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Lyapunov stability analysis of a string equation
coupled with an ordinary differential system

Matthieu Barreau, Alexandre Seuret, Frédéric Gouaisbaut and Lucie Baudouin

Abstract—This paper considers the stability problem of a linear
time invariant system in feedback with a string equation. A
new Lyapunov functional candidate is proposed using augmented
states which enriches and encompasses the classical function-
als proposed in the literature. It results in tractable stability
conditions expressed in terms of linear matrix inequalities. This
methodology follows from the application of the Bessel inequality
to the projections over the Legendre polynomials. Numerical
examples illustrate the potential of our approach through three
scenari: a stable ODE perturbed by the PDE, an unstable open-
loop ODE and an unstable closed-loop ODE stabilized by the
PDE.

Index Terms—String equation, Ordinary differential equation,
Lyapunov functionals, LMI.

I. INTRODUCTION

This paper presents a novel approach to assess stability of
a heterogeneous system composed of the interconnection of a
partial differential equation (PDE), more precisely a damped
string equation, with a linear ordinary differential equation
(ODE). While the topic of stability and control of PDE systems
has a rich literature between applied mathematics [7], [16] and
automatic control [18]; the stability analysis (and the control)
of such a coupled system belongs to a recent research area.
To cite a few related results, one can refer to [4], [5], [23]
where an ODE is interconnected with a transport equation, to
[25] for a heat equation, to [13] for the wave equation and to
[27] for the beam equation.

Generally, the PDE is viewed as a perturbation to be com-
pensated for instance using a backstepping method as proposed
in [14], where infinite dimensional controllers are provided
to cope with the undesirable effect of the PDE. Another
interesting point of view relies on the converse approach: the
ODE system can be seen as a finite dimensional boundary
controller for the PDE (see [10], [20], [21]). A last strategy
describes a robust control approach, aiming at characterizing
the robustness of the PDE-ODE interconnection [11].

In the present paper, we consider a damped string equation,
i.e. a stable one-dimensional wave equation which is perturbed
at its boundary by a stable or unstable ODE. The proposed
method to assess stability is inspired by the recent develop-
ments on the stability analysis of time-delay systems based on
Bessel inequality and Legendre polynomials [24]. Since time-
delay systems represent a particular class of systems coupling
a transport PDE with a classical ODE system (see for instance
[2]), the main motivation of this work is to show how this
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methodology can be adapted to a larger class of PDE/ODE
systems as demonstrated with the heat equation in [1].

Compared to the literature on coupled PDE/ODE systems,
the proposed methodology aims at designing a new Lyapunov
functional, integrating some cross-terms merging the ODE’s
and the PDE’s usual terms. This new class of Lyapunov
functional encompasses the classical notion of energy usually
proposed in the literature by offering more flexibility. Hence,
it allows us to guarantee stability for a larger set of systems,
for instance, unstable open-loop ODE and, for the first time
to the best of our knowledge, even an unstable closed-loop
ODE; meaning that the PDE helps for the stabilization.

The paper is organized as follows. The next section for-
mulates the problem and provides some general results on
the existence of solutions and equilibrium. In Section 3, after
a modeling phase inspired by the Riemann coordinates, a
generic form of Lyapunov functional is introduced, and its
associate analysis leads to a first stability theorem. Then, in
Section 4, an extension using Bessel inequality is provided.
Finally, Section 5 discusses the results on three examples. The
last section draws some conclusion and perspectives.

Notations: Ω is the closed set [0, 1] and R+ = [0,+∞).
(x, t) 7→ u(x, t) is a multi-variable function from Ω× R+ to
R. The notation ut stands for ∂u

∂t . We also use the notations
L2 = L2(Ω;R) and for the Sobolev spaces: Hn = {z ∈
L2;∀m 6 n, ∂

mz
∂xm ∈ L2} and particularly H0 = L2. The

norm in L2 is ‖z‖2 =
∫

Ω
|z(x)|2dx. For any square matrices

A,B, the operations ‘He’ and ‘diag’ are defined as follows:
He(A) = A + A> and diag(A,B) = [A 0

0 B ]. A symmetric
positive definite matrix P of Rn×n belongs to the set Sn+ or
we write more simply P � 0.II. PROBLEM STATEMENT

We consider the coupled system described by

Ẋ(t) = AX(t) +Bu(1, t), t > 0, (1a)

utt(x, t) = c2uxx(x, t), x ∈ Ω, t > 0, (1b)
u(0, t) = KX(t), t > 0, (1c)
ux(1, t) = −c0ut(1, t), t > 0, (1d)

u(x, 0) = u0(x), ut(x, 0) = v0(x), x ∈ Ω, (1e)

X(0) = X0, (1f)

with the initial conditions X0 ∈ Rn and (u0, v0) ∈ H2 ×H1

such that equations (1c) and (1d) are respected. They are then
called “compatible” with the boundary conditions. A,B and
K are time-invariant matrices of appropriate size.

Remark 1: When no confusion is possible, parameter t may
be omitted and so do the domains of definition.

