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Abstract—Planning, adapting and executing multi-contact
locomotion movements on legged robots in complex environments
remains an open problem. In this proposal, we introduce a
complete pipeline to address this issue in the context of humanoid
robots inside industrial environments. This pipeline relies on a
multi-stage approach in order to simplify the process flow and
to exploit at best state-of-the-art techniques both in terms of
contact planning, whole-body control and perception. The main
challenges lie in the choice of the different modules composing
this pipeline as well as their mutual interactions: e.g. at which
frequency rates each module has to work in order to allow
safe and robust locomotion? or which information must transit
between the modules? We named this project Loco3D standing
for Locomotion in 3D, in contrast to the classic locomotion on
quasi-flat terrains, where the motion of the center of mass of the
robot is mostly limited to a 2D plane.

I. MOTIVATION

As mentioned by Chris Atkeson et al. in [1], “Except for

egress, no robots in the DRC Finals used the stair railings or

any form of bracing” and they also add that “In programming

robots we avoid contacts and the resultant structural changes

in our models and in reality.”. Then, multi-contact locomotion

of legged robots in complex environments remains a challenge

for the whole robotics community. Such task involves

numerous expertises:

- in perception for physical localization and stabilization

of the robot but also for building a semantic map of the

environment;

- in planning to determine reachable contact areas and

to compute a rough path avoiding collisions with the

environment;

- in control to follow this rough path while authorizing

dynamic movements that respect robot hardware

constraints, provide robustness with respect to

uncertainties and unexpected interactions;

- in robotic hardware and architecture to build or exploit

a suitable and effective platform to achieve complex

motions.

To solve the multi-contact locomotion problem, we propose

a multi-stage approach that decouples the global but hard

problem into various subproblems of smaller dimensions,

simpler to solve.We aim to apply this pipeline on our

two humanoid robots, namely HRP-2 and TALOS, the new

humanoid platform from PAL robotics [12].

II. PIPELINE DESCRIPTION

This pipeline is composed of five main modules that are

summarized below. We refer to their reference papers for

further details.

1) Contact sequence planner: the first stage consists in

an interactive acyclic contact planner [14] able to compute

a sequence of contacts for various scenarios, from a matter of

few hundreds of milliseconds up to few seconds depending on

the complexity of the environment. This planner reduces the

complexity of the problem by considering only the root of the

robot together with the reachability sets of the end-effectors.

More precisely, it verifies that the root configuration of a

robot is close, but not too close from obstacles: close to allow

contact creation, not too close to avoid collision. With this

approximation of the space of admissible root configurations

we decompose the hard contact planning problem into simpler

sub-problems: first, to plan a guide path for the root without

considering the whole-body configuration; then, to generate

a discrete sequence of whole-body configurations in static

equilibrium along this path. The complete workflow is

depicted in Fig. 1. We recently extended this framework to

also take into account dynamic transition [9].

2) Centroidal pattern generator: we introduced in [4] an

optimal control formulation based on the centroidal dynamics

and using contact forces as control inputs. This formulation

takes as input the contact sequence (generated by stage 1) and

the initial state of the robot and tries to minimize a tailored cost

function to obtain a smooth control while satisfying the friction

cone constraints. In addition to that, the formulation seeks a

final state that is viable [15]. To be effective, we proposed to

translate this optimal control problem into a multiple-shooting

formulation. This approach is fast enough to be implemented

in a receding horizon way.

We recently improved our formulation to directly take into

account the constraints [5, 3] due to the whole-body when

relying on reduced models. It allows for example to directly



Fig. 1: Overview of our two-stage framework. Given a path request between start and goal positions (left image), P1 is the

problem of computing a guide path in the space of equilibrium feasible root configurations. We achieve this by defining a

geometric condition, the reachability condition (abstracted with the transparent cylinders on the middle image). P2 is then the

problem of extending the path into a discrete sequence of contact configurations.

transcript the center of mass reachability region inside the

reduced optimal control formulation. Fig. 2 illustrates climbing

motions using the stair railing applied to two humanoid robots,

namely HRP-2 and the new TALOS platform.

3) Whole-body motion generator: the next question

concerns the whole-body motion aspects. More precisely,

how to plan the trajectories of swing end-effectors? A

Differential Dynamic Programming approach as proposed

in [13] should work, but may become inefficient in case of

cluttered environments. We propose an RRT-based approach

called limb-RRT [4]. This approach computes a whole-body

motion resulting in smooth trajectories for each end-effector

while following the center of mass trajectory computed by the

centroidal pattern generator.

Then, we feed the centroidal trajectory, the contact forces,

and with the end-effector trajectories to an inverse-dynamics

controller, which can also account for certain model

uncertainties [6].

4) Low level torque control: The robot interaction with its

environment requires the control of the contact forces. We

made the choice to rely on a joint-torque control strategy.

We identified the motor parameters together with the friction

induced by the use of harmonic-drives on both HRP-2 and

TALOS, then we deploy a control strategy similar to the one

presented in [7]. The reference of joint torques are provided

by the whole-body motion generator module.

In addition to that, HRP-2 has some flexible parts in its

feet which allow to absorb impacts. These flexibilities are not

directly controlled and measured, inducing some uncertainties

in the robot placement. Hence, we developed an extended

kalman filter to fusion the measurements of the force sensors

located in the ankles and the IMU located in the chest of the

robot [2, 11]. This estimator is fundamental to track the center

of mass trajectory provided by the centroidal motion generator.

5) Exteroception: finally, the last module is devoted to the

localization of the robot inside its environment. We made

the choice to only rely on vision and inertial measurements.

The fusion of these two measurements is performed with an

optimal estimator approach which enables us to accurately

predict the motion of landmarks inside classic SLAM

approaches [10]. Such approach seems to be sufficient and

cheaper than using the standard LIDAR sensors as suggested

by Fallon et al. [8].

In addition to that, the exteroception can fusion some

information provided by the proprioception in order to build

a global and robust estimator of the robot state.

6) Hardware: currently, all our efforts are targeted on two

humanoid robots, namely HRP-2 and TALOS. Therefore, we

make all our software developments independent from the

hardware in order to be compatible with these two robots and

with most existing humanoid robots or even with quadrupedal

robots.

III. CONCLUSION

In this proposal, we have introduced a complete pipeline

to address the multi-contact locomotion problem of legged

robots inside complex environments. This pipeline relies on

a multi-stage strategy enabling us to exploit state-of-the-art

solutions: interactive computation of contact placements that

ensure collision avoidance, real-time computations of the CoM

trajectory followed by a robust inverse-dynamics controller

together with a fast torque controller and an optimal estimator

to track and precisely localize the robot inside its environment.
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