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Stability of linear systems with time-varying
delays using Bessel-Legendre inequalities

Alexandre Seuret and Frédéric Gouaisbaut

Abstract—This paper addresses the stability problem of linear
systems with a time-varying delay. Hierarchical stability con-
ditions based on linear matrix inequalities are obtained from
an extensive use of the Bessel inequality applied to Legendre
polynomials of arbitrary orders. While this inequality has been
only used for constant discrete and distributed delays, this paper
generalizes the same methodology to time-varying delays. We
take advantages of the dependence of the stability criteria on
both the delay and its derivative to propose a new definition of
allowable delay sets. It is shown that a light and smart modifi-
cation in the definition of this set leads to relevant conclusions
on the numerical results.

Keywords. Integral inequality, stability analysis, time-varying
delay systems, allowable delay sets, linear matrix inequalities.

I. INTRODUCTION

This paper is devoted to the stability analysis of linear time-
delay systems, which represent a wide class of systems arising
in many applications such as in biology, in traffic control, in
engineering, in cyber-physical systems or in networked control
systems (see for instance the books and survey papers [2], [3],
[7], [22]). Compared to the delay-free case, the difficulties
when studying time-delay systems mainly come from the
infinite dimensional nature of this class of systems, which
require a dedicated analysis.

The aim of this paper is to provide stability conditions
of time-delay systems where the delay is assumed to be
a bounded continuous time-varying function with bounded
derivatives. In the literature, there exist several major results on
this topic, see for instance the Lyapunov-Krasovskii approach
[24], [8], [15], [5], [23], [10], the “Input-to-State” or “Input
-to-Output” approaches [6], which are related to the robust
analysis [1], [11]. Focusing on the Lyapunov-Krasovskii ap-
proach, several techniques have been considered to reduce the
conservatism of the stability conditions, often formulated in
terms of Linear Matrix Inequalities (LMI). The conservatism
of these LMIs, formulated in terms of delay upperbounds, gen-
erally comes from several manipulations allowing to express
the infinite dimensional stability problem into a finite LMI
test. A list of technical tools that have been considered in the
literature to solve this problem includes matrix inequalities
[13], the reciprocally convex combination lemmas [16], [27].

The objective of this paper is the design of generic stability
conditions for linear systems subject to a continuous time-
varying delay by using the Bessel-Legendre inequality. These
conditions generalize the original works on Bessel-Legendre
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inequality for systems with constant (discrete or distributed)
delay presented in [19], [21] to the case of time-varying
delays. This work is also a generic extension of the stability
conditions for time-varying delay systems of former papers
which use the Wirtinger-based inequality [18], the auxiliary-
based integral inequalities [17], or the free-weighting matrix
integral inequality from [25]. We also stress that another
contribution of this paper is to evaluate the impact of the
allowable delay set characterizing the delay functions as
suggested in [20]. Several numerical experiments show that the
proposed Lyapunov-Krasovskii functional is very competitive
if an adequate delay set is constructed. It suggests then that
the conservatism induced by the method stems mainly from
the robust analysis performed on the LMI.

Notations: Throughout the paper Rn denotes the n-
dimensional Euclidean space with vector norm | · |, Rn×m
is the set of all n×m real matrices. The notation P � 0, for
P ∈ Rn×n, means that P is symmetric and positive definite.
The set Sn (Sn+) represents the set of symmetric (positive
definite) matrices of Rn×n. The set of continuous functions
from an interval I ⊂ R to Rn which are square integrable is
denoted as space L2(I,→ Rn). The symmetric matrix [A B

∗ C ]
stands for

[
A B
BT C

]
. diag(A,B) stands for the diagonal matrix

[A 0
0 B ]. Moreover, for any square matrix A ∈ Rn×n, we define

He(A) = A + AT . For any function x : [−h, +∞) → Rn,
xt(θ) stands for x(t+ θ), for all t ≥ 0 and all θ ∈ [−h, 0].

II. PROBLEM FORMULATION

A. System data

Consider a linear time-delay system of the form:{
ẋ(t) = Ax(t) +Adx(t− h(t)), ∀t ≥ 0,
x(t) = φ(t), ∀t ∈ [−h2, 0],

(1)

where x(t) ∈ Rn is the state vector, φ is the initial condition
function, A and Ad are constant matrices and h2 is a given
positive scalar. The delay function is assumed to be continuous
and differentiable and satisfies the following constraint

∀t ≥ 0, (h(t), ḣ(t)) ∈ H ⊂ R+ × R, (2)

where H is assumed to be a convex bounded subset of R+ ×
R, denoted as the allowable delay set for system (1). In the
literature, the set H is often selected as a polytope [h1, h2]×
[d1, d2], for some appropriate values of h1, h2, d1, d2. In this
paper we define alternative polyhedral allowable delay sets
with the same number of vertices. We will show that other
possibilities can be considered and lead to notable changes in
the numerical experiments reported in Section VI.
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B. Legendre polynomials and their properties

Let us first recall the definition of the Legendre polynomials,
used in the definition of the Lyapunov-Krasovskii functional
employed thereafter.

Definition 1: The “shifted” Legendre polynomials are the
sequence of polynomials defined over the interval [0, 1], which
are given for all i ∈ N, Li(u) = (−1)i

∑i
j=0 p

i
ju
j where pij =

(−1)j
(
i
j

) ( i+j
j

)
, and

(
k
l

)
refers to the binomial coefficients

given by k!
(k−l)!l! .

