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Design of indicators for the detection of time shift failures in
(max,+)-linear systems

Alexandre Sahuguède1 and Euriell Le Corronc1 and Yannick Pencolé1

1LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France

Abstract

In this paper, we address the problem of fail-
ure detection in a timed discrete event system
(TDES). We first introduce the problem of de-
tecting time shift failures in a TDES modeled
as a (max,+)-linear system. Then we propose
the definition of an indicator that relies on the
(max,+) algebraic framework and show how
it can detect time shift failures in the case of
a single output system. Finally, an extension
is proposed to deal with multiple outputs.

Keywords: Fault detection, Fault diagnosis,
Modelling, (max,+)-Linear Systems, Moni-
toring, Algebraic approaches.

1 Introduction
This paper addresses the problem of fault monitoring
in a timed discrete event system (TDES). Given a flow
of timed observations, the problem consists in deter-
mining whether the flow of observations results from
a normal behavior of the system or an abnormal be-
havior. The problem of fault diagnosis and monitor-
ing has been extensively investigated in untimed dis-
crete event systems (see [Zaytoon and Lafortune, 2013]
for a recent survey). However these contributions do
not take into account time as an observable quantity.
There are a few monitoring approaches that deal with
time. The contributions of [Dousson and Duong, 1999;
Pencolé and Subias, 2009; Saddem and Philippot, 2014]
are based on formalisms like the chronicles or the causal
temporal signatures: these formalisms model partially
ordered set of observable events with time constraints.
The acquisition of such models can come from the ex-
pertise or from automated learning techniques ([Subias
et al., 2014]). In [Tripakis, 2002] and [Bouyer et al.,
2005], the definition of the fault diagnosis problem is
based on timed automata. Finally, other contributions
are also based on time Petri nets ([Ghazel et al., 2009];
[Jiroveanu et al., 2013]; [Liu et al., 2014]).

In this paper, we propose to introduce a new way to
solve the failure detection problem in TDES by using
(max,+) algebraic techniques ([Baccelli et al., 1992];
[Cohen et al., 1989]). The systems that are considered
are timed discrete event systems such as manufacturing
systems (for instance assembly lines), transportation
systems (for instance airport luggage conveyors). . . The
type of failures that are considered are time shifts, that

is: given the flow of observations, how to detect that an
unobservable event has occurred on time or with an un-
expected positive/negative time shift (i.e. delay in the
availability of a piece of equipment in an assembly line,
unexpected delays for luggage delivery in the network
of conveyors. . . ). We propose to solve this problem on
(max,+)-linear systems that are a subclass of TDES
that is well-suited to model systems like mentionned
above. To perform failure detection, we propose to de-
sign indicators for (max,+)-linear systems that aim at
analyzing the current flow of observations and asserting
about the presence or the absence of time shift failures
within the system. The proposed indicators are defined
with (max,+) dioid operators.

The paper is organized as follows. Section 2
summarizes the necessary mathematical background
about (max,+)-linear systems. Section 3 introduces
the problem of comparing time event flows within
(max,+)-linear systems. Section 4 then defines the
proposed indicator in the specific case where the sys-
tem has one output only. Section 5 finally extends the
definition to the multiple outputs case.

2 Background on (max,+)-Linear
Systems

This section recalls the mathematical background that
will be used throughout the paper. Basically, the stud-
ied TDES are modeled as (max,+)-linear systems and
the time shift detection problem will be solved with the
residuation theory. For this section, interested reader
is invited to peruse [Baccelli et al., 1992, Chap 4] and
[MaxPlus, 1991].

2.1 Dioid theory

Definition 1 (Idempotent semiring). An idempotent
semi-ring D is a set endowed with two inner operations
denoted ⊕ and ⊗. The sum ⊕ is associative, commuta-
tive, idempotent (i.e. ∀a ∈ D, a⊕ a = a) and admits a
neutral element denoted ε. The product1 ⊗ is associa-
tive, distributes over the sum and accepts e as neutral
element.

An idempotent semiring is said to be complete if
it is closed for infinite sums and if the product dis-
tributes over infinite sums too. Moreover, due to the

1As in usual algebra, ⊗ will be omitted when no confu-
sion is possible.



sum idempotency, an order relation can be associ-
ated with D by the following equivalences: ∀a, b ∈ D,
a � b ⇐⇒ (a = a ⊕ b and b = a ∧ b). Because of the
lattice properties of a complete idempotent semiring,
a⊕ b is the least upper bound of D whereas a∧ b is its
greatest lower bound. Finally, the Kleene star operator
is defined as follows: a∗ =

⊕
i≥0 a

i with a0 = e.

