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Lyapunov stability analysis of a string equation

coupled with an ordinary differential system
Matthieu Barreau, Alexandre Seuret, Frédéric Gouaisbaut and Lucie Baudouin

Abstract—This paper considers the stability problem of a linear
time invariant system in feedback with a string equation. A new
Lyapunov functional candidate is proposed based on the use of
augmented states which enriches and encompasses the classical
Lyapunov functional proposed in the literature. It results in
tractable stability conditions expressed in terms of linear matrix
inequalities. This methodology follows from the application of the
Bessel inequality together with Legendre polynomials. Numerical
examples illustrate the potential of our approach through three
scenari: a stable ODE perturbed by the PDE, an unstable open-
loop ODE stabilized by the PDE and an unstable closed-loop
ODE stabilized by the PDE.

Index Terms—String equation, Ordinary differential equation,
Lyapunov functionals, LMI.

I. INTRODUCTION

This paper presents a novel approach to assess stability

of a heterogeneous system composed of the interconnection

of a partial differential equation (PDE), more precisely a

damped string equation, with a linear ordinary differential

equation (ODE). While the topic of stability and control of

PDE systems has a rich literature at the boundary between

applied mathematics [7], [16] and automatic control [18]; the

stability analysis (and the control) of such a coupled system

belongs to a recent research area. To cite a few related results,

one can refer to [4], [5], [23] where an ODE is interconnected

with a transport equation, to [25] for a heat equation, to [13]

for the wave equation and to [27] for the beam equation.

Generally, the PDE is viewed as a perturbation to be com-

pensated (using a backstepping method proposed by [14] for

example where infinite dimensional controllers are provided

to cope with the undesirable effect of the PDE). Another

interesting point of view relies on the converse approach: the

ODE system can be seen as a finite dimensional boundary

controller for the PDE (see [10], [20], [21]). A last strategy

describes a robust control approach, aiming at characterizing

the robustness of the interconnection [11].

In the present paper, we consider a damped string equation,

i.e. a stable one-dimensional wave equation which is perturbed

at its boundary by a stable or unstable ODE. The proposed

method to assess stability is inspired by the recent develop-

ments on the stability analysis of time-delay systems based on

Bessel inequality and Legendre polynomials [24]. Since time-

delay systems represent a particular class of systems coupling

a transport PDE with a classical ODE system (see for instance
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[2]), the main motivation of this work is to show how this

methodology can be adapted to a larger class of PDE/ODE

systems as demonstrated for instance with the heat equation

in [1].

Compared to the literature on coupled PDE/ODE systems,

the proposed methodology aims at designing a new Lyapunov

functional, integrating some cross-terms merging the ODE’s

and the PDE’s usual terms. This new class of Lyapunov

functional encompasses the classical notion of energy usually

proposed in the literature by offering more flexibility. Hence,

it allows us to guarantee stability for a larger set of systems,

for instance, instable open-loop ODE and, for the first time to

the best of our knowledge, even an unstable closed-loop ODE.

The paper is organized as follows. The next section for-

mulates the problem and provides some general results on

the existence of solutions and equilibrium. In Section 3, after

a modeling phase inspired by the Riemann coordinates, a

generic form of Lyapunov functionals is introduced, and its

associate analysis leads to a first stability theorem. Then, in

Section 4, an extension using Bessel inequality is provided.

Finally, Section 5 discusses the results on three examples. The

last section draws some conclusion and perspectives.

Notations: In this paper, Ω is the closed set [0, 1] and R
+ =

[0,+∞). Then, (x, t) 7→ u(x, t) is a multi-variable function

from Ω × R
+ to R. The notation ut stands for ∂u

∂t
. We also

use the notations L2 = L2(Ω;R) and for the Sobolov spaces:

Hn = {z ∈ L2; ∀m 6 n, ∂mz
∂xm ∈ L2}. The norm in L2 is

‖z‖2 =
∫

Ω |z(x)|2dx = 〈z, z〉. For any square matrices A

and B, the operations ’He’ and ’diag’ are defined as follow:

He(A) = A + A⊤ and diag(A,B) = [A 0
0 B ]. A symmetric

positive definite matrix P of R
n×n belongs to the set Sn

+ or

more simply P ≻ 0.

II. PROBLEM STATEMENT

We consider the coupled system described by

Ẋ(t) = AX(t) +Bu(1, t), t > 0 (1a)

utt(x, t) = c2uxx(x, t), x ∈ Ω, t > 0, (1b)

u(0, t) = KX(t), t > 0 (1c)

ux(1, t) = −c0ut(1, t), t > 0 (1d)

u(x, 0) = u0(x), x ∈ Ω (1e)

ut(x, 0) = v0(x), x ∈ Ω (1f)

X(0) = X0, (1g)

with the initial conditions X0 ∈ R
n and (u0, v0) ∈ H1 × L2

such that equations (1c) and (1d) are respected. They are then

called “compatibles” with the boundary conditions.