This system can be viewed as an interconnection in feed-
back between a linear time invariant system (1a) and an infinite
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dimensional system modeled by a string equation (1b). The
latter is a one dimension hyperbolic PDE, representing the
evolution of a wave of speed c > 0 and amplitude u. To keep
the content clear, the dimension of x 7→ u(x, ·) is assumed to
be one but the calculations are done as if it is a vector of any
dimension. The measurement is the state u at x = 1 which
is the right end of the string and the control is a Dirichlet
actuation (equation (1c)) because it affects directly the state
u and not its derivative. Another boundary condition must be
added. It is defined at x = 1 by ux(1) = −c0ut(1). This is a
well-known damping condition whent c0 > 0 (see for example
[15]). As presented in [3], we find this kind of systems when
modeling a drilling mechanism. The control is then given at
one end and the measure is done at the other end.

More generally, this system can be seen either as the control
of the PDE by a finite dimensional dynamic control law
generated by an ODE [6] or on the contrary the robustness of
a linear closed loop system with a control signal conveyed by
a damped string equation. On the first scenario, both the ODE
and the PDE are stable and the stability of the coupled system
is studied. The second case corresponds to an unstable but
stabilizable ODE connected to a stable PDE. To sum up, this
paper focuses on the stability analysis of closed-loop coupled
system (1) with a potentially unstable closed-loop ODE but a
stable PDE. This differs significantly from the backstepping
methodology presented in [13] which aims at designing an
infinite dimensional control law and then ensure the stability
of a cascaded ODE-PDE systems with a closed-loop stable
ODE.
A. Existence and regularity of solutions

This subsection is dedicated to the existence and regularity
of solutions (X,u, ut) to system (1). We first introduce Hm =
Rn×Hm×Hm−1 for m > 1. We consider the classical norm
on the Hilbert space H = H1 = Rn ×H1 × L2:

‖(X,u, v)‖2H = |X|2n + ‖u‖2 + c2‖ux‖2 + ‖v‖2.

This norm can be seen as the sum of the energy of the ODE
system and the one of the PDE.

Remark 2: A more natural norm for space H would be
|X|2n+‖u‖2 +‖ux‖2 +‖v‖2 which is equivalent to ‖·‖2H. The
norm used here makes the calculations easier in the sequel.

Once the space is defined, we model system (1) using the
following linear unbounded operator T : D(T )→ H:

T
(
X
u
v

)
=

(
AX+Bu(1)

v
c2uxx

)
and

D(T ) =
{

(X,u, v) ∈ H2, u(0) = KX,ux(1) = −c0v(1)
}
.

This operator T is said to be dissipative with respect to a
norm if its time-derivative along the trajectories generated by
T is strictly negative. The goal of this paper is then to find
an equivalent norm to ‖ · ‖H which allows us to refine the
dissipativity analysis of T . This equivalent norm is derived
from a general formulation of a Lyapunov functional, whose
parameters are chosen using a semi-definite programming
optimization process.
Beforehand, from the semi-group theory, we propose the
following result on the existence of solutions for (1).

Proposition 1: If there exists a norm on H for which the
linear operator T is dissipative with A + BK non singular,
then there exists a unique solution (X,u, ut) of system (1)
with initial conditions (X0, u0, v0) ∈ D(T ). Moreover, the
solution has the following regularity property: (X,u, ut) ∈
C(0,+∞,H).

Proof : This proof follows the same lines than in [19]. Ap-
plying Lumer-Phillips theorem (p103 from [26]), as the norm
is dissipative, it is enough to show that for all λ ∈ (0, λmax)
with λmax > 0, D(T ) ⊂ R (λI − T ) where R is the range
operator. Let (r, g, h) ∈ H, we want to show that for this
system, there exists (X,u, v) ∈ D(T ) for which the following
set of equation is verified:

λX −AX −Bu(1) = r, (2a)
λu(x)− v(x) = g(x), (2b)

λv(x)− c2uxx(x) = h(x), (2c)

for all x ∈ Ω and a given λ > 0. Equations (2b), (2c) gives:

∀x ∈ (0, 1), u(x) = k1 exp(λc−1x)+k2 exp(−λc−1x)+G(x)

where G(x) =
∫ x

0
λg(s)+h(s)

λc sinh
(
λ
c (s− x)

)
ds ∈ H2.

k1, k2 ∈ R are constants to be determined. Using the boundary
conditions u(0) = KX , we get:

∀x ∈ (0, 1), u(x) = 2k1sinh(λc−1x) +KXe−λc
−1x+G(x),

Taking its derivative at the boundary we get:

ux(1) = 2λc−1k1cosh(λc−1)− λc−1KXe−λc
−1

+G1,

with G1 ∈ R a known scalar. We also have ux(1) + c0v(1) =
0, leading to u(1) = G2 + KXf(λc−1) with G2 ∈ R and
f(y) =

(
1− (cc0−1)sinh(y)

2(cosh(y)+cc0sinh(y))

)
e−y . Then using (2a), we

get: (
λIn − (A+BKf(λc−1))

)
X = r +BG2.