Theorem 2 ([MaxPlus, 1991]). Implicit equation x =
ax⊕b, defined over a complete dioid D, admits x = a∗b
as least solution.

Example 3. The set Zmax = Z∪{−∞,+∞}, endowed
with the max operator as sum ⊕ and the classical sum
as product ⊗, is a complete idempotent semiring where
ε = −∞, e = 0 and T = +∞. On Zmax, the greatest
lower bound ∧ takes the sense of the min operator.

Example 4. The set of formal series with two commu-
tative variables γ and δ, Boolean coefficients in {ε, e}
and exponents in Z, is a complete idempotent semiring
denoted BJγ, δK where ε =

⊕
n,t∈Z εγ

nδt (null series)

and e = γ0δ0. A series s ∈ BJγ, δK is written in a single
way by s =

⊕
n,t∈Z s(n, t)γ

nδt where s(n, t) = e or ε.

Graphically, a series of BJγ, δK is described by a col-
lection of points of coordinates (n, t) in Z2 with γ as
horizontal axis and δ as vertical axis. Boolean coeffi-
cients indicate the presence of a point s(n, t) = e or its
absence s(n, t) = ε.

Example 5. The quotient set of BJγ, δK by the mod-
ulo γ∗(δ−1)∗ equivalence relation provides the complete
idempotent semiring Max

in Jγ, δK. This means that an
element of Max

in Jγ, δK is an equivalence class denoted2

[a]γ∗(δ−1)∗ gathering all the elements of BJγ, δK equiv-

alent modulo γ∗(δ−1)∗. Neutral elements ε and e are
identical to those of BJγ, δK.

Graphically, the product of a monomial γnδt ∈
BJγ, δK by γ∗(δ−1)∗ goes to consider this element in
Max

in Jγ, δK as a southeast cone with coordinates (n, t)
containing all the monomials equivalent to γnδt. The
description of all the points of all the cones induced by
the monomials of a series s ∈Max

in Jγ, δK corresponds to
the maximal representation of s. Its minimal represen-
tation is obtained by writing only the monomials repre-
senting the cones’ vertices. Another interesting repre-
sentation is the dater representation obtained from the
maximal representation by writing for each γn of the
series, the greatest corresponding δt.

Let s = γ0δ3 ⊕ γ2δ4 ⊕ γ5δ7 be a series of Max
in Jγ, δK,

Figure 1 shows its maximal representation (all the
points of the figure) and its dater representation (only
the filled points on the lines). Let us remark that be-
cause of equivalence γ∗(δ−1)∗, s = γ0δ3⊕γ2δ4⊕γ5δ7 =
γ0δ3 ⊕ γ1δ3 ⊕ γ2δ4 ⊕ γ3δ4 ⊕ γ4δ4 ⊕ γ5δ7 ⊕ γ6δ7 (some
points are covered by others as γ1δ3 by γ0δ3).

2.2 Residuation theory

Residuation is a general notion in lattice theory which
allows for the definition of “pseudo-inverse” of some iso-
tone maps. In particular, the residuation theory pro-
vides optimal solutions to inequalities such as f(x) � b,

2Notation a without the bracket will be adopted in the
sequel.
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Figure 1: Maximal and dater representations of a series
s ∈Max

in Jγ, δK.

where f is an order-preserving mapping defined over
ordered sets. This theory can then be applied over
idempotent semiring as follows.

Definition 6 (Residuated and residual mapping). Let
f : D → C be an isotone mapping, where D and C are
complete idempotent semirings. Mapping f is said to
be residuated if ∀b ∈ C, the greatest element of subset
{x ∈ D|f(x) � b}, denoted f ](b), exists and belongs to
this subset. Mapping f ] is called the residual of f .

When f is residuated, f ] is the unique isotone map-
ping such that f ◦ f ] � IdC and f ] ◦ f � IdD, where
IdC and IdD are respectively the identity mappings on
C and D.