Remark 1: When no confusion is possible, parameter t may

be omitted and so do the definition sets.
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This system can be viewed as an interconnection in feed-

back between a linear time invariant system (1a) and an infinite

dimensional system modeled by a wave equation (1b). The

latter is a one dimension hyperbolic PDE, representing the

evolution of a wave of speed c > 0 and amplitude u. To keep

the content clear, the dimension of x 7→ u(x, ·) is assumed

to be one but the calculus are done as if it was a vector of

any dimension. The measure is the state u at x = 1 which is

the end of the string and the control is a Dirichlet actuation

(equation (1c)) because it affects directly the state u and not

its derivative. To be well-posed, another boundary condition

must be added. It is defined at x = 1 by ux(1) = −c0ut(1).
This is a well-known damping condition for c0 > 0 (see for

example the work by [15]). The case c0 = 0 suppresses the

damping on the wave equation.

This system can be seen either as the control of the PDE

by a finite dimensional dynamic control law generated by an

ODE [6] or on the contrary the robustness of a linear closed

loop system with a control signal conveyed by a damped wave

equation. On the first scenario, both the ODE and the PDE

are stable and the stability of the coupled system is studied.

The second case is with an unstable but stabilizable ODE and

the PDE is still stable. Notice that the Neumann actuation

version of this problem, i.e. the control KX is acting on ux(0)
instead of u(0), has been studied by [13] using a backstepping

transformation approach.

A. Existence and regularity of solutions

This subsection is dedicated to the existence and regularity

of solutions (X,u) to system (1). We consider the classical

norm on the Hilbert space H = R
n ×H1 × L2:

‖(X,u)‖2H = |X |2n + ‖u‖2 + c2‖ux‖
2 + ‖ut‖

2.

This norm can be seen as the sum of the energy of the ODE

system and the one of the PDE.

Remark 2: A more natural norm for space H would be

|X |2n + ‖u‖2 + ‖ux‖2 + ||ut||2 which is equivalent to ‖ · ‖2
H

for c > 0. The norm used here makes the calculus easier in

the sequel.

Once the space is defined, we can translate System (1) using

the following linear unbounded operator T : D(T ) → H:

T
(

X
u
v

)

=

(

AX+Bu(1)
v

c2uxx

)

and

D(T ) = {(X,u, v) ∈ H, u(0) = KX,

v(0) = AX +Bu(1), ux(1) = −c0v(1)} .

Then, from the semi-group theory, we propose the following

result on the existence of solutions for (1).

Proposition 1: If there exists a norm on H for which

the linear operator T is dissipative, then there exists a

unique solution (X,u, ut) of system (1) with initial conditions

(X0, u0, v0) ∈ H compatible with the boundary conditions.

Moreover, the solution have the following regularity property:

(X,u, ut) ∈ C(0,+∞,H).
Proof : This proof follows the same lines than in [19].

Applying Lumer-Phillips theorem (p103 from [26]) and as the

norm is dissipative, it is enough to show that there exists a

λ > 0 for which the application λI − T : H → H is onto.

This is quite technical and has already been done by Morgul

in [19] for a slightly different system considering a Neumann

actuation. �

Remark 3: An operator T is said to be dissipative with

respect to a norm if the time-derivative along the trajectories

generated by T is strictly negative.

The aim of this paper is then to find an equivalent norm

to ‖ · ‖H which makes the operator T dissipative. Indeed, the

dissipative property of an operator is relative to the norm under

consideration. The norm constructed in this paper, that we

will actually call Lyapunov functional, has variable parameters

which are tuned using an optimization process to make the

operator T dissipative for a given system.

B. Equilibrium point

Considering that all the derivatives along the time are set

to zero, an equilibrium (Xe, ue) ∈ R
n × H1 of System (1)

verifies the following linear equations:

0 = AXe +Bue(1), (2a)

0 = c2∂xxue(x), x ∈ (0, 1), (2b)

ue(0) = KXe, (2c)

∂xue(1) = 0. (2d)

Using equation (2b), we get ue as a first order polynomial

in x but in accordance to equation (2d), ue is proved to

be a constant function. Then, using equation (2c), we get

ue = KXe. Equation (2a) and the previous statement lead to:

(A+BK)Xe = 0. We get then the following proposition:

Proposition 2: An equilibrium (Xe, ue) ∈ R
n × H1 of

system (1) verifies (A+ BK)Xe = 0 and ue = KXe. More-

over, if A + BK is not singular, system (1) admits a unique

equilibrium (Xe, ue) = (0n, 0).

III. A FIRST STABILITY ANALYSIS BASED ON MODIFIED

RIEMANN COORDINATES

This part is dedicated to the construction of a candidate

Lyapunov functional. To do so, we need to introduce a new

structure based on variables directly related to the states of the

overall system (1).