Since f(λc−1) tends to 1 when λ tends to 0 and A+BK
is non singular, there exists λmax > 0 such that A +
BKf(λmaxc

−1) is non singular and

∀λ ∈ (0, λmax), det
(
λIn − (A+BKf(λc−1))

)
6= 0.

Then, there is a unique X ∈ Rn for a given (r, f, h) ∈ H.
We immediately get that (X,u, v) is in D(T ). Then for λ ∈
(0, λmax), D(T ) ⊂ R(λI − T ). The regularity property falls
from Theorem 4.1.6 of [26]. �

B. Equilibrium point

An equilibrium xeq = (Xe, ue, ve) ∈ D(T ) of system (1)
is such that Txeq = (0n,1, 0, 0) = 0H, i.e. it verifies the
following linear equations:

0 = AXe +Bue(1), (3a)

0 = c2∂xxue(x), x ∈ (0, 1), (3b)
ve(x) = 0, x ∈ (0, 1), (3c)
ue(0) = KXe, (3d)

∂xue(1) = 0. (3e)

Using equation (3b), we get ue as a first order polynomial in
x but in accordance to equation (3e), ue is a constant function.
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Then, using equation (3d), we get ue = KXe. That leads to:
(A+BK)Xe = 0. We get the following proposition:

Proposition 2: An equilibrium (Xe, ue, ve) ∈ H of system
(1) verifies (A+BK)Xe = 0, ue = KXe, ve = 0. Moreover,
if A + BK is not singular, system (1) admits a unique
equilibrium (Xe, ue, ve) = (0n,1, 0, 0) = 0H.

Remark 3: Using Proposition 1, A + BK must be not
singular to get uniqueness of the solution. This requirement
implies the existence of a unique equilibrium.

III. A FIRST STABILITY ANALYSIS BASED ON MODIFIED
RIEMANN COORDINATES

This part is dedicated to the construction of a Lyapunov
functional candidate. We introduce therefore a new structure
based on variables directly related to the states of system (1).

A. Modified Riemann coordinates
The PDE considered in system (1) is of second order in

time. As we want to use some tools already designed for first
order systems, we propose to define some new states using
modified Riemann coordinates, which satisfy a set of coupled
first order PDEs and diagonalize the operator. Let us introduce
these coordinates, defined as follows:

χ(x) =

 ut(x) + cux(x)

ut(1− x)− cux(1− x)

 =

 χ+(x)

χ−(1− x)

 .
The introduction of such variables is not new and the reader

can refer to articles [22], [3] or [8] and references therein
about Riemann invariants. χ+ and χ− are eigenfunctions of
equation (1b) associated respectively to the eigenvalues c and
−c. Therefore, using χ−(1 − x), the previous equation leads
to a transport PDE for x ∈ Ω:

∀t ≥ 0,∀x ∈ Ω, χt(x, t) = cχx(x, t). (4)

Remark 4: The norm of the modified state χ can be directly
related to the norm of the functions ut and ux. Indeed simple
calculations and a change of variables give:

‖χ‖2 = 2
(
‖ut‖2 + c2‖ux‖2

)
. (5)

Remark 5: This manipulation does not aim at providing
an equivalent formulation for system (1) but at identifying a
manner to build a Lyapunov functional for system (1).

The second step is to understand how the extra-variable χ
interacts with the ODE of system (1). Hence, we notice:

Ẋ = AX +B (u(1)− u(0) +KX) ,

= (A+BK)X +B
∫ 1

0
ux(x)dx.

To express the last integral term using χ, we note that:

2c

∫ 1

0

ux(x)dx =

∫ 1

0

χ+(x)dx−
∫ 1

0

χ−(x)dx.

This expression allows us to rewrite the ODE system as
Ẋ = (A+BK)X + B̃X0 where X0 :=

∫ 1

0
χ(x)dx and B̃ =

1
2cB [ 1 −1 ]. The extra-state X0 follows the dynamics:

Ẋ0 = c

∫ 1

0

χx(x)dx = c [χ(1)− χ(0)] .

The ODE dynamic can then be enriched by considering an
extended system where X0 is viewed as a new dynamical state:

Ẋ0 =
[
A+BK B̃

02,n 02

]
X0 +

[
0n,2

cI2

]
(χ(1)− χ(0)) , (6)

with X0 = [X> X>0 ]>. Beware that X0 is not the initial ODE
data X0.
Hence, associated to the original system (1), we propose a set
of equation (4)-(6). They are linked to system (1) but enriched
by extra dynamics aiming at representing the interconnection
between the extended finite dimensional system and the two
transport equations. Nevertheless, these two systems are not
equivalent. The transport equation gives trajectories of ut and
ux but u can be defined within a constant. The second set of
equations just induces a formulation for a Lyapunov functional
candidate which is developed in the subsection below.