In the sequel, the notation LN refers to a polynomial matrix
of dimension (N + 1)n × n, where n and N are positive
integers, and is given by

LN (u) :=
[
L0(u)In L1(u)In . . . LN (u)In

]T
. (3)

The orthogonality property of the Legendre polynomials can
be summarized by the following statement. For any matrix R
in Sn+, it holds

∀N ∈ N,
∫ 1

0

LN (u)R−1LTN (u)du = R̃−1
N (4)

where R̃N = diag {R, 3R, . . . , (2N + 1)R}. In addition, the
evaluation of these polynomials at the boundaries of the
interval [0, 1] are simply given, for any integer N ≥ 0, by

LN (1) =

 InIn...
In

 := 1N, LN (0) =

 In
−In

...
(−1)NIn

 := 1̄N. (5)

Since orthogonal polynomials usually verify recursive prop-
erties, Legendre polynomials satisfy the two following differ-
entiation rules, that will be the key technical tools of this paper

d
duLN (u) = Γ̄NLN (u) = ΓNLN−1(u)
d
du (uLN (u)) = LN (u) + ΘNLN (u),

(6)

where Γ̄N = [ΓN 0n(N+1),n], ΓN = γN ⊗ In and ΘN =
θN ⊗ In, where ⊗ refers to the classical Kronecker product.
Matrices γN ∈ R(N+1)×N and θN ∈ R(N+1)×(N+1) are
defined by

γN (k, i) =

{
0 if k ≥ i,
(2k − 1)(1− (−1)i+k) if k < i.

θN (k, i) =

 0 if k > i,
k if k = i,
(2k − 1) if k < i.

These two derivation rules are derived from classical prop-
erties of the Legendre polynomials. Basically, it means that
their derivative are expressed using Legendre polynomials of
lower degree.

C. From constant to time-varying delays

In [19], a first stability analysis based on Legendre-based
Lyapunov-Krasovskii functionals has been provided to cope
with linear systems subject to constant time-delay. In this
paper, the following functional has been employed

WN (xt, ẋt) = χTN (t)PNχN (t)+
∫ t
t−h x

T (s)Sx(s)ds

+h
∫ t
t−h

∫ t
θ
ẋT (s)Rẋ(s)dsdθ,

(7)

where N ∈ N, PN ∈ S(N+2)n, S,R ∈ Sn+ and the augmented
vector χTN (t) =

[
xTt (0) hφTN (t)

]
and

φN (t) =
1

h

∫ 0

−h
LN

(
s+ h

h

)
xt(s)ds, ∀N ≥ 0.

Guided by this functional (7) dedicated to the analysis
of systems with a constant delay, we propose to consider
the following extension which aims at dealing with the case
of time-varying delays. It consists in using the following
Lyapunov-Krasovskii functional

VN (xt, ẋt) = x̃TN (t)PN x̃N (t) +
∫ t
t−h x

T (s)Sx(s)ds

+
∫ t−h
t−h2

xT (s)Qx(s)ds+ h2

∫ t
t−h2

∫ t
θ
ẋT (s)Rẋ(s)dsdθ,

(8)
where, in this case, the matrix PN is now in S(2N+3)n and
where S,Q,R are in Sn+. This new functional is defined using
the augmented vector x̃N defined by

x̃TN (t) =
[
xTt (0) h(t)φT1,N (t) (h2 − h(t))φT2,N (t)

]
.

where

φ1,N (t) = 1
h(t)

∫ 0

−h(t)
LN

(
s+h(t)
h(t)

)
xt(s)ds,

φ2,N (t) = 1
h2−h(t)

∫ −h(t)

−h2
LN

(
s+h2

h2−h(t)

)
xt(s)ds.

(9)

This functional generalizes the one that has been defined in
[18] for time-varying delay systems. Indeed selecting N = 0
in (8) allows retrieving the same functional as in [18]. The
proposed extension to time-varying delays is not an easy task
since the time-varying delay appears in the definition of φ1,N

and φ2,N . To achieve this goal, several technical problems
arise for the consideration of the time-varying delay.
• The first difficulty refers to the exhibition of LMI con-

ditions to prove the positive definiteness of VN . A first
solution would be to impose that PN , S, Q and R are
positive definite. However, this might be too conservative
and we look forward a tighter condition which relies on
an extensive use of the Bessel Legendre inequality [19]
together with an improved version of the reciprocally
convex combination lemma [16].

• In order to satisfy the requirements of the Lyapunov-
Krasovskii theorem, we must also show that the func-
tional VN is upper bounded by some function of the state
of the time-delay systems. The consideration of φ1,N and
φ2,N in the first quadratic term of VN makes this step
unclear.

• The computation of the time-derivative of VN requires
to express the time-derivative of φ1,N and φ2,N . This
step is also not straightforward and requires a dedicated
development.

III. PRELIMINARY RESULTS

A. Delay-dependent reciprocally convex inequality

In the two first steps, we will use an improved version of the
reciprocally convex combination lemma originally presented in
[16]. The following lemma relaxes the inequality provided in
[16] through the introduction of additional matrices variables.
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Lemma 2: Let n be a positive integer and R1, R2 be in Sn+.
If there exist X1, X2 in Sn and Y1, Y2 in Rn×n such that[

R1 0
0 R2

]
− α

[
X1 Y1

Y T1 0

]
− (1− α)

[
0 Y2

Y T2 X2

]
� 0 (10)

holds for α = 0, 1, then, the following inequality[
1
αR1 0

0 1
1−αR2

]
�
[
R1 0
0 R2

]
+(1−α)

[
X1 Y2

Y T2 0

]
+α

[
0 Y1

Y T1 X2

]
holds for all α ∈ (0, 1).