A. Modified Riemann coordinates

The PDE considered in system (1) is of second order in

time. As we want to use some tools already designed for first

order systems, we propose to define some new states using

modified Riemann coordinates, which satisfy a set of coupled

first order PDEs and diagonalize the operator. Let us introduce

these coordinates, defined as follow:

χ(x) =





ut(x) + cux(x)

ut(1− x)− cux(1 − x)



 =





χ+(x)

χ−(1− x)



 .

The introduction of such a variable is not new and the reader

can refer to articles [22], [3] or [8] and references therein

about Riemann invariant. χ+ and χ− are eigenfunctions of

equation (1b) associated respectively to the eigenvalues c and



3

−c. Therefore, using χ−(1 − x), the previous equation leads

to a transport PDE for x ∈ Ω:

χt(x) = cχx(x). (3)

Remark 4: The norm of the modified state χ can be directly

related to the norm of the functions ut and ux. Indeed simple

calculations and a change of variable give:

‖χ‖2 = 2
(

‖ut‖
2 + c2‖ux‖

2
)

. (4)

The second step is to understand how the extra-variable χ

interacts with the ODE of the system (1). Hence, we notice:

Ẋ = AX +B (u(1)− u(0) +KX) ,

= (A+BK)X +B

∫ 1

0

ux(x)dx.

It remains to express the last integral term using χ. Let us first

note that:

2c

∫ 1

0

ux(x)dx =

∫ 1

0

χ+(x)dx −

∫ 1

0

χ−(x)dx.

This expression allows us to rewrite the ODE system as:

Ẋ = (A+BK)X + B̃X0,

where
X0 =

∫ 1

0

χ(x)dx, B̃ =
1

2c
B
[

1 −1
]

.

The extra-state X0 follows the dynamics:

Ẋ0 = c
∫ 1

0
χx(x)dx = c [χ(1)− χ(0)] .

The ODE dynamic can then be enriched by considering an

extended system where X0 is viewed as a new dynamical state:

Ẋ0 =
[

A+BK B̃
02,n 02

]

X0 +
[

0n,2

cI2

]

(χ(1)− χ(0)) , (5)

with
X0 =

[

X⊤
X

⊤
0

]⊤

. (6)

Hence, associated to the original system (1), we propose

a set of equation (3)-(5)-(6). They are linked to system

(1) but enriched by extra dynamics aiming at representing

the interconnection between the extended finite dimensional

system and the two transport equations. Nevertheless, these

two systems are not equivalent, the second one just puts in

the head a formulation for a candidate Lyapunov functional

which is developed in the subsection below.

B. Lyapunov functional and stability analysis

The main idea is to rely on the auxiliary variables satisfying

equations (3) and (5) to define a Lyapunov functional for the

original system (1). For the ODE (5), the associated Lyapunov

function is a simple quadratic term on the state X⊤
0 P0X0,

with P0 ∈ S
n+2
+ . It introduces automatically a cross-term

between the ODE and the original PDE. Hence, the auxiliary

equations of the previous part show a coupling between a finite

dimensional LTI system and an infinite dimension PDE seen

as a transport equation.

For the infinite dimensional part, inspired from the literature

on time-delay systems ([2], [8]), we provide a candidate

Lyapunov functional:

V(u) =

∫ 1

0

χ⊤(x) (S + xR)χ(x)dx,

with S,R ∈ S
2
+. The use of the modified Riemann coordinates

enables us to consider full matrices S and R. If the classical

χ+ and χ− variables were used, it would have resulted in

diagonal matrices with therefore more conservative stability

conditions. As the transport described by the variable χ is

going backward, R is multiplied by x. Finally, we propose

a Lyapunov functional for system (1) expressed with the

extended state variable X0 defined in equation (6):

V0(X0, u) = X⊤
0 P0X0 + V(u). (7)

This Lyapunov functional falls actually into three terms:

1) The quadratic term X⊤PX introduced by the ODE;

2) The functional V for the stability of the string equation;

3) The cross-term between X0 and X described by the

extended state X0.

The idea is that this last contribution is of great importance

since it may enable the construction of non stable ODE leading

to a stable coupled ODE/PDE. At this stage, a stability theorem

can be derived using the Lyapunov functional V0.

Theorem 1: Consider the system defined in (1) with a given

speed c, a viscous damping c0 > 0 with initial conditions

(X0, u0, v0) ∈ H compatible with the boundary conditions.