B. Lyapunov functional and stability analysis
The main idea is to rely on the auxiliary variables satisfying

equations (4) and (6) to define a Lyapunov functional for
the original system (1). The associated Lyapunov function of
ODE (6) is a simple quadratic term on the state X>0 P0X0,
with P0 ∈ Sn+2

+ . It introduces automatically a cross-term
between the ODE and the original PDE through X0. Hence,
the auxiliary equations of the previous paragraph shows a
coupling between a finite dimensional LTI system and PDE
(4) seen as a transport equation. For the PDE, inspired from
the literature on time-delay systems [2], [8], we provide a
Lyapunov functional:

V(u) =

∫ 1

0

χ>(x) (S + xR)χ(x)dx,

with S,R ∈ S2
+. The use of the modified Riemann coordinates

enables us to consider full matrices S and R. As the transport
described by the variable χ is going backward, R is multiplied
by x. Thereby, we propose a Lyapunov functional for system
(1) expressed with the extended state variable X0:

V0(X0, u) = X>0 P0X0 + V(u). (7)

This Lyapunov functional is actually made up of three terms:
• A quadratic term in X introduced by the ODE;
• A functional V for the stability of the string equation;
• A cross-term between X0 and X described by the ex-

tended state X0.
The idea is that this last contribution is interesting since we
may consider the stability of system (1) with an unstable ODE,
stabilized thanks to the string equation. At this stage, a stability
theorem can be derived using the Lyapunov functional V0.

Theorem 1: Consider the system defined in (1) with a given
speed c, a viscous damping c0 > 0 with initial conditions
(X0, u0, v0) ∈ H compatible with the boundary conditions.
Assume there exist P0 ∈ Sn+2

+ and S,R ∈ S2
+ such that the

linear matrix inequality Ψ0 ≺ 0 holds where

Ψ0 =He
(
Z>0 P0F0

)
−cR̃0+c

(
H>0 (S +R)H0 −G>0 SG0

)
(8)

F0 =
[
In+2 0n+2,2

]
, Z0 =

[
N>0 c(H0−G0)>

]>
,

N0 =
[
A+BK B̃ 0n,2

]
, R̃0 = diag (0n, R, 02) ,
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G0 =
[
02,n+2 g

]
+
[
−K
01,n

]
N0, g =

[
0 1

1+cc0 0

]
,

H0 =
[
02,n+2 h

]
+
[

01,n

K

]
N0, h =

[
1−cc0 0

0 −1

]
.

(9)

Then, there exists a unique solution to system (1) and it
is exponentially stable in the sense of ‖ · ‖H i.e. there exist
γ > 1, δ > 0 such that the following estimate holds for t > 0:

‖(X(t), u(t), ut(t))‖2H 6 γe−δt‖(X0, u0, v0)‖2H. (10)

Remark 6: Inequality Ψ0 ≺ 0 includes a necessary condition
given by e>3 Ψ0e3 ≺ 0, with e3 = [ 02,n+2 I2 ]

>, which is
h>(S + R)h − g>Sg ≺ 0. This inequality is guaranteed if
and only if the matrix g−1h has its eigenvalues inside the unit
cycle of the complex plan, i.e. c0 > 0, which is consistent
with the result on exponential stability of [12].

C. Proof of Theorem 1

The proof of stability is presented below.
1) Preliminaries: As a first step of this proof, an inequality

on u is presented below.
Lemma 1: For u ∈ H1, the following inequality holds:

‖u‖2 6 2‖ux‖2 + 2|u(0)|2.
Proof : Since ux ∈ H1(Ω), Young and Jensen inequalities
imply that for all x ∈ Ω:

u(x)2 =

(∫ x

0

us(s)ds+ u(0)

)2

6 2

∫ x

0

u2
s(s)ds+2|u(0)|2.

�
The proof of Theorem 1 consists in explaining how the LMI
conditions presented in Theorem 1 imply that there exist a
functional V and three positive scalars ε1, ε2 and ε3 such that
the following inequalities hold:

ε1‖(X,u, ut)‖2H 6 V (X,u) 6 ε2‖(X,u, ut)‖2H,

V̇ (X,u) 6 −ε3‖(X,u, ut)‖2H.
(11)

The next paragraphs aim at proving (11) in order to obtain
the convergence of the state to the equilibrium.

2) Well-posedness: If the conditions of Theorem 1 are
satisfied, then the inequality Ψ0(1, 1) = e>1 Ψ0e1 ≺ 0 holds
where e1 = [ In 0n,4 ]

>. After some simplifications, we get
He
(
(A+BK)>Q

)
≺ 0, for some matrix Q depending on

R, S and P0. This strict inequality requires that A + BK is
not singular and, in light of Propositions 1 and 2, the problem
is indeed well-posed and 0H is the unique equilibrium point.
Furthermore, note that since Q is not necessarily symmetric,
then matrix A+BK does not have to be Hurwitz.

3) Existence of ε1: Conditions P0 � 0 and S,R ∈ S2
+

mean that there exists ε1 > 0, such that for all x ∈ Ω:
P0 � ε1diag

(
In + 2K>K, 02

)
,

S + xR � S � ε1
2+c2

2c2 I2.

