 includes a guaranteed dwell-time T as a tuning
parameter. In particular, if one can find a solution to the LMI
conditions (13) for a given parameter T , then this same T
can be employed in the definition of the flow and jumps sets
(12) and becomes a guaranteed dwell time for all solutions.
This method can be compared to [23] or [1] where a similar
triggering rule includes a dwell time constraint. Nevertheless,
compared to these contributions, the dwell time T appears as
a parameter for the design of event trigger algorithm. ◦

Remark 5: Theorem 2 presents a similar result as compared
to the preliminary contribution presented in [21], where an
additional reset control component is included in the jump
dynamics of system (8)-(12). The advances with respect to
[21] will be presented in the next section to assess robust
stability of uncertain system (8)-(10). ◦

D. LMI-based design of M: uncertain case

In the case where matrices A, B and parameter T are
known and constant, inequality Φ(A,B,T ) < 0 can be easily
implemented and verified. However, when matrices A and B
are not assumed to be know anymore, but become uncertain,
verifying inequality Φ(A,B,T ) < 0 for any pair (A,B) in
(10) becomes a difficult nonlinear problem. In this section,
we propose a method to guarantee this inequality even for
uncertain matrices A and B. This method is taken from [20,
Thm 1] and is based on the recent developments arising from
stability analysis of persistent sampled-data systems (see the
recent survey paper [11]). In particular, the following lemma
follows in a straightforward way from the looped-functional
approach developed in [20], [3]. To avoid repetition, the proof
is omitted.

Lemma 1: For a given positive scalar T and matrices
Ai,Bi,K,C as defined in (10), if there exist P,Z ∈Sn

+, Q,U ∈Sn,
R∈Rn×n and Yi ∈R2n×n, i= 1, . . . ,m such that the inequalities

Θ1(Ai,Bi,T ) := F0(Ai,Bi,T )+T F1(Ai,Bi) < 0,

Θ2(Ai,Bi,T ) :=
[

F0(Ai,Bi,T ) TYi
? −T Z

]
< 0, (17)

hold for all i = 1, . . . ,m with

F0(Ai,Bi,T ) := T He{e>0iPe1−Yie12−e>12Re2}
−e>12Qe12− e>2 T Xe2,

F1(Ai,Bi) := He[e>0iQe12+e>0iRe2]+ e>0iZe0i +2e>2 Xe2,

and e0i :=
[
Ai BiKC

]
, e1 :=

[
In 0

]
, e2 :=

[
0 In

]
and e12 :=[

In −In
]
, then inequality Φ(A,B,T ) < 0 in (13) holds for

each pair (A,B) satisfying (10).
The theorem below reports our main robust result solving

Problem 1. It is based on the nonsmooth hybrid Lyapunov
function introduced in (16), which is weak in the sense that
it does not increase both during flow and across jumps (sam-
plings) of the proposed event-triggered sampled-data system.
The proof then relies on the nonsmooth invariance principle
of Section II. The details are given in Section IV.

Theorem 3: Assume that there exist matrices P ∈ Sn, M :=[
M1 M2
M>2 M3

]
∈ Sp+m, and matrices Z ∈ Sn

+, Q,U ∈ Sn, R ∈ Rn×n

and Ξi ∈R2n×n, i= 1, . . . ,m satisfying conditions ΨM(Ai,Bi)<
0, Θ j(Ai,Bi,T )< 0 for all i ∈I , j = 1,2, where Θi and ΨM
are given in (17) and (13), respectively. Then the compact
attractor A in (15) is globally asymptotically stable for the
uncertain closed-loop dynamics (8)-(11), (12).

Remark 6: Theorem 3 represents an extension of Theo-
rem 2 to the case of uncertain systems. The only difference
relies on condition Φ(A,B,T )< 0 in (13) that, in the uncertain
case, becomes nonlinear with respect to matrices A,B and has
been then replaced by the linear conditions Θ j(Ai,Bi,T )< 0,
with i ∈I , j = 1,2. ◦

E. Optimization
In this section we propose an optimization process for the

selection of the matrix M and the associated triggering rule.
From the LMI ΨM < 0 in (13), the matrices He(PAcli)−
C>M1C and −M3 are required to be negative definite. Then a
natural optimization procedure consists in the minimization
of the effect of the off-diagonal term PBi −C>M2. This
optimization can be performed by minimizing the size of
the positive definite matrix M3 appearing on the diagonal.
Obtaining small values of the diagonal term −M3 will indeed
reduce also the off-diagonal term in (13). This optimization
problem can be reformulated in terms of an LMI optimization
as follows

min
P,M

Tr(M3), subject to: P > I, M1 < 0,

ΨM(Ai,Bi) < 0,
Θ j(Ai,Bi,T ) < 0, j = 1,2, ∀i ∈I .