Assume there exist P0 ∈ S
n+2
+ and S,R ∈ S

2
+ such that the

linear matrix inequality Ψ0 ≺ 0 holds where

Ψ0=He
(

Z⊤
0 P0F0

)

−cR̃0+c
(

H⊤
0 (S +R)H0 −G⊤

0 SG0

)

(8)

F0 =
[

In+2 0n+2,2

]

, Z0 =
[

N⊤
0 c(H0−G0)

⊤

]⊤

,

N0 =
[

A+BK B̃ 0n,2

]

, R̃0 = diag (0n, R, 02) ,

G0 =
[

02,n+2 g

]

+
[

−K
01,n

]

N0, g = −
[

0 1
1+cc0 0

]

,

H0 =
[

02,n+2 h

]

+
[

01,n
K

]

N0, h =
[

1−cc0 0
0 −1

]

.

(9)

Then there exists a unique solution to System (1) and it is

exponentially stable in the sense of norm ‖ ·‖H i.e. there exist

γ > 1, δ > 0 such that the following estimate holds:

∀t > 0, ‖(X(t), u(t))‖2H 6 γe−δt‖(X0, u0)‖
2
H. (10)

Remark 5: It has been proven by [12] that the exponential

stability of a similar coupled system is impossible if we con-

sider an undamped string equation. Indeed, condition Ψ0 ≺ 0
includes a necessary condition given by e⊤3 Ψ0e3 ≺ 0, with

e3 = [ 0n,n+2 I2 ]
⊤

, which is h⊤(S + R)h − g⊤Sg ≺ 0. This

inequality is guaranteed if and only if the matrix g−1h has its

eigenvalues in the unit cycle of the complex plan, which is

guaranteed if and only if c0 > 0.

C. Proof of Theorem 1

The proof of stability is presented below and gives insights

on the proof of existence.
1) Preliminaries: As a first step of this proof, let us

introduce the following preliminary lemma that will be useful

in the sequel.
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Lemma 1: The following inequality holds:

‖u‖2 6 2‖ux‖
2 + 2|u(0)|2, ∀u ∈ H1(Ω).

Proof : As ux ∈ L1(Ω), we have, for all x ∈ Ω,

u(x)2 =

(∫ x

0

us(s)ds− u(0)

)2

6 2

∫ x

0

u2
s(s)ds+2|u(0)|2.

The last inequality is obtained using Young and Jensen

inequalities. �

The proof of Theorem 1 consists in explaining how if the

LMI condition presented in Theorem 1 is satisfied, there exist

a norm V and three positive scalars ε1, ε2 and ε3 such that

inequalities

ε1‖(X,u)‖2
H

6 V (X,u) 6 ε2‖(X,u)‖2
H
,

V̇ (X,u) 6 −ε3‖(X,u)‖2
H
,

(11)

hold.

The next paragraphs aim at proving (11) in order to prove

the convergence of the states to the equilibrium.

2) Existence of ε1: The LMI conditions, P0 ≻ 0, S ≻ 0
and R ≻ 0 mean that there exists ε1 > 0, such that for all

x ∈ [0, 1]:

P0 � ε1
(

In+2 + 2K⊤K
)

,

S + xR � S � ε1
2+c2

2c2 I2.

These inequalities lead to:

V0(X,u) > ε1

(

|X |2n + |KX |2 + 2+c2

2c2 ‖χ‖2
)

+
∫ 1

0 χ⊤(x)
(

S + xR− ε1
2+c2

2c2 I2

)

χ(x)dx

> ε1

(

|X |2n + |KX |2 + 2+c2

2c2 ‖χ‖2
)

.

Noting the boundary condition (1c) and norm equality (4),

the previous inequality becomes

V0(X,u) > ε1
(

|X |2n + ‖u‖2 + ‖ut‖2 + c2‖ux‖2
)

+ 2ε1
c2

‖ut‖2 + ε1
(

2‖ux‖2 + 2|u(0)|2 − ‖u‖2
)

.

Then, we apply Lemma 1 to ensure that the last term of

the previous inequality is positive so that it yields V0(X,u) >
ε1 ‖(X,u)‖2

H
, which ends the proof for the existence of ε1.

3) Existence of ε2: Since P0 ∈ S
n+2
+ and S,R ∈ S

2
+, there

exists ε2 > 0 such that for x ∈ (0, 1):

P0 � diag(ε2In,
ε2
4 I2),

S + xR � S +R � ε2
4 I2.

From equation (7), we get:

V0(X,u) 6 ε2
(

|X |2n + 1
4X

⊤
0 X0 +

1
4‖χ‖

2
)

+
∫ 1

0
χ⊤(x)

(

S + xR− ε2
4 I2

)

χ(x)dx

6 ε2
(

|X |2n + 1
2‖χ‖

2
)

(12)

where we have used Jensen’s inequality which ensures that

X
⊤
0 X0 6 ‖χ‖2. The proof of the existence of ε2 ends by

using norm equality (4) so that we get:

V0(X,u) 6 ε2
(

|X |2n + ‖ut‖
2 + c2‖ux‖

2
)

6 ε2‖(X,u)‖2H.