Proof : The proof is given in the appendix. ♦

Remark 1: As noticed in [28], the additional variables X1

and X2 can be removed by taking X1 = R1−Y1R
−1
2 Y T1 and

X2 = R2 − Y T2 R−1
1 Y2, which obviously verifies conditions

(10). This manipulation allows a notable reduction of the
numerical complexity.

The particular selection in the previous lemma with X1 =
X2 = 0 and Y1 = Y2 = Y leads to the original reciprocally
convex combination lemma [16]. Lemma 2 refines the original
convex combination lemma since it allows obtaining a lower
bound which depends explicitly on α, which will be related
to the time-varying delay h(t).

B. Bessel-Legendre inequality

The Bessel-Legendre inequality is stated in the next lemma.
Lemma 3: For a given function x in L2([a, b]→ Rn), any

scalars a < b and any matrix R ∈ Sn+ the inequality∫ b

a

xT (s)Rx(s)ds ≥ (b− a)φTN R̃NφN (11)

holds, for any positive integer N ≥ 0 where

φN = 1
b−a

∫ b
a
LN

(
s−a
b−a

)
x(s)ds

R̃N = diag(R, 3R, . . . , (2N − 1)R).

Proof : As in [19], [21], the proof of this lemma
is based on the function zn : [a b] → Rn given by
zN (s) = Rx(s) − LTN

(
s−a
b−a

)
R̃NφN , where we recall

that φN = 1
b−a

∫ b
a
LN

(
s−a
b−a

)
x(s)ds. This function zN

can be viewed as the error between the function x and
the best polynomial approximation of x according the
inner product. The inequality results from the expansion of∫ b
a
zTN (s)R−1zN (s)ds, which is positive. ♦

Remark 2: The previous inequality includes Jensen’s in-
equality [7], the Wirtinger-based integral inequality and the
auxiliary-function based integral inequality [17] as particular
cases when N = 0, 1, 2, respectively. It is also worth noting
that the Parseval identity ensures that the proposed inequality
becomes asymptotically non conservative when N goes to
infinity.

IV. STABILITY ANALYSIS

In order to simplify the exposure of this section, the stability
analysis is divided into three parts. The first part deals with
the positive definiteness of the functional. The second part
aims at obtaining LMI conditions to guarantee the negative
definiteness of the derivative of the functional along the
trajectories of the system. The last part resumes the main result
of the paper.

A. Positive definiteness of VN
Lemma 4: For a given positive integer N ≥ 0, assume that

there exist PN ∈ S(2N+3)n, S,Q,R ∈ Sn+ and a matrix U ∈
Rn(N+1)×n(N+1) such that the following LMIs

ΦN (h2) = PN+
1

h2

[
0 0
0 Φ0

N

]
� 0, Φ0

N =

[
S̃N U

UT Q̃N

]
� 0 (12)

are satisfied, where S̃N = diag(S, 3S, . . . , (2N + 1)S), and
Q̃N = diag(Q, 3Q, . . . , (2N + 1)Q). Then, there exist ε1 > 0
and ε2 > 0 such that the functional VN (xt, ẋt) satisfies

ε1|xt(0)|2 ≤ VN (xt, ẋt) ≤ ε2 ‖xt‖2W , (13)

where ‖xt‖W = maxs∈[−h2, 0] |xt(s)| +
(∫ 0

−h2
|ẋt(s)|2ds

) 1
2

(see e.g. [3]).

Proof : The objective of the next developments is to find a
lower and an upper bounds of VN . In order to derive the first
lower bound (i.e. the existence of ε1), one may apply Lemma
3 to the second and third terms of the functional, which can
be done since the matrices S and Q are symmetric positive
definite. Hence, applying Lemma 3 to the order N yields∫ t

t−h x
T (s)Sx(s)ds ≥ hφT1,N (t)S̃Nφ1,N (t),∫ t−h

t−h2
xT (s)Qx(s)ds ≥ (h2 − h)φT2,N (t)Q̃Nφ2,N (t),

which ensures the following inequality

VN (xt, ẋt) ≥ x̃N (t)

(
PN +

[
0 0 0

0 1
h S̃N 0

0 0 1
h2−h Q̃N

])
x̃N (t)

+h2

∫ t
t−h2

∫ t
θ
ẋT (s)Rẋ(s)dsdθ.

If there exists a matrix U in Rn(N+1)×n(N+1) such that[
S̃N U

UT Q̃N

]
� 0, then Lemma 2, with X1 = X2 = 0

and Y1 = Y2 = U ensures, together with R � 0 that
V (xt, ẋt) ≥ x̃TN (t)ΦN (h2)x̃N (t). Therefore, if ΦN (h2) � 0
and R � 0, then there exists ε1 > 0 such that VN (xt, ẋt) ≥
ε1|xt(0)|, which concludes on the first inequality. To prove
the second inequality, there exists a sufficiently large scalar
η > 0 such that PN ≺ ηdiag(I, IN , IN ) where IN =
diag(I, 3I, . . . , (2N + 1)I). It thus holds

ξTN (t)PNξN (t) ≤ η|xt(0)|2 + ηh2(t)φT1,N (t)INφ1,N (t)

+η(h2 − h(t))2φT2,N (t)INφ2,N (t).