Example 7. Mapping Ra : x 7→ x ⊗ a defined over
a complete idempotent semiring D is residuated. Its
residual is usually denoted R]a : x 7→ x◦/a and called
right quotient. Therefore, b◦/a is the greatest solution
to inequality x⊗a � b, i.e. b◦/a = x̂ =

⊕
{x | x⊗a � b}.

This example can be applied for the product of matrices
such as X 7→ X ⊗ A ∈ Dp×m with A ∈ Dn×m and
X ∈ Dp×n, that is:

RA = X ⊗A : (X ⊗A)ij =

n⊕
k=1

Xik ⊗Akj .

and the computation of B◦/A ∈ Dp×n with B ∈ Dp×m
is given by:

R]A(B) = B◦/A : (B◦/A)ij =

m∧
k=1

Bik◦/Ajk. (1)

Theorem 8 ([MaxPlus, 1991]). Let D be a complete
dioid and A ∈ Dn×m be a matrix. Then, A◦/A ∈ Dn×n
is a matrix which verifies

A◦/A = (A◦/A)∗. (2)

2.3 Models of (max,+)-linear systems

The complete idempotent semiring Max
in Jγ, δK aims at

modeling TDES as flows of events over time while keep-
ing the history of their occurrences. Indeed, in a series
ofMax

in Jγ, δK, a monomial γnδt is interpreted as follows:
the nth event occurs at earliest at time t. Equivalence
γ∗(δ−1)∗ deals with obtaining weakly increasing series



which ensures the conservation of information about
previous events with their times.

Typical systems that can be modeled within this for-
mal framework are automated assembly lines, box con-
veyors. . . Given a flow u of input timed events (the pres-
ence of a new element to be processed in the assembly
line, a new box in the conveyor. . . ), the system’s re-
sponse is indeed a flow y of output timed events (deliv-
ery of a final product at the end of the assembly line,
delivery of a box to its destination. . . ).

The relationship between the inputs u and the out-
puts y of the system is given by the following equation:

y = h⊗ u (3)

where h is its transfer function.
To be more specific, obtaining this input/output re-

lation comes from the following state representation:{
x = Ax⊕Bu
y = Cx

(4)

where A ∈ Max
in Jγ, δKn×n, B ∈ Max

in Jγ, δKn×p and C ∈
Max

in Jγ, δKq×n while n, p and q refer respectively to the
state vector size of the system (x), the input vector size
(u) and the output vector size (y). Then, by applying
Theorem 2 the input/output relation is obtained y =
CA∗Bu = hu. So h = CA∗B.

Systems that are fully characterized by Equation (3)
or Equation (4) are commonly called (max,+)-linear
systems. Moreover, a C++ library called minmaxgd
enables series of Max

in Jγ, δK to be handled (see [Cot-
tenceau et al., 2000]).

Example 9. Consider an automated assembly line
with 3 machines M1, M2 and M3 graphically modeled
in Figure 2 by a Timed Event Graph3 (TEG). Machines
M1 and M2 independently process respectively incom-
ing parts u1 and u2. For each incoming part, the dura-
tion of the process is 2 for machine M1 and 3 for ma-
chine M2. The end of the processing of machines M1

and M2 is respectively represented by the firing of tran-
sition x2 and x4. Machine M3 then assembles one part
coming from machine M1 with one part coming from
machine M2, taking respectively 3 and 5 time units to
arrive there. The firing of transition x6 represents the
end of the assembling process. Two assembling pro-
cesses can be done at the same time and the duration
of this process is 2 time units. The complete product
is then delivered as the output y of the line.

The matrices A, B and C of the state representation
of this MISO (Multiple Inputs - Single Output) system
is given in Max

in Jγ, δK:

A =


. γ1δ0 . . . .

γ0δ2 . . . . .
. . . γ1δ0 . .
. . γ0δ3 . . .
. γ0δ3 . γ0δ5 . γ2δ0

. . . . γ0δ2 .

, B =



γ0δ0 .
. .
. γ0δ0

. .

. .

. .


3Subclass of Timed Petri Net in which each place has

exactly one upstream and one downstream transition. In
TEG, the earliest firing rule is applied and corresponds to
the use of the least solution in the transfer function.

C =
(
. . . . . γ0δ0

)
.