These inequalities lead to:

V0(X0, u) > ε1

(
|X|2n + |KX|2 + 2+c2

2c2 ‖χ‖
2
)

+
∫ 1

0
χ>(x)

(
S + xR− ε1

2+c2

2c2 I2

)
χ(x)dx

> ε1

(
|X|2n + |KX|2 + 2+c2

2c2 ‖χ‖
2
)
.

Using boundary condition (1c) and equality (5), it becomes

V0(X0, u) > ε1

(
|X|2n + ‖u‖2 + ‖ut‖2 + c2‖ux‖2

)
+ 2ε1

c2 ‖ut‖
2 + ε1

(
2‖ux‖2 + 2|u(0)|2 − ‖u‖2

)
.

Then, we apply Lemma 1 to ensure that the last term is
positive. It follows that V0(X0, u) > ε1 ‖(X,u, ut)‖2H, which
ends the proof of existence of ε1.

4) Existence of ε2: Since P0 ∈ Sn+2
+ and S,R ∈ S2

+, there
exists ε2 > 0 such that for x ∈ (0, 1):

P0 � diag(ε2In,
ε2
4 I2),

S + xR � S +R � ε2
4 I2.

From equation (7), we get:

V0(X0, u) 6 ε2

(
|X|2n + 1

4X
>
0 X0 + 1

4‖χ‖
2
)

+
∫ 1

0
χ>(x)

(
S + xR− ε2

4 I2
)
χ(x)dx

6 ε2

(
|X|2n + 1

2‖χ‖
2
) (12)

where we have used X>0 X0 6 ‖χ‖2, which is a result of
Jensen’s inequality. The proof of the existence of ε2 ends by
using (5) so that we get:

V0(X0, u) 6ε2

(
|X|2n+‖ut‖2+c2‖ux‖2

)
6 ε2‖(X,u, ut)‖2H.

5) Existence of ε3: Differentiating V0 in (7) along the
trajectories of system (1) leads to

V̇0(X0, u) = He
([

Ẋ
Ẋ0

]>
P0

[
X
X0

])
+ V̇(u).

Our goal is to express an upper bound of V̇0 thanks to the
extended vector ξ0 defined as follows:

ξ0 =
[
X> X>0 ut(1) cux(0)

]>
. (13)

Let us first concentrate on V̇ . Equation (4) yields:

V̇(u) = 2c

∫ 1

0

χ>x (x, t)(S + xR)χ(x, t)dx. (14)

Integrating by parts the last expression leads to:

V̇(u) = c

(
χ>(1)(S +R)χ(1)− χ>(0)Sχ(0)

−
∫ 1

0

χ>(x)Rχ(x)dx

)
. (15)

Then we note that Ẋ = N0ξ0, Ẋ0 = c(H0−G0)ξ0, χ(1) =
H0ξ0, χ(0) = G0ξ0, with ξ0 defined in (13) and the matrices
above in equation (9). We get X0 = F0ξ0 and Ẋ0 = Z0ξ0
which results in the following expression for V̇0:

V̇0(X0, u)= ξ>0
(
He
(
Z>0 P0F0

)
+cH>0(S+R)H0−cG>0SG0

)
ξ0

− c
∫ 1

0

χ>(x)Rχ(x)dx. (16)

Then, using the definition of Ψ0 given in (8), the previous
expression can be rewritten as follows:

V̇0(X0, u) = ξ>0 Ψ0ξ0+cX>0 RX0−c
∫ 1

0

χ>(x)Rχ(x)dx. (17)
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Since R � 0 and Ψ0 ≺ 0, there exists ε3 > 0 such that:

R � ε3

2c

2 + c2

c2
I2, (18a)

Ψ0 �− ε3diag
(
In + 2K>K,

2 + c2

2c2
I2, 02

)
. (18b)

Using (18b) and the boundary condition u(0) = KX , equation
(17) becomes:

V̇0(X0, u) 6 −ε3

(
|X|2n + 2|u(0)|2 + 2+c2

2c2 ‖χ‖
2
)

+cX>0

(
R− ε3

2c
2+c2

c2 I2

)
X0

−c
∫ 1

0
χ>(x)

(
R− ε3

2c
2+c2

c2 I2

)
χ(x)dx,

so that we get by application of Jensen’s inequality:

V̇0(X0, u) 6 −ε3

(
|X|2n + 2|u(0)|2 +

2 + c2

2c2
‖χ‖2

)
. (19)

The most important part of the proof lies in the following
trick. Since (5) holds, we get:

V̇0(X0, u) 6 −ε3‖(X,u, ut)‖2H − ε3
2
c2 ‖ut‖

2

−ε3

(
2|u(0)|2 + 2‖ux‖2 − ‖u‖2

)
.

Moreover, Lemma 1 ensures that the last term of the
previous expression is negative so that we have V̇0(X0, u) 6
−ε3‖(X,u, ut)‖2H, which concludes this proof of existence.