Using Lemma 3, we obtain

ξTN (t)PNξN (t) ≤ η|xt(0)|2 + ηh(t)
∫ t
t−h(t)

|x(s)|2ds

+η(h2 − h(t))
∫ t−h(t)

t−h2
|x(s)|2ds

≤ η|xt(0)|2 + ηh2

∫ t
t−h2

|x(s)|2ds.
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Re-injecting this inequality into the definition of the
functional VN , we can easily obtain that there exists ε2 > 0,
such that VN (xt, ẋt) ≤ ε2‖xt‖2W . ♦

B. Negative definiteness of the derivative of VN

The main result of this section is given below
Lemma 5: For a given positive integer N ≥ 0, assume

that there exist PN ∈ S(2N+3)n, S,Q,R ∈ Sn+ and Y1, Y2 ∈
R(N+2)n×(N+2)n, such that1

ΨN (h, ḣ) =


ΨN0(h, ḣ) WT

N

[
h2−h
h2

Y1

0

]
WT
N

[
0

h
h2
Y T2

]
[
h2−h
h2

Y1

0

]T
WN −h2−h

h2
R̃N+1 0[

0
h
h2
Y T2

]T
WN 0 − h

h2
R̃N+1


�0

(14)
at the vertices of H, where

ΨN0(h, ḣ) = He
(
GTN (h)PN

(
JN + ḣHN

))
+ΣN (ḣ) + h2

2F
T
NRFN −WT

NΞN (h)WN ,

R̃N+1 = diag(R, 3R, . . . , (2N + 1)R, (2N + 3)R),
FN = [A Ad 0 0 0] ,

GN (h) =

[
I 0 0 0 0
0 0 0 hInN 0
0 0 0 0 (h2 − h)InN

]
,

HN =

[
0 0 0 0 0
0 1̄N 0 Γ̄N −ΘN 0
0 −1N 0 0 ΘN

]
,

JN =

[
A Ad 0 0 0
1N −1̄N 0 −Γ̄N 0
0 1N −1̄N 0 −Γ̄N

]
,

ΣN (ḣ) = diag(S,−(1− ḣ)(S −Q),−Q, 0, 0),

WN =
[
1N+1 −1̄N+1 0 −ΓN+1 0

0 1N+1 −1̄N+1 0 −ΓN+1

]
,

ΞN (h) =
[
R̃N+1 0

0 R̃N+1

]
+ h2−h

h2

[
R̃N+1 Y2

Y T
2 0

]
+ h
h2

[
0 Y1

Y T
1 R̃N+1

]
,

(15)
with 1N+1, 1̄N+1, ΓN , Γ̄N and ΘN are given in (5), (6)
and (6), respectively. Then, there exists ε3 > 0 such that the
functional VN (xt, ẋt) satisfies V̇N (xt, ẋt) ≤ −ε3 ‖xt(0)‖2.

Proof : Before entering into the details of this proof, two
preliminary results are proposed for the sake of simplicity.
These results use an augmented vector, defined for N ≥ 0 by

ξTN (t) =
[
xTt (0) xTt (−h) xTt (−h2) φT1,N (t) φT2,N (t)

]
.

Proposition 6: For a given N > 0, the time-derivative of
the vector x̃N is expressed using matrices HN and JN given
in (15) by ˙̃xN (t) = (JN + ḣHN )ξN (t).

Proposition 7: For any function x such that ẋ is in L2, any
scalar h2 > 0, any integer N ≥ 0 and any matrix R ∈ Sn+,
then the inequality

h2

∫ 0

−h2

ẋTt (s)Rẋt(s)ds ≥ ξTN(t)WT
N [ΞN (h)− ΞN0(h)]WNξN(t)

1Conditions (14) are formally strict inequalities for all delays h different
from 0 and h2. Due to the cases h = 0 and h = h2, some rows and columns
might be zero, which implies the non strict inequality (14).

holds for any delay h ∈ [0, h2] and for any matrices Y1, Y2 ∈
R(N+2)n×(N+2)n, where ΞN (h) and WN are defined in (15)

and where ΞN0(h) =

[
h2−h
h2

Y1R̃
−1
N+1Y

T
1 0

0 h
h2
Y T2 R̃

−1
N+1Y2

]
.

The proof of these two propositions are provided in the
appendix. The computation of the derivative of VN leads to

V̇N (xt, ẋt) = He
(
x̃TN (t)PN ˙̃xN (t)

)
+ xTt (0)Sxt(0)

−(1− ḣ)xTt (−h)(S −Q)xt(−h)
−xTt (−h2)Qxt(−h2) + h2

2ẋ
T
t (0)Rẋt(0)

−h2

∫ 0

−h2
ẋTt (s)Rẋt(s)ds.

(16)
Our objective is to derive an upper bound of V̇N expressed

as a quadratic form using the augmented vector ξN (t). Using
the matrices GN (h), FN and ΣN (ḣ) defined in (15), the
derivative of VN along the trajectories of the system can be
rewritten as

V̇N (xt, ẋt) = He
(
ξTN (t)GTN (h)PN ˙̃xN (t)

)
+ξTN (t)

[
h2

2F
T
NRFN + ΣN (ḣ)

]
ξN (t)

−h2

∫ 0

−h2
ẋTt (s)Rẋt(s)ds.