4) Existence of ε3: Differentiating V0 in (7) along the

trajectories of system (1) leads to

V̇0(X,u) = He

(

[

Ẋ

Ẋ0

]⊤

P0

[

X
X0

]

)

+ V̇(u).

Our goal is to expressed an upper bound of V̇0 thanks to

the extended vector ξ0 defined as follow:

ξ0 =
[

X⊤
X

⊤
0 ut(1) cux(0)

]⊤

. (13)

Let us first concentrate on V̇ . Equation (3) yields:

V̇(u) = 2c

∫ 1

0

χ⊤
x (x, t)(S + xR)χ(x, t)dx. (14)

Integrating by parts the last expression leads to:

V̇(u) = c

(

χ⊤(1)(S +R)χ(1)− χ⊤(0)Sχ(0)

−

∫ 1

0

χ⊤(x)Rχ(x)dx

)

. (15)

Then we note that Ẋ = N0ξ0, Ẋ0 = c(H0 −G0)ξ0, χ(1) =
H0ξ0, χ(0) = G0ξ0, with ξ0 defined in (13) and the matrices

above in equation (9). We get X0 = F0ξ0 and Ẋ0 = Z0ξ0
and the resulting expression for V̇0 is obtained:

V̇0(X,u)= ξ⊤0
(

He
(

Z⊤
0 P0F0

)

+ cG⊤
1(S +R)G1−cG⊤

0SG0

)

ξ0

− c

∫ 1

0

χ⊤(x)Rχ(x)dx. (16)

Then, using the definition of matrix Ψ0 given in (8), the

previous expression can be rewritten as follows:

V̇0(X,u) = ξ⊤0Ψ0ξ0+cX⊤
0 RX0−c

∫ 1

0

χ⊤(x)Rχ(x)dx. (17)

Since R ≻ 0 and Ψ0 ≺ 0, there exists ε3 > 0 such that:

R �
ε3

2c

2 + c2

c2
I2, (18a)

Ψ0 �− ε3diag

(

In + 2K⊤K,
2 + c2

2c2
I2, 02

)

. (18b)

Using (18b) and the boundary condition u(0) = KX ,

equation (17) becomes:

V̇0(X,u) 6 −ε3

(

|X |2n + 2|u(0)|2 + 2+c2

2c2 ‖χ‖2
)

+cX⊤
0

(

R− ε3
2c

2+c2

c2
I2

)

X0

−c
∫ 1

0
χ⊤(x)

(

R− ε3
2c

2+c2

c2
I2

)

χ(x)dx

So that we get by application of Jensen’s inequality:

V̇0(X,u) 6 −ε3

(

|X |2n + 2|u(0)|2 +
2 + c2

2c2
‖χ‖2

)

. (19)

The most important part of the proof lies in the following
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trick. Since (4) holds, we get:

V̇0(X,u) 6 −ε3
(

|X |2n + ‖u‖2 + ‖ut‖
2 + c2‖ux‖

2
)

−ε3
2
c2
‖ut‖2 − ε3

(

2|u(0)|2 + 2‖ux‖2 − ‖u‖2
)

= −ε3‖(X,u)‖2
H
− ε3

2
c2
‖ut‖2

−ε3
(

2|u(0)|2 + 2‖ux‖2 − ‖u‖2
)

.

Moreover, Lemma 1 ensures that the last term of the

previous expression is negative so that we have V̇0(X,u) 6

−ε3‖(X,u)‖2
H

, which concludes this proof of existence.

5) Conclusion: Finally, there exist ε1, ε2, ε3 > 0 such that

equation (11) holds for a functional V0. Hence V0(·) is an

equivalent norm of ‖ · ‖H which is strictly decreasing. It

means, according to Propositions 1 and 2 that there exists

a unique solution to system (1) converging in H to the

solution equilibrium (0, 0). These conditions also bring :

∀t > 0, V̇0(t) +
ε3
ε2
V0(t) 6 0 and

‖(X(t), u(t))‖2
H

6 1
ε1
V0(t) 6

1
ε1
V0(0)e

−
ε3
ε2

t

6 ε2
ε1
‖(X(0), u(0))‖2

H
e
−

ε3
ε2

t
,

which shows the exponential convergence of all trajectories of

system (1). In other words, the norm ‖ · ‖H is exponentially

decreasing along the trajectories of system (1).

Remark 6: There is no need to specify A+BK non singular

in the previous theorem. Indeed, if the conditions of Theorem

1 are satisfied, then for e1 = [ In 0n,4 ]
⊤

, the inequality

Ψ0(1, 1) = e⊤1 Ψ0e1 ≺ 0 holds. After some simplifications,

we get:

Ψ0(1, 1) = He
(

(A+BK)⊤Q
)

≺ 0, (20)

for some matrix Q depending on R, S and P0. Inequality

(20) implies that A+BK is not singular. As Q is apparently

not symmetric, it is not possible to conclude directly on the

stability of A+BK but an example will show that it does not

need to be stable.