6) Conclusion: Finally, there exist ε1, ε2, ε3 > 0 such
that (11) holds for a functional V0. Hence V0(·) defines
an equivalent norm to ‖ · ‖H and is dissipative. It means,
according to Propositions 1 and 2, that there exists a unique
solution to system (1) in H. Equation (11) also brings:
V̇0(X0, u) + ε3

ε2
V0(X0, u) 6 0 and

∀t > 0, ‖(X(t), u(t), ut(t))‖2H 6
ε2

ε1
e−

ε3
ε2
t‖(X0, u0, v0)‖2H,

which shows the exponential convergence of all the trajectories
of system (1) to the unique equilibrium 0H. In other words,
the solution to system (1) is exponentially stable.

Remark 7: It is also worth noting that LMI (8) is affine with
respect to matrices A,B, which allows, in a straightforward
manner, to extend this theorem to uncertain ODE systems
subject to polytopic-type uncertainties for instance.

IV. EXTENDED STABILITY ANALYSIS

In the previous analysis, we have proposed an auxiliary
system presented in (4)-(6) helping us to define a new Lya-
punov functional for system (1). The notable aspect is that
the term X0 =

∫ 1

0
χ(x)dx appears naturally in the dynamics

of system (1). In light of the previous work on integral
inequalities in [24], this term can also be interpreted as the
projection of the modified state χ over the set of constant
functions in the sense of the canonical inner product in L2.
One may therefore enrich (6) by additional projections of χ
over the higher order Legendre polynomials, as one can read
in [24] in the context of time-delay systems. The family of
shifted Legendre polynomials, denoted {Lk}k∈N and defined
over [0, 1]t by Lk(x) = (−1)k

∑k
l=0(−1)l

(
k
l

) (
k+l
l

)
xl with

(
k
l

)
= k!

l!(k−l)! , forms an orthogonal family with respect to
the L2 inner product (see [9] for more details).

A. Preliminaries

The previous discussion leads to the definition of the
projection of any function χ in L2 on the family {Lk}k∈N:

∀k ∈ N, Xk :=

∫ 1

0

χ(x)Lk(x)dx,

An augmented vector XN is naturally derived for any N ∈ N:

XN =
[
X> X>0 · · · X>N

]>
. (20)

Following the same methodology as in Theorem 1, this
specific structure suggests to introduce a new Lyapunov func-
tional, inspired from (7), with PN ∈ S

n+2(N+1)
+ :

VN (XN , u) = X>NPNXN + V(u). (21)

In order to follow the same procedure, several technical
extensions are required. Indeed, the stability conditions issued
from the functional V0 are proved using Jensen’s inequality
and an explicit expression of the time derivative of X0.
Therefore, it is necessary to provide an extended version
of Jensen’s inequality and of this differentiation rule. These
technicals steps are summarized in the two following lemmas.

Lemma 2: For any function χ ∈ L2 and symmetric positive
matrix R ∈ S2

+, the following Bessel-like integral inequality
holds for all N ∈ N:∫ 1

0

χ>(x)Rχ(x)dx >
N∑
k=0

(2k + 1)X>k RXk. (22)

This inequality includes Jensen’s inequality as the particular
case N = 0 and it suggests that this lemma is the appropriate
extension and should help to address the stability analysis
using the new Lyapunov functional (21) with the augmented
state XN .

The proof of Lemma 2 is based on the expansion of the pos-
itive scalar ‖R1/2χN‖2 where χN (x) = χ(x) −

∑N
k=0(2k +

1)XkLk(x) can be interpreted as the approximation error
between χ and its orthogonal projection over the family
{Lk}k6N .

The next lemma is concerned by the differentiation of Xk.
Lemma 3: For any function χ ∈ L2, the following expres-

sion holds for any N in N:[
Ẋ0

...
ẊN

]
= c1Nχ(1)− c1̄Nχ(0)− cLN

[
X0

...
XN

]
,

where

LN =

[
`0,0I2 ··· 02

...
. . .

...
`N,0I2 ··· `N,NI2

]
, 1N =

[
I2
...
I2

]
, 1̄N =

[ I2
...

(−1)NI2

]
, (23)

with `k,j = (2j + 1)(1− (−1)j+k) if j 6 k and 0 otherwise.
Proof : The proof of this lemma is presented in appendix

because of its technical nature. �



6

B. Main result

Taking advantage of the previous lemmas, the following
extension to Theorem 1 is stated:

Theorem 2: Consider system (1) with a given speed c > 0, a
viscous damping c0 > 0 and initial conditions (X0, u0, v0) ∈
H compatible with the boundary conditions. Assume that, for
a given integer N ∈ N, there exist PN ∈ S

n+2(N+1)
+ and

S,R ∈ S2
+ such that inequality

ΨN = He
(
Z>NPNFN

)
− cR̃N

+ c
(
H>N (S +R)HN −G>NSGN

)
≺ 0 (24)

holds, where

FN =
[
In+2N+2 0n+2N+2,2

]
, ZN =

[
N>N cZ>N

]>
,

NN =
[
A+BK B̃ 0n,2(N+1)

]
,

ZN = 1NHN−1̄NGN−
[
02N+2,n LN 02N+2,2

]
,

GN =
[
02,n+2N+2 g

]
+
[
−K
01,n

]
NN ,

HN =
[
02,n+2N+2 h

]
+
[

01,n

K

]
NN ,

R̃ = diag (0n, R, 3R, · · · , (2N + 1)R, 02) ,

(25)

and where matrices LN , 1N and 1̄N are given in (23).
Then, the coupled infinite dimensional system (1) is expo-

nentially stable in the sense of norm ‖ · ‖2H and there exist
γ > 1 and δ > 0 such that energy estimate (10) holds.