(17)
Using Propositions 6 and 7, the derivative of the VN along

the trajectories of the system satisfies

V̇N (xt, ẋt) ≤ ξTN (t)
[
He
(
GTN (h)PN (JN+ḣHN )

)
+ ΣN (ḣ)

+ h2
2F

T
NRFN −WT

N [ΞN (h)− ΞN0(h)]WN

]
ξN (t)

= ξTN (t)
(

ΨN0(h, ḣ) +WT
NΞN0(h)WN

)
ξN (t).

It is then easy to see that the matrix ΨN0(h, ḣ) +
WT
NΞN0(h)WN is multi-affine with respect to h and ḣ and

consequently convex in these two parameters. Hence, if the
LMIs (14) are satisfied at the vertices of H, there are also
verified for any (h, ḣ) ∈ H and there exists a sufficiently
small ε3 such that ΦN (h, ḣ) − ε3 [ I 0

0 0 ] ≺ 0, which allows
concluding the proof. ♦

C. Main result

Lemma 4 and 5 allow us to state the main result of this
paper, given below.

Theorem 8: For a given positive integer N ≥ 0, as-
sume that there exist a matrix PN ∈ S(2N+3)n, matrices
S,Q,R ∈ Sn+ and two matrices Y1, Y2 ∈ Rn(N+2)×n(N+2)

and U ∈ Rn(N+1)×n(N+1) such that LMI ΦN (h2) � 0,
Φ0
N � 0 and ΨN (h, ḣ) ≺ 0 are satisfied for all (h, ḣ) ∈ H,

then system (1) is asymptotically stable for any time-varying
delay h, satisfying (2).

Proof : According to Lemmas 4 and 5, provided that
the LMI conditions hold, the functional VN satisfies the
following inequalities ε1|xt(0)|2 ≤ VN (xt, ẋt) ≤ ε2‖xt‖2W
and V̇N (xt, ẋt) ≤ −ε3‖xt(0)‖2. These inequalities ensures
the asymptotic stability of the delay system (1) for any
time-varying time delay h, which satisfies (h, ḣ) ∈ H, by
application of the extended Lyapunov-Krasovskii theorem
(see e.g. [3]) ♦
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D. Hierarchy of LMI conditions

Following the results presented in [19], [21] dealing with
systems subject to constant discrete and distributed delays and
also taking advantages of the Bessel-Legendre framework, the
LMI conditions presented in Theorem 8 form a hierarchy. In
other words, it means that increasing N can only reduce the
conservatism. This is summarized in the following theorem.

Theorem 9: For a given time-delay system (1) and a given
allowable delay set H, if there exists a positive integer N0

such that the LMI conditions of Theorem 8 are satisfied at the
order N0, then the same LMIs are also verified for all integer
N ≥ N0.

Proof : Assume that the LMI condition of Theorem 8 are
verified at a given order N0 ∈ N. Then there exist matrices
PN0

, S, Q, R, U and Y1, Y2 of appropriate dimensions such
that the following inequalities are verified for all (h, ḣ) ∈ H

ΦN0
(h2) � 0, Φ0

N0
� 0, ΨN0

(h, ḣ) ≺ 0.

To prove that the same LMIs also hold at the order N0 + 1,
it suffices to keep the same matrices S,Q,R and to introduce
PN0+1 =

[
PN0

0
0 0

]
, U+ = [ U 0

0 0 ] and Y +
i =

[
Yi 0
0 0

]
, for

i = 1, 2. Using these definitions and using some matrix
congruence, we obtain the following equivalences

ΦN0+1(h2) � 0 ⇔
[

ΦN0
(h2) 0 0

0 (2N0+3)S 0
0 0 (2N0+3)Q

]
� 0,

Φ0
N0+1 � 0 ⇔

[
Φ0

N0
0 0

0 (2N0+3)S 0
0 0 (2N0+3)Q

]
� 0,

ΨN0+1(h, ḣ) ≺ 0 ⇔

[
ΨN0

(h,ḣ) 0 0

0 −R̄N0
0

0 0 −R̄N0

]
� 0,

where R̄N0
= diag(R, (2N +

5)(ΓN0+2)TN0+2R(ΓN0+2)N0+2), with (ΓN0+2)N0+2 being
the n last lines of the matrix ΓN0+2. Therefore, there exists
a solution to the LMI problem at the order N0 + 1. By
induction, we can easily show that for any integer N ≥ N0,
there also exists a solution to the same LMI problem at the
order N , which concludes the proof. ♦

This theorem can be interpreted as an inclusion of the inner
allowable delay sets obtained through Theorem 8.

V. ALLOWABLE DELAY SETS

In Theorem 8, the resulting LMIs are multi-affine in the
delay parameters h and ḣ. Then, in order to get tractable
numerical conditions, it suffices to consider that H is a
polyhedral set or if it is not the case to embed it by a polytopic
outer approximation. In the literature, only a few attention has
been taken on the definition of the set H. In the following we
will recall, in a first step, the main characterization that has
been considered in the literature. Then, based on an discussion
regarding this first set, an alternative allowable delay set is
introduced in order to provided a more natural and accurate
characterization of the delay function. A consequence of this
selection is a notable modification of the numerical results.

d1 

h2 

d2 

h1 

h 
. 

h 

(a) Graph representing H1

d1 

h2 

d2 

h1 

h 
. 

h 

(b) Graph representing H2

Fig. 1. Graphical illustration of the delay set H1 (a) and H2 (b).