Remark 7: It is also worth noting that LMI (8) is affine with

respect to matrices A,B, which allows us, in a straightforward

manner, to extend this theorem to uncertain ODE systems

subject, for instance, to polytopic-type uncertainties.

IV. EXTENDED STABILITY ANALYSIS

A. Main motivation

In the previous analysis, we have proposed an auxiliary

system presented in (5) helping us to define a new Lyapunov

functional for system (1). The notable aspect is that the term

X0 =
∫ 1

0
χ(x)dx appears naturally in the dynamics of system

(1). In light of the previous work on integral inequalities by

[24], this term can also be interpreted as the projection of

the modified state χ over the set of constant functions in the

sense of the canonical inner product in L2. One may therefore

enrich system (5) by additional projections of χ over the next

Legendre polynomials, as one can read in [24] in the context

of time-delay systems.

The family of Legendre polynomials, denoted {Lk}k∈N
, is

an orthogonal family respect to the L2 inner product. They

are shifted from the traditional ones as described in [9]. and

their definition is not required. Only some of their properties

are considered.

B. Preliminaries

The previous discussion leads us to define additional vectors

for any function χ in L2:

∀k ∈ N, Xk =

∫ 1

0

χ(x)Lk(x)dx,

and the augmented vector XN , at a given order N ∈ N, as

follow:

XN =
[

X⊤
X

⊤
0 · · · X

⊤
N

]⊤

. (21)

Following the same methodology as for Theorem 1, this

specific structure leads us to introduce a new Lyapunov

functional, inspired from (7), with PN ∈ S
n+2N+2
+ :

VN (X,u) = X⊤
NPNXN + V(u). (22)

In order to follow the same procedure, several technical

extensions are required. Indeed, the stability conditions issued

from the functional V0, are coming from Jensen’s inequality

and an explicit expression of the time derivative of X0.

Therefore, it is necessary to provide an extended version of

the Jensen inequality and of this differentiation rule. These

technicals steps are summarized in the two following lemmas.

Lemma 2: For any function χ ∈ L2 and symmetric positive

matrix R ∈ S
2
+, the following Bessel-like integral inequality

holds for all N ∈ N:

∫ 1

0

χ⊤(x)Rχ(x)dx >

N
∑

k=0

(2k + 1)X⊤
k RXk. (23)

This inequality includes Jensen’s inequality as the particular

case N = 0, which was one of the key element in the proof of

Theorem 1. This comment allows us to think that the previous

lemma is the appropriate extension of the Jensen’s inequality

to address the stability analysis using the new Lyapunov

functional (22) with the augmented state XN .

Even if the proof can be found in [2], we would like to

point out that it is based on the following equality, which

results from the orthogonality of the Legendre polynomials:

∫ 1

0

χ⊤(x)Rχ(x)dx −
N
∑

k=0

(2k + 1)X⊤
k RXk

=

∫ 1

0

χ⊤
N (x)RχN (x) ≥ 0,

where χN (x) = χ(x) −
∑N

k=0(2k + 1)XkLk(x) can be

interpreted as the error approximation between function χ and

its orthogonal projection over the family {Lk}k6N .

The next lemma is concerned by the differentiation of Xk.

Lemma 3: For any function χ ∈ L2, the following expres-

sion holds for any N in N:
[

Ẋ0

...
ẊN

]

= c1Nχ(1)− c1̄Nχ(0)− cLN

[

X0

...
XN

]

,

where
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LN =

[

ℓ0,0I2 ··· 02

...
. . .

...
ℓN,0I2 ··· ℓN,NI2

]

, 1N =

[

I2

...
I2

]

, 1̄N =

[

I2

...
(−1)NI2

]

, (24)

and

ℓk,j =







(2j + 1)(1− (−1)j+k), j 6 k − 1,

0, otherwise.
(25)

Proof : The proof of this lemma is presented in the appendix

of this paper because of its technical nature. It relies on the

properties of the Legendre polynomials that are detailed there

as well. �

C. Main result

Taking advantage of the previous lemmas, the following

extension to Theorem 1, using the extra-state XN , is stated:

Theorem 2: Consider the system defined in (1) for a given

speed c > 0, a viscous damping c0 > 0 with initial conditions

(X0, u0, v0) ∈ H compatible with the boundary conditions.