(18)

In the optimization problem (18), the additional constraint
P > I has been imposed for well conditioning the LMI
constraints. In addition, constraint M1 < 0 has been included
in order to obtain negative definiteness of He(PAcli) in (13),
which avoids exponentially unstable continuous dynamics,
thereby giving more graceful inter-sample transients.

Furthermore, note that minimizing the trace of M3 aims at
increasing the negativity of matrix M3, which, in turns, leads to
larger flow sets (see equation (12)). Indeed, the set of vectors x
for which x>M3x≤ 0 becomes increasingly larger for matrices
M3 with decreasing trace. Since the jump set is the closed
complement of the flow set, it is expected that solutions will
flow longer and jump less in light of larger flow sets.

IV. PROOF OF THEOREMS 2 AND 3
We will show below that function V in (16) is a non-strict

Lyapunov function for the nominal and uncertain closed
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loops. Then, we will make use of the nonsmooth invariant
principle presented in Section II. Note first that G(ξ ) ∈A for
all ξ ∈ D ∩A , because (x+,u+) = (0,0) for (x,u) = (0,0).
The rest of the proof focuses on showing the assumptions of
Theorem 1 with A in (15) and V in (16).

We first show that, for any ρ > 0 and η > 0, V is a positive
definite function with respect to the compact attractor A in
(15). To this end, let us denote ξ := (x,u,σ). Then note that
ξ = (x,u,σ) ∈ A implies x = 0 and s = 0, so that clearly
V (ξ ) = 0 for all such values of ξ . To show that V (ξ )> 0 for
all ξ /∈A , first note that (x,u,σ) /∈A , implies either u 6= 0,
or x 6= 0. If u 6= 0, then V (ξ ) > 0, because the second term
Vu is positive for any η > 0. Assume now that u = 0, which
implies x 6= 0 if ξ /∈A . The first term in V then becomes

V0(x,0,σ) = e−ρ min{σ ,T}
∣∣∣eA(T−min{σ ,T}) x

∣∣∣
P
,

which is nonzero because of the global invertibility of the
(matrix) exponential, coupled with P > 0 and x 6= 0. Then V
is positive definite with respect to A . Radial unboundedness
of V trivially follows from the fact that Vu(u) goes to infinity
when u grows unbounded, and whenever u is bounded and x
grows unbounded, certainly V0(ξ ) in (16) goes to infinity.

Let us now prove inequality (2). To this end we only focus
on the V0 component of V because u̇ = 0 along the dynamics,
therefore Vu remains constant during flow. Noticing that in
(12a) the flow set is the union of two sets, let us split the
analysis in three cases:
• Case 1: σ ∈ [0,T ). In this case we may exploit the following
identities that follow from the fact that σ̇ = 1, that [ ẋ

u̇ ] =A f [
x
u ],

and that d
dτ

Λ(τ) = Λ(τ)A f , where A f :=
[

A B
0 0

]
:

ϕ̇(σ) :=
d
dt

e−ρ min{σ ,T} =−ρ e−ρ min{σ ,T}

d
dt

(Λ(T −min{σ ,T}) [ x
u ]) =

d
dt

(Λ(T −σ) [ x
u ])

=−Λ(T −σ)A f [
x
u ]+Λ(T −σ)

[
A f x

0

]
= 0.

Based on the above inequalities, we clearly get in this first
case:

V̇ (ξ ) = −ρ e−ρ min{σ ,T}︸ ︷︷ ︸
ϕ̇

|Λ(T −min{σ ,T}) [ x
u ]|2P +0+0

= −ρV0(ξ )≤ 0, (19)

which proves negative semidefiniteness of V̇ for this first case.
• Case 2: σ = T . In this case we may have (x,u) /∈F or

(x,u)∈F . If (x,u) /∈F , then TC (ξ )∩F(ξ ) is empty because
any flowing solution would select τ̇ = 1 and would exit set C .
Then we only need to check the case with (x,u) ∈F , which
is dealt with in Case 3 treated next.
• Case 3: (x,u) ∈F and σ ≥ T . In this case we have that

σ̇ ∈ [0,1], namely ϕ̇(σ)≤ 0 and

V0(ξ ) = ϕ(T )|Λ(0) [ x
u ] |2P = ϕ(T )|x|2P.