A. Usual assumption on the delay set H
The usual formulation of the delay set is as follows.

Consider some scalars 0 ≤ h2 and d1 ≤ 0 ≤ d2 and assumed
that the delay function satisfies:

(h, ḣ) ∈ H1 = [0, h2]× [d1, d2]. (18)

This set is the usual characterization of the delay function.
Indeed, it allows the delay function to take any values in
the interval [0, h2] while its derivative belongs to the interval
[d1, d2]. Notice that it is implicitly assumed that h and ḣ are
independent parameters. However this definition requires that
the LMI are satisfied whenever h = h2 and ḣ > 0 or h = h1

and ḣ < 0. These situations contradict the fact that h1 and h2

are respectively the upper and the lower bounds of the delay.

B. Refined characterization of the allowable delay set
As pointed out in the previous section, the polytopic model-

ing of the allowable delay set allows to exclude some subsets
of H1. A first direction is to note that when h = h2 (or
h = 0), its derivative cannot be positive (negative). Following
this comment, we introduce the new allowable delay set H2

described as follows. Consider some scalars 0 ≤ h2 and
d1 < 0 < d2 and we assume that the delay function satisfies:

(h, ḣ) ∈ H2 = Co{(0, 0), (h1, d2), (h2, 0), (h2, d1)}. (19)

A graphical interpretation of the sets H1 and H2 are
depicted in Figure 1, where it is shown that, for fixed values
of h2, d1, d2, H2 is included in H1. In the next section which
presents the application of Theorem 8 on an example, the use
of an accurate selection of the allowable delay set notably
modifies the numerical results, as expected and including
additional information on the delay functions may enlarge
these results.

VI. NUMERICAL EXAMPLE

In this section, we will consider the linear time-delay
system (1) with the matrices

ẋ(t) =

[
−2 0
0 −0.9

]
x(t)+

[
−1 0
−1 −1

]
x(t−h(t)). (20)

This system is a well-known delay dependent stable system,
that is the delay free system is stable and the maximum
allowable delay hmax = 6.1725 can be easily computed by
delay sweeping techniques (see for instance [7]). Of course, in
the time-varying delay case, such sweeping techniques cannot
be considered.



6

d2 0 0.1 0.2 0.5 0.8 1 Number of decision variables Number of LMIs

[4], [24] 4.47 3.60 3.03 2.00 1.36 0.99 7n2 + 3n / 2.5n2 + 3.5n 2 / 2

[8] 4.47 3.60 3.03 2.04 1.49 1.34 9n2 + 3n 1 / 1

[23] 4.47 3.61 3.04 2.07 1.59 1.52 7n2 + n 2

[16] 4.47 3.65 3.16 2.33 1.93 1.86 3n2 + 2n 2

[11] 6.11 4.71 3.80 2.28 1.60 1.36 1.5n2 + 9n+ 9 1

[1] 6.11 4.79 3.99 2.68 1.95 1.60 22n2 + 8n 4

[26] (N∗ = 3) 5.90 4.62 3.76 2.44 2.07 2.07 17n2 + 5n 2

[18] 6.05 4.70 3.83 2.42 2.08 2.04 10n2 + 3n 5

[12] 6.05 4.81 4.10 3.06 2.61 − 27n2 + 17n 5

[25] 6.05 4.78 4.06 3.05 2.61 − 65n2 + 11n 6

[27] (Th2.C2) 6.16 4.71 3.85 2.60 2.37 2.31 23n2 + 4n 4

Th.8 N = 0 6.05 4.72 3.86 2.45 2.14 2.12 14.5n2 + 3.5n 5

Th.8 N = 1 6.16 4.80 3.99 2.79 2.42 2.33 34n2 + 5n 5

Th.8 N = 2 6.1725 4.93 4.22 3.09 2.66 2.50 62.5n2 + 6.5n 5

Th.8 N = 3 6.1725 5.00 4.29 3.18 2.69 2.52 100n2 + 8n 5

Th.8 N = 4 6.1725 5.01 4.29 3.19 2.70 2.52 146.5n2 + 9.5n 5
TABLE I

THE MAXIMAL ALLOWABLE DELAYS h2 FOR EXAMPLE (20) WITH VARIOUS VALUES OF d2 AND d1 = −d2 AND (h, ḣ) ∈ H1 .

A. Numerical complexity

The two last columns of Table I summarize the numerical
complexity of various stability conditions from the literature
and the ones presented in Theorem 8 by indicating the number
of decision variables and the number of LMI conditions to be
implemented. For sake of simplicity, it does not include the
size of the LMIs.

At this stage, one can note that the complexity of Theorem 8
is similar to the one of existing conditions from the literature,
for small values of N(= 0, 1). For larger values of N , the
number of decision variables increases in a polynomial way.

B. Numerical results for H1

Table I shows the numerical results obtained through several
criteria using both Lyapunov-Krasovskii and robust analysis
for the example. The first rows of Table I present criteria based
on Jensen’s inequality. The last rows present the numerical
results which can be seen as the most recent works on
improved integral inequalities including the Wirtinger-based
double integral inequality [12], the free-weighting matrix
inequality [25]. These contributions are compared with results
issued from Theorem 8.