Assume that for a given integer N ∈ N, there exist PN ∈
S
n+2N+2
+ and S,R ∈ S

2
+ such that inequality

ΨN = He
(

Z⊤
NPNFN

)

− cR̃N

+ c
(

H⊤
N (S +R)HN −G⊤

NSGN

)

≺ 0

holds, where

FN =
[

In+2N+2 0n+2N+2,2

]

, ZN =
[

N⊤
N cZ⊤

N

]⊤

,

NN =
[

A+BK B̃ 0n,2(N+1)

]

,

ZN = 1NHN+1̄NGN−
[

02N+2,n LN 02N+2,2

]

,

GN =
[

02,n+2N+2 g

]

+
[

−K
01,n

]

NN ,

HN =
[

02,n+2N+2 h

]

+
[

01,n
K

]

NN ,

R̃ = diag (0n, R, 3R, · · · , (2N + 1)R, 02) .

(26)

and where matrices LN , 1N and 1̄N are given in (24). Then,

the coupled infinite dimensional system (1) is exponentially

stable in the sense of norm ‖ · ‖2H and there exist γ > 1 and

δ > 0 such that the energy estimate (10) holds.

Remark 8: Remarks 5 and 6 also apply for this theorem.

More particularly, the condition of the previous theorem

requires, to be feasible, that matrix A+BK is non singular.

Remark 9: The article [24] shows that this methodology

introduces a hierarchy. In other words, the set

CN =
{

c > 0 s.t. ∃PN ∈ S
n+2(N+1)
+ , S, R ∈ S

2
+,ΨN ≺ 0

}

which represents the values of parameter c such that the LMIs

of Theorem 2 are feasible for a given system (1) satisfies CN ⊆
CN+1. That means, if there exists a solution to Theorem 2 at

an order N0, then there also exists a solution for any order

N ≥ N0. The proof is very similar to the one given in [24].

We can proceed by induction with PN+1 =
[

PN 0
0 εI2

]

and a

sufficiently small ε > 0. Then, ΨN ≺ 0 ⇒ ΨN+1 ≺ 0. The

calculus are tedious and technical and we do not intend to give

them in this article. They relies in particular on the derivation

of the Legendre polynomials which can be expressed in terms

of strictly lower order Legendre polynomials (because LN is

strictly lower triangular).

D. Proof of Theorem 2

The proof is following the same reasoning than for Theorem

1 and consists in proving the existence of positive scalars ε1, ε2
and ε3 such that the functional VN verifies inequalities (11).

1) Existence of ε1: It strictly follows the same line as in

Theorem 1 and is therefore omitted.

2) Existence of ε2: For ε2, as PN , S, R ≻ 0, there exists

ε2 > 0 such that:

PN � diag
(

ε2In,
ε2
4 diag {(2k + 1)In}k∈(0,N)

)

,

(S + xR) � S +R � ε2
4 I2, ∀x ∈ (0, 1).

From equation (22), we get:

VN (X,u) 6 ε2|X |2n+
ε2

4

(

N
∑

k=0

(2k+1)X⊤
k Xk + ||χ||2

)

6 ε2
(

|X |2n+
1
2 ||χ||

2
)

.

While the first inequality is guaranteed by the constraint

(S+xR) � ε2
4 I2, for all x ∈ (0, 1), the last inequality results

from the application of Bessel inequality (23). Therefore,

following the same procedure as in the proof of Theorem

1 after equation (12), there indeed exists ε2 > 0 such that

VN (X,u) 6 ε2‖(X,u)‖2
H

.

3) Existence of ε3: Differentiating VN defined in (22) along

the trajectories of system (1) leads to:

V̇N (X,u) = He















Ẋ
Ẋ0

...
ẊN







⊤

PN





X
X0

...
XN













+ V̇(u).

The aim here is to find an upper bound of V̇N using

the following extended state: ξN =
[

X⊤
N ut(1) cux(0)

]⊤

.

Using equation (15) and Lemma 3, we note that XN =
FNξN , ẊN = ZNξN , χ(1) = HNξN , χ(0) = GNξN where

the matrices FN , ZN , HN , GN are given in (26). Then we

can write:

V̇N (X,u) = ξ⊤NΨNξN + c

N
∑

k=0

X
⊤
k (2k + 1)RXk

− c

∫ 1

0

χ⊤(x)Rχ(x)dx. (27)

Since R ≻ 0 and ΨN ≺ 0, there exists ε3 > 0 such that:

R � ε3
2c

2+c2

c2
I2,

ΨN � −ε3diag
(

In +K⊤K,

2+c2

2c2 diag{I2, 3I2, . . . , (2N+1)I2}, 02
)

.

(28)

Using (28) in order to apply Bessel’s inequality, equation

(27) becomes:

V̇N (X,u) 6 −ε3

(

|X |2n + 2|u(0)|2 +
2 + c2

2c2
||χ||2

)

,

which is similar to equation (19) in the proof of Theo-

rem 1. Therefore, following the same procedure, we obtain

V̇N (X,u) 6 −ε3 ‖(X,u)‖2
H

.
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Fig. 1: Minimum wave speed cmin as a function of c0 for

System (1) to be stable. The values for A, B and K are given

by equations (29), (30) and (31).