In the entries of matrices, the grade of γ shows the
backward event shift between transitions (the n + 1th

firing of x1 depends (not only) on the nth firing of x2)
and the grade of δ shows the backward time shift be-
tween transitions (the firing date of x2 depends on the
firing date of x1 plus 2 time units). The point ’.’ denotes
ε in the matrices (meaning the absence of connection
between transitions).

u1 x1
2

x2

3

u2 x3
3

x4

5

x5
2

x6 y

Figure 2: A TEG of an automated assembly line.

The transfer function (which is actually a matrix h ∈
Max

in Jγ, δKq×p with q = 1) of the system is computed:

h = CA∗B = (γ0δ7(γ1δ2)∗ γ0δ10(γ1δ3)∗).

So, if the following input is given:

u =

(
γ0δ2 ⊕ γ1δ3 ⊕ γ2δ5 ⊕ γ4δ+∞
γ0δ2 ⊕ γ1δ3 ⊕ γ2δ5 ⊕ γ4δ+∞

)
the corresponding output is:

y = hu = γ0δ12 ⊕ γ1δ15 ⊕ γ2δ18 ⊕ γ3δ21 ⊕ γ4δ+∞.

Input u and output y illustrate very well the notion
of flows of events over time with the history of their
occurrences. In these flows also called trajectories, the
numbering of event starts at 0. By taking the example
of u1 and its monomial γ0δ2, this means that the 0th

event (that is the first event of the trajectory) occurs at
time 2. When trajectories describe a finite number of
production orders or a finite number of treated boxes,
they contain a finite number of monomials in which the
last monomial is written γnδ+∞. This last monomial
means that the nth event never happens (4th event in
u and y).

3 Time comparison between flows

As presented in Subsection 2.3, (max,+)-linear sys-
tems are fully characterized by the transfer function
h. The relationship between the inputs u and the out-
puts y of the system is actually the functional model
of the system. A system is said to be failing as soon as
the function of the system does not properly operate,
that is as soon as the real output flow of events y does
not match the expected output flow ỹ. Suppose now
that both y and ỹ are known, the challenge is to find
a way to actually compare y and ỹ and determine the
presence of time shifts between y and ỹ.

We propose here to perform this comparison by us-
ing the residuation theory in particular the use of the



right quotient ◦/. Let s ∈ Max
in Jγ, δK be a series, the

dater function of s is the non-decreasing function Ds(n)
from Z to Z such that s =

⊕
n∈Z γ

nδDs(n). The pro-
posed comparison then relies on the use of a time shift
function.

Definition 10 (Time shift function). Let a, b ∈
Max

in Jγ, δK and their respective dater functions Da(n)
andDb(n), the time shift function representing the time
shifts between a and b for each n ∈ Z is defined by
Ta,b(n) = Da(n)−Db(n).

Intuitively speaking, the time shift function asso-
ciates the time difference between the occurrence of the
nth event of series a and the occurrence of the nth event
of series b. Obviously, Ta,a(n) = 0,∀n ∈ Z.

Theorem 11 ([MaxPlus, 1991]). Let a, b ∈Max
in Jγ, δK,

the time shift function can be bounded as follows:

∀n ∈ Z, Db◦/a(0) ≤ Ta,b(n) ≤ −Da◦/b(0).

The lower bound is the minimal shift in the time do-
main between a and b whereas the upper bound is the
maximal shift.

Theorem 11 asserts that the comparison between se-
ries a and b can be reduced to determine the bounds
Db◦/a(0) and −Da◦/b(0) of their time function Ta,b.
These bounds can be extracted from the series b◦/a and
a◦/b. More specifically, by writing these bounds back in
series of Max

in Jγ, δK:

Db◦/a(0) comes from γ0δ
D

b◦/a(0) ∈ b◦/a,

−Da◦/b(0) comes from γ0δ
D

a◦/b(0) ∈ a◦/b.

These monomials might not appear explicitly in series
a◦/b and b◦/a, however they can be revealed by writ-
ing them into their dater representations in which each
grade of γ present in the series is written.

Example 12. For instance, let a, b ∈ Max
in Jγ, δK such

that:

a = γ0δ12 ⊕ γ1δ15 ⊕ γ2δ18 ⊕ γ3δ21 ⊕ γ4δ+∞,
b = γ0δ12 ⊕ γ1δ15 ⊕ γ2δ19 ⊕ γ3δ23 ⊕ γ4δ+∞.