The numerical results presented in Table I show that the
conditions presented in Theorem 8 are less conservative than
existing results. It is also worth noting the different levels of
conservatism between Theorem 8 are mainly due to the conser-
vatism induced by the reciprocally convex combination lemma
of [16] or presented in Lemma 2. This observed conservatism
is then partially reduced by the proposed methodology at the
price of an increasing numerical burden.

C. Numerical results for H2

This subsection presents the numerical results for an al-
ternative allowable delay set, excluding the conflicting point
(h2, d2) and (h2, d1) which prevents for h2 and h1 to be the

maximum and the minimum of the delay function h(t). Fol-
lowing the discussion presented in Subsection V, we consider
here that the delay function h belongs inH2, given in (19). The
numerical results presented in Table II show a notable increase
of the delay upper bound h2 compared to Table I, obtained for
H1. One can also see that there is no brutal decrease of the
upper bound h2 when the bound on the derivative d2 is small
(see for instance, when the derivative of the delay function
become large, the jump from h2 = 2.53 with H1 to h2 = 3.70
with H2).

Table II finally demonstrates that the gap between the
constant and the time-varying delay case is not only due to
the conservatism induced by the choice of the Lyapunov-
Krasovskii functional. The choice of the delay set H has also
a dramatic effect on the results and the conservatism of the
method. Indeed, by an accurate modification of the allowable
delay set definition, it is possible to notably enlarge the upper
bound of the delay h2 upperbound. Clearly, there is a room for
improvements if we consider a thinner description of the delay
set as it has been already noted in [9], [14] for sampled-data
systems. It also suggests that a particular attention should be
performed when we consider the robust analysis of the LMI
conditions.

In order to motivate the notion of allowable delay set, we
will consider in the next section, a particular case of delay
function, for which several allowable delay sets can be derived.

D. Numerical results for sinusoidal delays

It has been shown previously that the selection of the al-
lowable delay set may have a notable impact on the numerical
results. In order to illustrate this choice, let consider the par-
ticular delay function given by h(t) = h2

2

(
1 + cos

(
2d2
h2
t
))

,
for all t ≥ 0, so that the delay function belongs to the convex

ellipsoid set defined by
(

2h(t)−h2

h2

)2

+
(
ḣ(t)
d2

)2

≤ 1. A first
approach would consider that the delay function lies in a
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Th.8: N/dM 0 0.1 0.2 0.5 0.8 1

0 6.059 6.059 6.059 4.63 3.45 3.02

1 6.168 6.168 6.154 4.83 3.70 3.37

2 6.1725 6.1725 6.164 5.07 3.94 3.58

3 6.1725 6.1725 6.171 5.11 4.01 3.67

4 6.1725 6.1725 6.1725 5.12 4.02 3.70
TABLE II

THE MAXIMAL ALLOWABLE DELAYS h2 FOR SYSTEM DESCRIBED IN
EXAMPLE (20) SOLVING THEOREM 8 FOR VARIOUS VALUES OF N AND d2

AND d1 = −d2 WITH (h, ḣ) ∈ H2 .

polytope of H1-type given by [0, h2]× [−d2, d2]. However,
it is possible to define other polytopes, still with four vertices,
which allow characterizing this class of delay functions. Figure
2 depicts a possible solution obtained by the geometric proper-
ties of ellipsoids which does not increase the complexity of the
LMI problem. Using the equation of the tangent to an ellipsoid,
another polytope is defined, for a given angle θ ∈ [0, π/2), by
Hθ := Co{(0,−d1(θ)), (0, d2(θ)), (h2, d1(θ)), (h2,−d2(θ))},
where

d1(θ) = d2
1− cos(θ)

sin(θ)
, d2(θ) = d2

1 + cos(θ)

sin(θ)
.

Figure 3 shows how the upper bound of the delay h2 varies
with the parameter θ with defines the polytope for various
values of d2. It can also be seen that the maximal delay bound
h2 is never obtained when θ = π/2, corresponding to the
H1. This demonstrates the relevance of the selection of the
allowable delay set.

It would be also possible to refine the selection of the
delay set by including other vertices. For instance, one could
select the set H1 ∩Hθ, which would introduce two additional
vertices.

VII. CONCLUSIONS

In this paper, we have provided new stability tests for sys-
tems subject to a continuous time-varying delay with bounded
derivatives. The novelty of this contribution is due to an
extensive use of the Bessel-Legendre inequality. The set of
LMI conditions forms a hierarchy, which means that increasing
the order of N of the Legendre polynomials in the analysis
can only improve the numerical results. Compared to existing
resulting from the literature, notable improvements of the
numerical results have been obtained. The second contribution
of the paper relies on the definition of allowable delay sets.
It is shown that a slight modification of the definition of the
delay set allows to obtain more accurate results. In particular,
the upper bound of the delays for slow varying delays is very
closed to the one obtained in the constant case.

APPENDIX

PROOF OF LEMMA 2

Proof : Following [16], the proof consists in noting that[
1
αR1 0
∗ 1

1−αR2

]
=

[
R1 0
0 R2

]
+

[
1−α
α R1 0

0 α
1−αR2

]
.