Remark 8: Remark 6 also applies for this theorem and it
means that c0 must be strictly positive. In other words, these
theorems cannot ensure the stability of the interconnection if
the PDE is undamped.
Also Note that Theorem 2 with N = 0 leads exactly to the
same conditions as presented in Theorem 1.

Remark 9: This methodology introduces a hierarchy in the
stability conditions inspired from what one can read in [24]
in the case of time-delay systems, we also have the same
characteristic. More precisely, the sets

CN =
{
c > 0 s.t. ∃PN ∈ S

n+2(N+1)
+ , S,R ∈ S2

+,ΨN ≺ 0
}

representing the parameters c such that the LMI of Theorem
2 is feasible for a given system (1) and for a given N ∈ N,
satisfy the following inclusion CN ⊆ CN+1. In other words, if
there exists a solution to Theorem 2 at an order N0, then there
also exists a solution at any order N ≥ N0. The proof is very
similar to the one given in [24]. We can proceed by induction
with PN+1 =

[
PN 0
0 εI2

]
and a sufficiently small ε > 0. Then,

ΨN ≺ 0 ⇒ ΨN+1 ≺ 0. The calculations are tedious and
technical and we do not intend to give them in this article.

C. Proof of Theorem 2
The proof of dissipativity follows the same line as in

Theorem 1 and consists in proving the existence of positive
scalars ε1, ε2 and ε3 such that the functional VN verifies the
inequalities given in (11).

1) Well-posedness: Using a similar reasoning to Theo-
rem 1, a necessary condition for LMI (24) to be verified is
that A + BK is non singular. Then, according to Proposi-

tions 1 and 2, the problem is well-posed and 0H is the unique
equilibrium.

2) Existence of ε1: It strictly follows the same lines as in
Theorem 1 and is therefore omitted.

3) Existence of ε2: Since PN , S and R are definite positive
matrices, there exists ε2 > 0 such that:

PN � diag
(
ε2In,

ε2
4 diag {(2k + 1)In}k∈(0,N)

)
,

(S + xR) � S +R � ε2
4 I2, ∀x ∈ (0, 1).

Then, from equation (21), we get:

VN (XN , u) 6 ε2|X|2n+
ε2

4

(
N∑
k=0

(2k+1)X>k Xk + ||χ||2
)

6 ε2

(
|X|2n+ 1

2 ||χ||
2
)
.

While the first inequality is guaranteed by the constraint
(S+xR) � ε2

4 I2, for all x ∈ (0, 1), the second estimate results
from the application of Bessel inequality (22). Therefore,
following the same procedure as in the proof of Theorem 1
after equation (12), there indeed exists ε2 > 0 such that
VN (XN , u) 6 ε2‖(X,u, ut)‖2H.

4) Existence of ε3: Differentiating in time VN defined in
(21) along the trajectories of system (1) leads to:

V̇N (XN , u) = He


 Ẋ

Ẋ0

...
ẊN


>

PN

 X
X0

...
XN


+ V̇(u).

The goal here is to find an upper bound of V̇N using

the following extended state: ξN =
[
X>N ut(1) cux(0)

]>
.

Using equation (15) and Lemma 3, we note that XN =
FNξN , ẊN = ZNξN , χ(1) = HNξN , χ(0) = GNξN where
matrices FN , ZN , HN , GN are given in (25). Then we can
write:
V̇N (XN , u) = ξ>NΨNξN + c

N∑
k=0

X>k (2k + 1)RXk

− c
∫ 1

0

χ>(x)Rχ(x)dx. (26)

Since R � 0 and ΨN ≺ 0, there exists ε3 > 0 such that:

R � ε3
2c

2+c2

c2 I2,

ΨN � −ε3diag
(
In +K>K,

2+c2

2c2 diag{I2, 3I2, . . . , (2N+1)I2}, 02

)
.

(27)

Using (27) and Bessel’s inequality, equation (26) becomes:

V̇N (XN , u) 6 −ε3

(
|X|2n + 2|u(0)|2 +

2 + c2

2c2
||χ||2

)
,

which is comparable to equation (19) in the proof of
Theorem 1. Therefore, similarly, we obtain V̇N (XN , u) 6
−ε3 ‖(X,u, ut)‖2H.

5) Conclusion: There exist ε1, ε2 and ε3 positive reals such
that inequalities (11) are satisfied and the exponential stability
of system (1) is therefore guaranteed.
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Fig. 1: Minimum wave speed cmin as a function of c0 for
system (1) to be stable. The values for A, B and K are given
by equations (28), (29) or (30).