Then, along flowing solutions we obtain:

V̇ (ξ ) = 2x>P(Ax+Bu)+ ϕ̇(σ)|x|2P

≤ 2x>P((A+BKC)x+Be)+
[

y
e

]>
(M−M)

[
y
e

]
=

[
x
e

]>
ΨM(A,B)

[
x
e

]
+

[
y
e

]>
M
[

y
e

]
,

(20)
where we used e = u−Ky.

Since ΨM(A,B) is affine with respect to the plant matrix
(A,B), guaranteeing ΨM(Ai,Bi) < 0, i = 1, . . . ,m, ensures
that for any matrix [A,B] in Co{[Ai,Bi]}i=1...,m, the LMI
ΨM(A,B)< 0 also holds. As a consequence, due to the strict
inequality, there exists a sufficiently small ε > 0 such that
ΨM(A,B) < −εI, which implies, together with the fact that
(x,u) ∈F , so that the last term of (20) is also non-positive,

V̇ (ξ )≤−ε

∣∣∣∣[ x
u−Ky

]∣∣∣∣2 , if (x,u) ∈F ,σ ≥ T. (21)

Thus V̇ (ξ ) ≤ 0 also in this second subset of C , and
inequality (2) holds.

Consider now inequality (3). We need to specify here the
values of the positive scalars ρ and η in (16). Let us now
split the analysis for Theorems 2 and 3. For Theorem 3, we
apply Lemma 1 whose assumptions hold due to the stated
hypotheses of the theorem. In particular, Lemma 1 implies
Φ(A,B,T ) < 0. For the proof of Theorem 2, we also have
Φ(A,B,T ) < 0 by assumption. Using the strict inequality in
Φ(A,B,T )< 0, and positive definiteness of P, we obtain that,
for both Theorems 2 and 3, there exist sufficiently small ρ > 0
and then η > 0 guaranteeing:(

Λ(T )
[

I
KC

])>
P
(

Λ(T )
[

I
KC

])
≤ e−4ρT P,

ηK>C>CK ≤ e−2ρT (1−e−2ρT )P.
(22)

With this selection of ρ , noticing that from the definition of
D in (12b) we have σ ≥ T , and that from the jump map we
also have σ+ = 0 and u+ = KCx, we obtain, using (22), that
for all ξ ∈D ,

V+(ξ ) =
∣∣Λ(T )[ I

KC

]
x
∣∣2
P +η |KCx|2 (23)

≤
(
e−4ρT +e−2ρT (1− e−2ρT )

)
x>Px

= e−2ρT x>Px = e−ρT e−ρT |Λ(0) [ x
s ] |2P

= e−ρT V0(ξ )≤ e−ρT V (ξ )

which proves the strict decrease of the Lyapunov function,
across any jump outside A , thereby establishing inequality
(3).

Let us now complete the proof by showing that no “bad”
complete solution exists, which keeps V constant and nonzero.
If any such “bad” complete solution exists, then it has to
start outside A and it cannot jump because otherwise from
(23), a decrease of V would be experienced across the jump.
Since the “bad” complete solution ξbad flows forever, then it
flows for more than T ordinary time, so that its σ component
will eventually become larger than T . At that point, for ξbad
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to be a solution (that flows) it must also be that the (x,u)
components eventually belong to F . However, if they belong
to F and the solution flows, from inequality (21) we get that
x must be identically zero (otherwise V would decrease), and
consequently, since y = Cx would also be identically zero, it
must be that also u is identically zero (again from (21)). This
contradicts the fact that the “bad” solution evolves with V
constant and nonzero.

Since all the assumptions of Theorem 1 have been proven,
the proof follows directly from applying that result.

V. EXAMPLE

Consider a linear plant taken from [6], [1] given by{
ẋp = Ap(ω)xp +Bp(ω)up,
yp = Cpxp,

(24)

with matrices

Ap(ω) :=
[

0 1
−2 3+ω

]
, Bp(ω) :=

[
0

1+0.1ω

]
, C>p :=

[
−1
4

]
where ω ∈ Ω := [−ω0,ω0] represents a constant uncertainty
affecting the system for some positive constant ω0. This plant
is coupled to a dynamic output feedback controller of the form{

ẋc = Acxc +Bcyp,
up = Ccxc +Dcyp,

(25)

where the parameter of the controller has been obtained using
an optimization process provided in [1]

Ac :=
[

1.0919 −1.1422
4.9734 −6.1425

]
, Bc :=

[
16.7501
64.6472

]
,

Cc :=
[

0.1157 −0.0928
]
, Dc := 0.

Denoting x :=
[ xp

xc

]
, the whole dynamics described by (24)

and (25) can be reformulated as system (8) with

[
A(ω) B(ω)

K C

]
∈




Ap(ω) 0 Bp(ω) 0
0 Ac 0 Bc

Dc Cc Cp 0
I 0 0 I

,ω ∈Ω

 .