4) Conclusion: There exist ε1, ε2 and ε3 positive reals such

that inequalities (11) are satisfied and the exponential stability

of system (1) is therefore guaranteed.

V. EXAMPLES

Three examples of stability for problem (1) are provided

here. The solver used for the LMIs is sdp3 with the YALMIP

toolbox (by [17]).

A. Problem (1) with A and A+BK Hurwitz

In this first part, the considered system is defined as follow:

A =
[

−2 1
0 −1

]

, B = [ 11 ] , K = [ 0 −2 ] . (29)

Matrices A and A+BK are stable. The ODE and the PDE

are then stable if they are not coupled. As shown in Figure 1a,

there exists a minimum wave speed called here cmin which is

a function of the damping c0 for the system to be stable.

The phenomenon induced by the coupling can be under-

stood as the robustness of the ODE to a disturbance generated

by a wave equation. Intuitively, if the wave speed is large

enough, the perturbation tends to 0 fast enough for the ODE to

keep its stability behavior. Another important thing to notice is

the hierarchy property i.e. the decrease of cmin as N increases.

B. Problem (1) with A+BK Hurwitz but an unstable A.

This time, the system is described by the following matrices:

A = [ 2 1
0 1 ] , B = [ 11 ] , K = [−10 2 ] . (30)

As A is not Hurwitz, we are studying the stabilization of the

ODE through a communication modeled by the wave equation.

For the same reason as before, the wave must be fast enough

for the control not to be too much delayed but also with a

moderated dumping to transfer the state variable X through

the PDE equation. Intuitively, we are lead to introduce a trade-

off between cmin and c0, introducing then a c0max as it is

possible to see in Figure 1b.

Some numerical simulations have been done on this last

example. Figure 1b shows that for system (30) with c0 =
0.15, the minimum wave speed is cmin = 6.83. The numerical

stability can also be seen in Figure 2 and indeed, the system

is at the boundary of the stable area in Figure 2b and unstable

for smaller values.

C. Problem (1) with A and A+BK not Hurwitz.

Consider an open loop unstable system defined by:

A =
[

0 1
−2 0.1

]

, B = [ 01 ] , K = [ 1 0 ] . (31)

Gain K has been chosen such that the closed loop is

also unstable. Surprisingly, the proposed algorithm give some

couples (c, c0) for which the whole system (1) is stable. The

results are depicted in Figure 1c. Notice that for N = 0, the

LMIs do not give any stability results. For N > 1, there is

a stability area for which the slope of the right asymptotic

branch is decreasing at each order. Hence, it appears that the

introduction of the string equation in the feedback loop helps

the stabilization of the closed loop.

VI. CONCLUSION

A hierarchy of stability criteria has been provided for the

stability of systems described by the interconnection between

a finite dimensional linear system and an infinite dimensional

system modeled by a string equation. The proposed method-

ology relies on an extensive use of Bessel’s inequality which

allows us to design a new an accurate Lyapunov functional.

This new class encompasses the classical notion of energy

proposed in that case. In particular, the stability of the closed-

loop or open-loop system is not a requirement anymore. Future

works include the study of robustness of this approach and the

controller design.

APPENDIX

A. Proof of Lemma 3

For a given integer k in N, the differentiating of Xk along

the trajectories of (3) yields

Ẋk =

∫ 1

0

χt(x)Lk(x)dx = c

∫ 1

0

χx(x)Lk(x)dx.

Then, integrating by parts, we get

Ẋk = c
(

[χ(x)Lk(x)]
1
0 −

∫ 1

0 χ(x)L′
k(x)dx

)

. (32)
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(a) c = 10 (b) c = 6.83 (c) c = 6.5

Fig. 2: Chart of u for system (30) with the parameters: u0(x) = (cos(πx) + 1) KX0

2 , X0 = [1 1]
⊤

, v0(x) = 0 and c0 = 0.15
for 3 values of c. These results are obtained using Euler forward as a numerical scheme.

In order to derive the expression of Ẋk, we will use the

following properties of the Legendre polynomials. On the one

hand, the values of Legendre polynomials at the boundaries

of [0 1] are given by Lk(0) = (−1)k and Lk(1) = 1. On the

other hand, the Legendre polynomials verifies the following

differentiation rule:

d

dx
Lk(x) =















k−1
∑

j=0

(2j+1)(1−(−1)j+k)Lj(x), if k ≥ 1,

0, if k = 0.

Hence, injecting these expressions into (32) leads to:

Ẋk = c
(

χ(1, t)− (−1)kχ(0)
)

− c
∑N

j=0 ℓ
kj
N Xj

where the coefficient ℓ
kj
N are defined in equation (25). The end

of the proof consists in gathering the previous expression from

k = 1 to k = N , leading to the definition of matrices LN , 1N
and 1̄N given in (24).
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