As illustrated in Figure 3, it is clear that the minimal
time shift is equal to 0 (reached for γ0 and γ1) whereas
the maximal time shift is equal to 2.

Computations of a◦/b and b◦/a provide mathematically
these shifts:

a◦/b = γ0δ−2 ⊕ γ1δ2 ⊕ γ2δ6 ⊕ γ3δ9 ⊕ γ4δ+∞,
b◦/a = γ0δ0 ⊕ γ1δ3 ⊕ γ2δ7 ⊕ γ3δ11 ⊕ γ4δ+∞.

The minimal time shift Db◦/a(0) is equal to 0 and is

found in the monomial γ0δ
D

b◦/a(0) of b◦/a. This means
that for at least one point, series a and b contain the
same monomial (γ0δ12 and γ1δ15 to be specific). The
maximal time shift −Da◦/b(0) is equal to 2 and is found

in the monomial γ0δ
D

a◦/b(0) of a◦/b and is illustrated in
Figure 4. This means that the biggest distance between
a and b in the vertical point of view is of 2 time units
(between monomials γ3δ21 ∈ a and γ3δ23 ∈ b to be
specific).

1 2 3 4
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δ

Figure 3: Series a, b ∈ Max
in Jγ, δK in their dater repre-

sentations.
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Figure 4: Maximal bound of the time shift between a
and b.

Back to the problem of comparing the real output
y of the system and its expected output ỹ, Theo-
rem 11 then provides a way to bound the possible time
shifts between the events of y and ỹ. More specifically,
bounds on these time shifts are determined as follows.

Proposition 13 (Bounds on time shifts). Let y and
ỹ ∈ Max

in Jγ, δK, time shifts between y and ỹ are in the
following interval:

Στ (y, ỹ) = [Dy◦/ỹ(0);−Dỹ◦/y(0)] (5)

where γ0δ
D

y◦/ỹ(0) ∈ y◦/ỹ and γ0δ
D

ỹ◦/y(0) ∈ ỹ◦/y.

4 Indicator: the Single Output case

This section introduces a first failure indicator that can
be implemented on (max,+)-linear systems that are
composed of a set of inputs u and one single output
y (called MISO system for short). Figure 2 illustrates
such a system. Only the inputs and the output of the
system are observable. As stated in Subsection 2.3, the
output of a (max,+)-linear system is fully character-
ized by its transfer function h. By the observation of u,
it is therefore possible to compute the expected output
of the system, that is:

ỹ = hu.

The indicator in charge of detecting time shift fail-
ures then computes the time shift bounds between the
real observed output y and the expected output ỹ.



Definition 14 (Indicator of an observed MISO sys-
tem). Let h ∈Max

in Jγ, δK1×p be the transfer function
of a MISO (max,+)-linear system, let u ∈ Max

in Jγ, δKp
and y ∈ Max

in Jγ, δK be the observable input and out-
put trajectories of the system, the indicator ISO of the
system is a function:

ISO(u, y) =

{
false if for ỹ = hu, Στ (y, ỹ) = [0; 0],

true otherwise.
(6)

The indicator raises an alarm (i.e. it returns true) as
soon as the minimal or the maximal time shift bounds
determined by Proposition 13 between the observed
output y and its expected counterpart ỹ are not null.
By returning false only when Στ (y, ỹ) = [0; 0], it is
guaranteed that the indicator will return false only
when these bounds are null. Now the remaining ques-
tion is whether the defined indicator is correct or not.

Definition 15 (Correct indicator). An indicator is cor-
rect if it returns true only when the system is failing.

In other words, a correct indicator should never raise
a signal, an alarm, as long as the system has no fail-
ure. A correct indicator ensures that there are no false
positive detection alarms. For this specific indicator, it
means that it is correct only if Στ (y, ỹ) 6= [0; 0] means
the system is indeed failing.

Proposition 16. The indicator ISO(u, y) is correct.

Proof. To prove that ISO(u, y) is correct, we need
to prove that for any couple of identical trajectories
(y1, y2) in Max

in Jγ, δK, Στ (y1, y2) = [0; 0]. Let us con-
sider two identical series y1 and y2, then y1◦/y2 =
y2◦/y1 = y1◦/y1. Now, let x1 = y1◦/y1 and according to
Theorems 8 and 2, x1 = (x1)∗ = e ⊕ · · · = γ0δ0 ⊕ . . . .
Therefore there always exists in y1◦/y2 and in y2◦/y1 a
monomial e = γ0δ0. Thus from Theorem 11 we get
Dy1◦/y2(0) = −Dy2◦/y1(0) = 0. By Equation (5) the re-
sult follows.