(21)

h(t) 
θ	


(h2,-d2(θ)) 

(h2(θ),d2) 

(h2,d1(θ)) 

(0,-d1(θ)) 

(0,d2(θ)) 

Fig. 2. Graphical illustration of the delay set H3 (a) and H2 (b).
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Fig. 3. Graphical illustration of the delay set H3 (a) and H2 (b).

The objective is to find a lower bound of the second term
of the right-hand-side of (21). Using a convexity argument, if
(10) holds for α = 0, 1, it also holds for any α in [0, 1]. Then,
pre- and post-multiplying (10) by

[
βI 0

0 β−1I

]
, with β =

√
1−α
α

yields, for all α in (0, 1)[
1−α
α R1 0
∗ α

1−αR2

]
� (1− α)

[
X1 Y2

Y T2 0

]
+ α

[
0 Y1

Y T1 X2

]
,

which together with (21) yields the result. ♦

PROOF OF PROPOSITION 6

Proof : For simplicity, the time argument will be
omitted in the next developments. Consider φN =

1
b−a

∫ b
a
LN

(
s−a
b−a

)
x(s)ds where a and b are functions of time.

In order to simplify the computations, we apply the change of
variable s(u) = (b−a)u+a to get φN =

∫ 1

0
LN (u)x(s(u))du

and

d
dt [(b− a)φN ] = ȧψ1,N + (ḃ− ȧ)(ψ2,N + φN ) (22)

where ψ1,N = (b−a)
∫ 1

0
LN (u)ẋ(s(u)))du, and ψ2,N = (b−

a)
∫ 1

0
uLN (u)ẋ(s(u))du. An integration by parts yields

ψ1,N = LN (1)x(b)−LN (0)x(a)−
∫ 1

0
L̇N (u)x(s(u))du,

ψ2,N = LN (1)x(b)−
∫ 1

0
d
du (uLN (u))x(s(u))du.

Rules (6) of the Legendre polynomials yield

ψ1,N = 1Nx(b)− 1̄Nx(a)− Γ̄NφN ,
ψ2,N = 1Nx(b)−ΘNφN−φN .

Reinjecting these equations into (22) yields, for all t ∈ R+,

d
dt [(b− a)φN ] = ȧ(1Nx(b)− 1̄Nx(a)− Γ̄NφN )

+(ḃ− ȧ)(1Nx(b)−ΘNφN − φN + φN )

= ḃ1Nx(b)− ȧ1̄Nx(a)− (ȧΓ̄N + (ḃ− ȧ)ΘN )φN .
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This previous expression is translated to the vector φ1,N

and φ2,N by considering (a, b) = (t − h(t), t) and (a, b) =
(t− h2, t− h(t)), respectively. This yields to

˙̃xN (t) =
[
ẋT (t) d

dt (hφ
T
1,N ) d

dt ((h2 − h)φT2,N )
]
,

with ẋ(t) = A(t) +Adx(t− h) and
d
dt (hφ1,N ) = 1Nx(t)− (1− ḣ)1̄Nx(t− h)

−((1− ḣ)Γ̄N + ḣΘN )φ1,N
d
dt ((h2 − h)φ2,N ) = (1− ḣ)1Nx(t− h)− 1̄Nx(t− h2)

−(Γ̄N − ḣΘN )φ2,N

Using matrices JN and HN , the previous equations can be
summarized as ˙̃xN = (JN + ḣHN )ξN . ♦

PROOF OF PROPOSITION 7

Proof : As we mentioned in the introduction, one of
the most popular term employed in a Lyapunov-Krasovskii
functional leads to an integral quadratic term of the time-
derivative of x. Thus, the first step of the proof consist
in particularizing the inequality provided in Lemma 3 to
this situation. Consider the integral h

∫ t
t−h ẋ

T (s)Rẋ(s)ds. By
application of the Bessel-Legendre inequality in Lemma 3, to
the order N + 1, we obtain∫ t

t−h2

ẋT(s)Rẋ(s)ds ≥
[
φ̃1,N+1

φ̃2,N+1

]T[
hR̃N+1 0

0 (h2−h)R̃N+1

][
φ̃1,N+1

φ̃2,N+1

]
(23)

where

φ̃1,N+1 = 1
h

∫ 0

−h LN+1

(
s+h
h

)
ẋt(s)ds,

φ̃2,N+1 = 1
h2−h

∫ −h
−h2

LN+1

(
s+h2

h2−h

)
ẋt(s)ds.

An integration by parts and the differentiation rule (6) yield[
hφ̃1,N+1

(h2−h)φ̃2,N+1

]
=

[
1N+1xt(0)−1̄N+1xt(−h)−ΓN+1φ1,N ,

1N+1xt(−h)−1̄N+1xt(−h2)−ΓN+1φ2,N

]
= WNξN

where the matrix WN is given in the statement of the lemma.
Combining this expression into (23) yields

h2

∫ t

t−h2

ẋT(s)Rẋ(s)ds ≥ ξTN(t)WT
N

[h2

h R̃N+1 0

0 h2

h2−h R̃N+1

]
WNξN (t).

We are now in the situation to apply the convex inequality
provided in Lemma 2. It implies that, if there exist
X1, X2 ∈ SnN and Y1, Y2 ∈ RnN×nN such that the two
conditions Ψ1

N0
� 0 and Ψ2

N0
� 0 hold, then we have[

h2
h R̃N 0

0
h2

h2−h R̃N

]
� ΞN (h). Reinjecting this inequality into

the previous equation concludes the proof of the lemma. ♦
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