V. EXAMPLES

Three examples of stability for system (1) are provided here.
In each case, A+BK is not singular and therefore, there is a
unique equilibrium. The solver used for the LMIs is “sedumi”
with the YALMIP toolbox [17]. The dashed curve denoted
“Freq” is obtained using a frequency analysis and displays the
exact stability area. This exact method will be explained in
another paper and does not use Lyapunov arguments.
A. Problem (1) with A and A+BK Hurwitz

In this first numerical example, the considered system is
defined as follows:

A =
[−2 1

0 −1

]
, B = [ 1

1 ] , K = [ 0 −2 ] . (28)

Matrices A and A+BK are Hurwitz. The ODE and the PDE
are then stable if they are not coupled. As shown in Figure
1a, the frequency argument shows that there exists a minimum
wave speed called here cmin which is function of the damping
c0 for system (1) to be stable.

The phenomenon induced by the coupling can be under-
stood as the robustness of the ODE to a disturbance generated
by a wave equation. Intuitively, if the wave speed is large

enough, the perturbation tends to 0 fast enough for the ODE
to keep its stability behavior. Another interesting thing to
notice is the decrease of cmin as N increases (hierarchy of
the stability criteria with respect to the order N ). For this
example, as N increases, the stability area is converging to
the exact one.

B. Problem (1) with A+BK Hurwitz and A not Hurwitz.

Let us consider here, system (1) described by the following
matrices:

A = [ 2 1
0 1 ] , B = [ 1

1 ] , K = [−10 2 ] . (29)

As A is not Hurwitz, we are studying the stabilization of the
ODE through a communication medium modeled by the wave
equation. For the same reason as before, the wave speed must
be large enough for the control to be not too much delayed but
also with a moderated damping to transfer the state variable
X through the PDE equation. Then, a c0max is appears as one
can see in Figure 1b.

Some numerical simulations have been performed on this
example. Figure 1b shows that for system (29) with c0 =
0.15, the minimum wave speed is cmin = 6.83. The numerical
stability can also be seen in Figure 2 and indeed, the system is
at the boundary of the stable area in Figure 2b and unstable for
smaller values of c. The results coming from the exact criterion
and Theorem 2 are close even for small N . That means the
stability area provided with N = 1 is a good estimation of the
maximum stability set.

C. Problem (1) with A and A+BK not Hurwitz.

Consider an open loop unstable system defined by:

A =
[

0 1
−2 0.1

]
, B = [ 0

1 ] , K = [ 1 0 ] . (30)

Gain K has been chosen such that the closed loop is also
unstable. Surprisingly, the proposed methodology shows the
stability for some pairs (c, c0). The results are presented in
Figure 1c. The LMIs are not feasible for Theorem 2 with
N = 0. For N > 1, there is a stability area and the slope of
the right asymptotic branch is decreasing at each order. Hence,
it appears that the introduction of the string equation in the
feedback loop helps the stabilization of the closed loop system.
For N = 1, the stability area is quite far from the maximum
one but this gap reduces significantly for higher orders.

VI. CONCLUSION

A hierarchy of stability criteria has been provided for the
stability of systems described by the interconnection between
a finite dimensional linear system and an infinite dimensional
system modeled by a string equation. The proposed method-
ology relies on an extensive use of Bessel’s inequality, which
allows to design new and accurate Lyapunov functionals. This
new methodology encompasses the classical notion of energy
proposed in that case. In particular, the stability of the closed-
loop or open-loop system is not a requirement anymore. Future
works will include the study of robustness of this approach and
the design of a controller.
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(a) c = 10 (b) c = 6.83 (c) c = 6.5

Fig. 2: Chart of u for system (29) with the parameters: u0(x) = (cos(πx) + 1) KX0

2 , X0 = [1 1]
>, v0(x) = 0 and c0 = 0.15

for 3 values of c. These results are obtained using Euler forward as a numerical scheme.

APPENDIX

A. Proof of Lemma 3

For a given integer k in N, differentiating of Xk along
the trajectories of (4) yields Ẋk = c

∫ 1

0
χx(x)Lk(x)dx. Then,

integrating by parts, we get

Ẋk = c
(

[χ(x)Lk(x)]
1
0 −

∫ 1

0
χ(x)L′k(x)dx

)
. (31)

In order to derive the expression of Ẋk, we use the following
properties of the Legendre polynomials. On the one hand, the
values of Legendre polynomials at the boundaries of [0 1] are
given by Lk(0) = (−1)k and Lk(1) = 1. On the other hand,
the Legendre polynomials verifies the following differentiation
rule for k > 0:

d

dx
Lk(x) =

k−1∑
j=0

(2j+1)(1−(−1)j+k)Lj(x)

Hence, injecting these expressions into (31) leads to:

Ẋk = c
(
χ(1, t)− (−1)kχ(0)

)
− c

∑N
j=0 `k,jXj

where the coefficient `k,j are defined in equation (23). The
end of the proof consists in gathering the previous expression
from k = 1 to k = N , leading to the definition of matrices
LN , 1N and 1̄N given in (23).
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