Example 17. Let us take back the MISO (max,+)-
linear system of Figure 2. When the system is not
failing, remember that for the following input:

u =

(
γ0δ2 ⊕ γ1δ3 ⊕ γ2δ5 ⊕ γ4δ+∞
γ0δ2 ⊕ γ1δ3 ⊕ γ2δ5 ⊕ γ4δ+∞

)
the expected output is:

ỹ = hu = γ0δ12 ⊕ γ1δ15 ⊕ γ2δ18 ⊕ γ3δ21 ⊕ γ4δ+∞.
Now, assume that there is a time failure from transition
x1 to transition x2 that generates a delay of 2 time
units (machine M1 unexpectedly spends 4 time units
to process instead of 2). The observed output is then:

y = γ0δ12 ⊕ γ1δ15 ⊕ γ2δ19 ⊕ γ3δ23 ⊕ γ4δ+∞.
One can see that ỹ and y are respectively equal to series
a and b from Figure 3 so:

ỹ◦/y = γ0δ−2 ⊕ γ1δ2 ⊕ γ2δ6 ⊕ γ3δ9 ⊕ γ4δ+∞,
y◦/ỹ = γ0δ0 ⊕ γ1δ3 ⊕ γ2δ7 ⊕ γ3δ11 ⊕ γ4δ+∞.

According to Proposition 13:

Στ (y, ỹ) = [Dy◦/ỹ(0);−Dỹ◦/y(0)] = [0; 2].

Then, by Definition 14, ISO(u, y) = true, the time shift
failure is detected.

5 Extension to the Mutiple Outputs
case

The extension to the MIMO (Multiple Inputs Multiple
Outputs) case can be done very naturally by the matrix
computation of the right quotient given in Equation (1).
A MIMO system is failing if at least one of its output
is not the expected one. In a MIMO system, observed
output y and expected output ỹ are column vectors of
size q, that is y, ỹ ∈ Max

in Jγ, δKq. So, the computations
of y◦/ỹ, ỹ◦/y ∈Max

in Jγ, δKq×q become:

y◦/ỹ =

y1◦/ỹ1 · · · y1◦/ỹq
...

. . .
...

yq◦/ỹ1 · · · yq◦/ỹq

 ,

and:

ỹ◦/y =

ỹ1◦/y1 · · · ỹ1◦/yq
...

. . .
...

ỹq◦/y1 · · · ỹq◦/yq

 .

In these matrices, since we want to make comparisons
between the outputs of identical indexes (observed out-
put yi with expected output ỹi), the relevant elements
for the computation of the MIMO indicator are the di-
agonal elements of the matrices corresponding to the
autocorrelation of the outputs (y◦/ỹ)ii = yi◦/ỹi and
(ỹ◦/y)ii = ỹi◦/yi.

Definition 18 (Indicator of an observed MIMO sys-
tem). Let h ∈Max

in Jγ, δKq×p be the transfer function
of a MIMO (max,+)-linear system. Let u ∈Max

in Jγ, δKp
and y ∈ Max

in Jγ, δKq be the observable input and out-
put trajectories of the system. The indicator IMO(u, y)
is a function:

IMO(u, y) =

q∨
i=1

ISO(u, yi). (7)

where ISO(u, yi) is a modified version of the single out-
put indicator:

ISO(u, yi)=

{
false if for ỹ = hu, Στ (yi, ỹi) = [0; 0],

true otherwise.

More precisely:

Στ (yi, ỹi) = [Dyi◦/ỹi(0);−Dỹi◦/yi(0)]

= [D(y◦/ỹ)ii(0);−D(ỹ◦/y)ii(0)].

As for the indicator on system with a single output
and since u is observed, IMO first simulates the system
to get the expected output ỹ. Then, thanks to the
computation of the right quotient of matrices between y
and ỹ, the distances between each yi and ỹi is computed
as explained in Section 3.

Proposition 19. The indicator IMO(u, y) is correct.