(26)

A. Nominal case : ω0 = 0

This controller, designed in [1] has already shown some
improvements with respect to the literature (for instance with
respect to [6]). Indeed, the authors obtained a dwell-time
T = 0.0114s. With our approach solutions to the conditions
of Theorem 2 exist for values of the design parameter T up to
0.11s, which is ten times larger than the solution provided in
[1]. This demonstrates the potential of the proposed method.

Figure 1 shows simulations of system (8), (12), (26),
obtained for several values of T = 0.02,0.05 and 0.10s and
where matrix M results from the optimization problem (18).
The initial conditions are xp0 = [10 − 5]>, xc0 = [0 0]> and
σ = 0. In addition, below each figure, the number Nu of control
updates required during the simulation time of 20s is indicated.
As a first comment on this figure, one can see that increasing
T (from left to right in the figure) leads to a notable reduction

ω0 0 0.04 0.08 0.12 0.139
Th.2 0.114 − − − −
Th.3 0.112 0.100 0.070 0.028 0.008

TABLE I
MAXIMAL DWELL TIME Tmax LEADING TO FEASIBILITY OF THE

CONDITIONS IN THEOREMS 2 AND 3 FOR SEVERAL VALUES OF ω0 .

of the number of control updates. It should also be noticed that
the reduction of the number of control updates has an impact
on the performance of the controller. This can be interpreted in
terms of the classical trade-off between the number of control
updates and the performance of the closed-loop system.

B. Uncertain case : ω0 6= 0

We assess now the impact of model uncertainties on the
event-triggered rule resulting from Theorem 3. As a first test,
selecting ω0 = 0 and applying Theorem 3 allows evaluating its
conservatism with respect to Theorem 2. The first column of
Table I presents the maximal allowable values for the dwell
time T for which the conditions of Theorems 2 and 3 are
feasible. When ω0 = 0, a fair comparison can be done and
shows that the two maximal values of T are quite close, which
demonstrates that Theorem 3 is not too conservative with
respect to Theorem 2. Note that Theorem 3 is based on the
looped-functional approach, which has been refined in several
papers such as [3]. It is then possible to also use alternative
existing stability conditions for sampled-data systems instead
of Lemma 1 (see [3] for details). Table I also shows that
increasing ω0 in Theorem 3 reduces the maximal value of the
dwell time parameter T . Figure 2 also depicts the effects of
the uncertainties on the event-triggered control performance.
This figure presents the variations of the average number of
control updates Nu, resulting from 80 simulations, with respect
to the dwell time parameter T . These simulations result from
the application of Theorem 2 for ω0 = 0 (black solid trace)
and Theorem 3 otherwise (all the other traces). The general
trend of this figure is that increasing T reduces Nu.

As confirmed by Table I, for large values of T and of ω0,
the conditions of Theorem 3 become infeasible, as shown in
Figure 2 by the vertical dotted lines. Moreover, the figure
also shows that increasing ω0 increases the average number
of control updates, as expected. It can be also seen that for
large values of T and small values of ω0, the average number
of control updates are very similar. This can be interpreted by
the fact that when T is large, the control updates are mostly
periodic, as for the nominal case presented in Figure 1 when
T = 0.1 (rightmost figure).

VI. CONCLUSION

In this paper, we provided a stability theorem for uncertain
linear systems controlled by means of a dynamic output feed-
back controller. The contribution is twofold. On the first hand,
a new invariance principle has been derived using nonstrict and
nonsmooth Lyapunov functions for hybrid systems. Secondly
we apply this invariance principle to design a new event-
triggered algorithm yielding robust asymptotic stability for the
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Fig. 1. Figure representing the state of the plant xp, the inter-sampling times (with the dwell time T ) and the control input u issued from Theorem 2 with
T = 0.02 (left), T = 0.05 (middle) and T = 0.10 (right).
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Fig. 2. Evolution of the average number of control updates Nu with respect
to the dwell time parameter T for several values of ω0. The vertical dotted
lines represent the limit values of the dwell time parameter for which the
conditions of Theorem 3 are feasible for ω0 = 0.1 (left), ω0 = 0.075 (middle)
and ω0 = 0.05 (right).

closed-loop system. Moreover numerically tractable conditions
allow to guarantee an adjustable dwell time of the solutions.
Future work involves providing more advanced theoretical
conditions in order to address the co-design problem. In other
words, we envision an extension of the current work in order
to simultaneously design the feedback stabilizer and its event-
triggered sampled data implementation.
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