Proof. IMO returns true iff there exists at least one in-
dex i such that ISO(u, yi) is true. But ISO(u, yi) is
correct as it is based on the computation of the time
shift bounds Στ (yi, ỹi) (see Proposition 16). Therefore,
as long as the expected output of the system is the real
output of the system IMO will return false.



Example 20. Let the MIMO (max,+)-linear system
illustrated Figure 5, with the following state represen-
tation:
X =


. . . .

γ0δ2 . . γ0δ1

γ0δ2 . γ1δ1 .

. . γ0δ1 .

X ⊕


γ0δ1 .

. .

. γ0δ3

. .

U,

Y =

(
. γ0δ3 . .

. . . γ0δ1

)
X.

and the transfer function:

h =

(
γ0δ8(γ1δ1)∗ γ0δ8(γ1δ1)∗

γ0δ5(γ1δ1)∗ γ0δ5(γ1δ1)∗

)
.

u1
1

x1
2 3

1

x2 y1

u2
3

x3
1 1

2

1

x4 y2

Figure 5: A MIMO (max,+)-linear system

By giving the following input:

u =

(
γ0δ2 ⊕ γ1δ4 ⊕ γ3δ∞
γ0δ3 ⊕ γ1δ5 ⊕ γ3δ∞

)
,

the expected output is:

ỹ =

(
γ0δ11 ⊕ γ1δ13 ⊕ γ2δ14 ⊕ γ3δ∞
γ0δ8 ⊕ γ1δ10 ⊕ γ2δ11 ⊕ γ3δ∞

)
.

Now, assume that there is a time failure generating a
delay of 4 time units between transition x1 and tran-
sition x2 (the place between these transitions is then
labeled with 6 time units instead of 2). The observed
output is then:

y =

(
γ0δ12 ⊕ γ1δ14 ⊕ γ3δ∞

γ0δ8 ⊕ γ1δ10 ⊕ γ2δ11 ⊕ γ3δ∞
)
.

Computations of ỹ◦/y and y◦/ỹ give for output y1:

(ỹ◦/y)11 = ỹ1◦/y1 = γ0δ−1 ⊕ γ1δ0 ⊕ γ2δ2 ⊕ γ3δ+∞,
(y◦/ỹ)11 = y1◦/ỹ1 = γ0δ0 ⊕ γ1δ1 ⊕ γ2δ3 ⊕ γ3δ+∞.

So, ISO(u, y1) = true because Στ (y1, ỹ1) = [0; 1]. A
time shift is detected for this output. About output y2,
we obtain:

(ỹ◦/y)22 = ỹ2◦/y2 = γ0δ0 ⊕ γ1δ1 ⊕ γ2δ3 ⊕ γ3δ+∞,
(y◦/ỹ)22 = y2◦/ỹ2 = γ0δ0 ⊕ γ1δ1 ⊕ γ2δ3 ⊕ γ3δ+∞.

So, ISO(u, y2) = false because Στ (y2, ỹ2) = [0; 0].
There is no time shift detected for this output.

Finally, by Definition 18, IMO(u, y) = ISO(u, y1) ∨
ISO(u, y2) = true ∨ false = true. The time failure is
detected.

6 Conclusion
This paper introduces the problem of fault detection
and diagnosis of TDES by the use of a (max,+) al-
gebraic approach. The use of (max,+) to compute
indicators for time shift failures in systems like assem-
bly lines, transportation systems is very natural and
relies on the residuation theory. The set of failure in-
dicators that are defined here are fully characterized
by (max,+) operators and are proven to be correct as
they rely on the computation of time shift bounds be-
tween two timed event flows. The proposed approach
has been fully implemented with the minmaxgd C++
library.

This paper is a first step towards a complete di-
agnostic framework that covers (max,+)-linear sys-
tems. Our aim is to extend the model by introducing
fault models and then perform more complex diagnos-
tic tasks like fault localisation and identification. The
diagnosability question as well as the sensor placement
problem will be also investigated within the diagnostic
framework over (max,+)-linear systems. In particular,
one specific problem in this type of system is that faults
can be compensated by synchronization phenomena so
that they might totally be silent from a global point of
view, and adding local sensors is then necesssary.

Another lead to this work is to deal with systems that
present time intervals for the duration of processes. In
that case, one idea should be to work with bounds of the
system behaviors, a fastest with all the minimal times
of intervals and a slowest with all the maximal times.
This can be very useful for systems where processes
times are not exactly known or may vary.
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